state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
case refine'_1
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
r : R
hr : r ∈ I
y : S
x✝ : y ∈ ⊤
⊢ r • y ∈ Submodule.restrictScalars R (map (algebraMap R S) I) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· | rw [Algebra.smul_def] | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· | Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_1
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
r : R
hr : r ∈ I
y : S
x✝ : y ∈ ⊤
⊢ (algebraMap R S) r * y ∈ Submodule.restrictScalars R (map (algebraMap R S) I) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
| exact mul_mem_right _ _ (mem_map_of_mem _ hr) | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
| Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_2
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x : S
hx : x ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
⊢ ∀ x ∈ ⇑(algebraMap R S) '' ↑I, x ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· | rintro _ ⟨x, hx, rfl⟩ | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· | Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_2.intro.intro
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x✝ : S
hx✝ : x✝ ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
x : R
hx : x ∈ ↑I
⊢ (algebraMap R S) x ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
| rw [← mul_one (algebraMap R S x), ← Algebra.smul_def] | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
| Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_2.intro.intro
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x✝ : S
hx✝ : x✝ ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
x : R
hx : x ∈ ↑I
⊢ x • 1 ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
| exact Submodule.smul_mem_smul hx Submodule.mem_top | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
| Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_3
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x : S
hx : x ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
⊢ 0 ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· | exact Submodule.zero_mem _ | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· | Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_4
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x : S
hx : x ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
⊢ ∀ (x y : S), x ∈ I • ⊤ → y ∈ I • ⊤ → x + y ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· | intro x y | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· | Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_4
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x✝ : S
hx : x✝ ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
x y : S
⊢ x ∈ I • ⊤ → y ∈ I • ⊤ → x + y ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
| exact Submodule.add_mem _ | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
| Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_5
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x : S
hx : x ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
⊢ ∀ (a x : S), x ∈ I • ⊤ → a • x ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
| intro a x hx | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
| Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_5
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x✝ : S
hx✝ : x✝ ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
a x : S
hx : x ∈ I • ⊤
⊢ a • x ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
| refine' Submodule.smul_induction_on hx _ _ | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
| Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_5.refine'_1
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x✝ : S
hx✝ : x✝ ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
a x : S
hx : x ∈ I • ⊤
⊢ ∀ r ∈ I, ∀ n ∈ ⊤, a • r • n ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· | intro r hr s _ | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· | Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_5.refine'_1
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x✝ : S
hx✝ : x✝ ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
a x : S
hx : x ∈ I • ⊤
r : R
hr : r ∈ I
s : S
a✝ : s ∈ ⊤
⊢ a • r • s ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
| rw [smul_comm] | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
| Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_5.refine'_1
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x✝ : S
hx✝ : x✝ ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
a x : S
hx : x ∈ I • ⊤
r : R
hr : r ∈ I
s : S
a✝ : s ∈ ⊤
⊢ r • a • s ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
| exact Submodule.smul_mem_smul hr Submodule.mem_top | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
| Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_5.refine'_2
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x✝ : S
hx✝ : x✝ ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
a x : S
hx : x ∈ I • ⊤
⊢ ∀ (x y : S), a • x ∈ I • ⊤ → a • y ∈ I • ⊤ → a • (x + y) ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· | intro x y hx hy | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· | Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_5.refine'_2
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x✝¹ : S
hx✝¹ : x✝¹ ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
a x✝ : S
hx✝ : x✝ ∈ I • ⊤
x y : S
hx : a • x ∈ I • ⊤
hy : a • y ∈ I • ⊤
⊢ a • (x + y) ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
| rw [smul_add] | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
| Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
case refine'_5.refine'_2
R✝ : Type u
S✝ : Type v
F : Type u_1
inst✝⁴ : Semiring R✝
inst✝³ : Semiring S✝
rc : RingHomClass F R✝ S✝
f : F
I✝ J : Ideal R✝
K L : Ideal S✝
G : Type u_2
rcg : RingHomClass G S✝ R✝
ι : Sort u_3
R : Type u_4
S : Type u_5
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : Algebra R S
I : Ideal R
x✝¹ : S
hx✝¹ : x✝¹ ∈ Submodule.restrictScalars R (map (algebraMap R S) I)
a x✝ : S
hx✝ : x✝ ∈ I • ⊤
x y : S
hx : a • x ∈ I • ⊤
hy : a • y ∈ I • ⊤
⊢ a • x + a • y ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
| exact Submodule.add_mem _ hx hy | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
| Mathlib.RingTheory.Ideal.Operations.1543_0.5qK551sG47yBciY | @[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : Semiring R
inst✝ : Semiring S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
G : Type u_2
rcg : RingHomClass G S R
ι : Sort u_3
hf : Function.Injective ⇑f
⊢ comap f ⊥ ≤ I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
| refine' le_trans (fun x hx => _) bot_le | theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
| Mathlib.RingTheory.Ideal.Operations.1657_0.5qK551sG47yBciY | theorem comap_bot_le_of_injective : comap f ⊥ ≤ I | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : Semiring R
inst✝ : Semiring S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
G : Type u_2
rcg : RingHomClass G S R
ι : Sort u_3
hf : Function.Injective ⇑f
x : R
hx : x ∈ comap f ⊥
⊢ x ∈ ⊥ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
| rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx | theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
| Mathlib.RingTheory.Ideal.Operations.1657_0.5qK551sG47yBciY | theorem comap_bot_le_of_injective : comap f ⊥ ≤ I | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : Semiring R
inst✝ : Semiring S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
G : Type u_2
rcg : RingHomClass G S R
ι : Sort u_3
hf : Function.Injective ⇑f
x : R
hx : f x = f 0
⊢ x ∈ ⊥ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
| exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥ | theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
| Mathlib.RingTheory.Ideal.Operations.1657_0.5qK551sG47yBciY | theorem comap_bot_le_of_injective : comap f ⊥ ≤ I | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : Semiring R
inst✝ : Semiring S
rc : RingHomClass F R S
f✝ : F
I✝ J : Ideal R
K L : Ideal S
G : Type u_2
rcg : RingHomClass G S R
ι : Sort u_3
I : Ideal R
f : R ≃+* S
⊢ map (↑(RingEquiv.symm f)) (map (↑f) I) = I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
| rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id] | /-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
| Mathlib.RingTheory.Ideal.Operations.1669_0.5qK551sG47yBciY | /-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : Semiring R
inst✝ : Semiring S
rc : RingHomClass F R S
f✝ : F
I✝ J : Ideal R
K L : Ideal S
G : Type u_2
rcg : RingHomClass G S R
ι : Sort u_3
I : Ideal R
f : R ≃+* S
⊢ comap (↑f) (comap (↑(RingEquiv.symm f)) I) = I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
| rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id] | /-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
| Mathlib.RingTheory.Ideal.Operations.1677_0.5qK551sG47yBciY | /-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I✝ : Ideal R
hf : Function.Surjective ⇑f
I : Ideal R
r : R
h : f r ∈ map f I
s : R
hsi : s ∈ ↑I
hfsr : f s = f r
⊢ f (r - s) = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by | rw [map_sub, hfsr, sub_self] | theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by | Mathlib.RingTheory.Ideal.Operations.1716_0.5qK551sG47yBciY | theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I✝ : Ideal R
hf : Function.Surjective ⇑f
I : Ideal R
H : IsMaximal I
⊢ map f I = ⊤ ∨ IsMaximal (map f I) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
| refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩ | theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
| Mathlib.RingTheory.Ideal.Operations.1745_0.5qK551sG47yBciY | theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I✝ : Ideal R
hf : Function.Surjective ⇑f
I : Ideal R
H : IsMaximal I
ne_top : ¬map f I = ⊤
J : Ideal S
hJ : map f I < J
⊢ J = ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· | refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm)) | theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· | Mathlib.RingTheory.Ideal.Operations.1745_0.5qK551sG47yBciY | theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) | Mathlib_RingTheory_Ideal_Operations |
case refine'_1
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I✝ : Ideal R
hf : Function.Surjective ⇑f
I : Ideal R
H : IsMaximal I
ne_top : ¬map f I = ⊤
J : Ideal S
hJ : map f I < J
⊢ I ≤ comap f J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· | exact map_le_iff_le_comap.1 (le_of_lt hJ) | theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· | Mathlib.RingTheory.Ideal.Operations.1745_0.5qK551sG47yBciY | theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) | Mathlib_RingTheory_Ideal_Operations |
case refine'_2
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I✝ : Ideal R
hf : Function.Surjective ⇑f
I : Ideal R
H : IsMaximal I
ne_top : ¬map f I = ⊤
J : Ideal S
hJ : map f I < J
⊢ I ≠ comap f J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· | exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm)) | theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· | Mathlib.RingTheory.Ideal.Operations.1745_0.5qK551sG47yBciY | theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I : Ideal R
hf : Function.Surjective ⇑f
K : Ideal S
H : IsMaximal K
⊢ IsMaximal (comap f K) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
| refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩ | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
| Mathlib.RingTheory.Ideal.Operations.1755_0.5qK551sG47yBciY | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I : Ideal R
hf : Function.Surjective ⇑f
K : Ideal S
H : IsMaximal K
J : Ideal R
hJ : comap f K < J
⊢ J = ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
| suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ))) | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
| Mathlib.RingTheory.Ideal.Operations.1755_0.5qK551sG47yBciY | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I : Ideal R
hf : Function.Surjective ⇑f
K : Ideal S
H : IsMaximal K
J : Ideal R
hJ : comap f K < J
this : map f J = ⊤
⊢ J = ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
| have := congr_arg (comap f) this | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
| Mathlib.RingTheory.Ideal.Operations.1755_0.5qK551sG47yBciY | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I : Ideal R
hf : Function.Surjective ⇑f
K : Ideal S
H : IsMaximal K
J : Ideal R
hJ : comap f K < J
this✝ : map f J = ⊤
this : comap f (map f J) = comap f ⊤
⊢ J = ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
| rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
| Mathlib.RingTheory.Ideal.Operations.1755_0.5qK551sG47yBciY | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I : Ideal R
hf : Function.Surjective ⇑f
K : Ideal S
H : IsMaximal K
J : Ideal R
hJ : comap f K < J
this✝ : map f J = ⊤
this : ⊤ ≤ J ⊔ comap f ⊥
⊢ J = ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
| rw [eq_top_iff] | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
| Mathlib.RingTheory.Ideal.Operations.1755_0.5qK551sG47yBciY | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I : Ideal R
hf : Function.Surjective ⇑f
K : Ideal S
H : IsMaximal K
J : Ideal R
hJ : comap f K < J
this✝ : map f J = ⊤
this : ⊤ ≤ J ⊔ comap f ⊥
⊢ ⊤ ≤ J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
| exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ))) | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
| Mathlib.RingTheory.Ideal.Operations.1755_0.5qK551sG47yBciY | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I : Ideal R
hf : Function.Surjective ⇑f
K : Ideal S
H : IsMaximal K
J : Ideal R
hJ : comap f K < J
⊢ map f J = ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
| refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _)) | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
| Mathlib.RingTheory.Ideal.Operations.1755_0.5qK551sG47yBciY | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I : Ideal R
hf : Function.Surjective ⇑f
K : Ideal S
H : IsMaximal K
J : Ideal R
hJ : comap f K < J
h : K = map f J
⊢ comap f (map f J) = J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
| rw [comap_map_of_surjective _ hf, sup_eq_left] | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
| Mathlib.RingTheory.Ideal.Operations.1755_0.5qK551sG47yBciY | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I : Ideal R
hf : Function.Surjective ⇑f
K : Ideal S
H : IsMaximal K
J : Ideal R
hJ : comap f K < J
h : K = map f J
⊢ comap f ⊥ ≤ J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
| exact le_trans (comap_mono bot_le) (le_of_lt hJ) | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
| Mathlib.RingTheory.Ideal.Operations.1755_0.5qK551sG47yBciY | theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I✝ : Ideal R
hf : Function.Bijective ⇑f
I : Ideal R
H : IsMaximal I
⊢ IsMaximal (map f I) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
| refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _ | theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
| Mathlib.RingTheory.Ideal.Operations.1798_0.5qK551sG47yBciY | theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I✝ : Ideal R
hf : Function.Bijective ⇑f
I : Ideal R
H : IsMaximal I
h : map f I = ⊤
⊢ I = ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
| calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top] | theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
| Mathlib.RingTheory.Ideal.Operations.1798_0.5qK551sG47yBciY | theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I✝ : Ideal R
hf : Function.Bijective ⇑f
I : Ideal R
H : IsMaximal I
h : map f I = ⊤
⊢ comap f (map f I) = comap f ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by | rw [h] | theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by | Mathlib.RingTheory.Ideal.Operations.1798_0.5qK551sG47yBciY | theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝² : Ring R
inst✝¹ : Ring S
inst✝ : RingHomClass F R S
f : F
I✝ : Ideal R
hf : Function.Bijective ⇑f
I : Ideal R
H : IsMaximal I
h : map f I = ⊤
⊢ comap f ⊤ = ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by | rw [comap_top] | theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by | Mathlib.RingTheory.Ideal.Operations.1798_0.5qK551sG47yBciY | theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
r : R
hri : r ∈ I
s : R
hsj : s ∈ J
⊢ f (r * s) ∈ map f I * map f J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
| rw [_root_.map_mul] | theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
| Mathlib.RingTheory.Ideal.Operations.1829_0.5qK551sG47yBciY | theorem map_mul : map f (I * J) = map f I * map f J | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
r : R
hri : r ∈ I
s : R
hsj : s ∈ J
⊢ f r * f s ∈ map f I * map f J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; | exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj) | theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; | Mathlib.RingTheory.Ideal.Operations.1829_0.5qK551sG47yBciY | theorem map_mul : map f (I * J) = map f I * map f J | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
i : S
x✝¹ : i ∈ ⇑f '' ↑I
r : R
hri : r ∈ ↑I
hfri : f r = i
j : S
x✝ : j ∈ ⇑f '' ↑J
s : R
hsj : s ∈ ↑J
hfsj : f s = j
⊢ f r * f s ∈ ↑(map f (I * J)) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by | rw [← _root_.map_mul] | theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by | Mathlib.RingTheory.Ideal.Operations.1829_0.5qK551sG47yBciY | theorem map_mul : map f (I * J) = map f I * map f J | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
i : S
x✝¹ : i ∈ ⇑f '' ↑I
r : R
hri : r ∈ ↑I
hfri : f r = i
j : S
x✝ : j ∈ ⇑f '' ↑J
s : R
hsj : s ∈ ↑J
hfsj : f s = j
⊢ f (r * s) ∈ ↑(map f (I * J)) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; | exact mem_map_of_mem f (mul_mem_mul hri hsj) | theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; | Mathlib.RingTheory.Ideal.Operations.1829_0.5qK551sG47yBciY | theorem map_mul : map f (I * J) = map f I * map f J | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
⊢ ZeroHom.toFun { toFun := map f, map_zero' := (_ : map f ⊥ = ⊥) } 1 = 1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by | simp only [one_eq_top] | /-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by | Mathlib.RingTheory.Ideal.Operations.1842_0.5qK551sG47yBciY | /-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
⊢ map f ⊤ = ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; | exact Ideal.map_top f | /-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; | Mathlib.RingTheory.Ideal.Operations.1842_0.5qK551sG47yBciY | /-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
⊢ comap f (radical K) = radical (comap f K) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
| ext | theorem comap_radical : comap f (radical K) = radical (comap f K) := by
| Mathlib.RingTheory.Ideal.Operations.1855_0.5qK551sG47yBciY | theorem comap_radical : comap f (radical K) = radical (comap f K) | Mathlib_RingTheory_Ideal_Operations |
case h
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
x✝ : R
⊢ x✝ ∈ comap f (radical K) ↔ x✝ ∈ radical (comap f K) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
| simp [radical] | theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
| Mathlib.RingTheory.Ideal.Operations.1855_0.5qK551sG47yBciY | theorem comap_radical : comap f (radical K) = radical (comap f K) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
hK : IsRadical K
⊢ IsRadical (Ideal.comap f K) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
| rw [← hK.radical, comap_radical] | theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
| Mathlib.RingTheory.Ideal.Operations.1862_0.5qK551sG47yBciY | theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
hK : IsRadical K
⊢ IsRadical (Ideal.radical (Ideal.comap f K)) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
| apply radical_isRadical | theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
| Mathlib.RingTheory.Ideal.Operations.1862_0.5qK551sG47yBciY | theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
n : ℕ
⊢ comap f K ^ n ≤ comap f (K ^ n) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
| induction' n with n n_ih | theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
| Mathlib.RingTheory.Ideal.Operations.1879_0.5qK551sG47yBciY | theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f | Mathlib_RingTheory_Ideal_Operations |
case zero
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
⊢ comap f K ^ Nat.zero ≤ comap f (K ^ Nat.zero) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· | rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top] | theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· | Mathlib.RingTheory.Ideal.Operations.1879_0.5qK551sG47yBciY | theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f | Mathlib_RingTheory_Ideal_Operations |
case zero
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
⊢ ⊤ ≤ comap f ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
| exact rfl.le | theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
| Mathlib.RingTheory.Ideal.Operations.1879_0.5qK551sG47yBciY | theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f | Mathlib_RingTheory_Ideal_Operations |
case succ
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
n : ℕ
n_ih : comap f K ^ n ≤ comap f (K ^ n)
⊢ comap f K ^ Nat.succ n ≤ comap f (K ^ Nat.succ n) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· | rw [pow_succ, pow_succ] | theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· | Mathlib.RingTheory.Ideal.Operations.1879_0.5qK551sG47yBciY | theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f | Mathlib_RingTheory_Ideal_Operations |
case succ
R : Type u
S : Type v
F : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
rc : RingHomClass F R S
f : F
I J : Ideal R
K L : Ideal S
n : ℕ
n_ih : comap f K ^ n ≤ comap f (K ^ n)
⊢ comap f K * comap f K ^ n ≤ comap f (K * K ^ n) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
| exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f) | theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
| Mathlib.RingTheory.Ideal.Operations.1879_0.5qK551sG47yBciY | theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f | Mathlib_RingTheory_Ideal_Operations |
R : Type u
inst✝ : CommSemiring R
I : Ideal R
hi : IsPrimary I
x y : R
x✝ : x * y ∈ radical I
m : ℕ
hxy : (x * y) ^ m ∈ I
⊢ x ∈ radical I ∨ y ∈ radical I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
| rw [mul_pow] at hxy | theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
| Mathlib.RingTheory.Ideal.Operations.1909_0.5qK551sG47yBciY | theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
inst✝ : CommSemiring R
I : Ideal R
hi : IsPrimary I
x y : R
x✝ : x * y ∈ radical I
m : ℕ
hxy : x ^ m * y ^ m ∈ I
⊢ x ∈ radical I ∨ y ∈ radical I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; | cases' hi.2 hxy with h h | theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; | Mathlib.RingTheory.Ideal.Operations.1909_0.5qK551sG47yBciY | theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) | Mathlib_RingTheory_Ideal_Operations |
case inl
R : Type u
inst✝ : CommSemiring R
I : Ideal R
hi : IsPrimary I
x y : R
x✝ : x * y ∈ radical I
m : ℕ
hxy : x ^ m * y ^ m ∈ I
h : x ^ m ∈ I
⊢ x ∈ radical I ∨ y ∈ radical I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· | exact Or.inl ⟨m, h⟩ | theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· | Mathlib.RingTheory.Ideal.Operations.1909_0.5qK551sG47yBciY | theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) | Mathlib_RingTheory_Ideal_Operations |
case inr
R : Type u
inst✝ : CommSemiring R
I : Ideal R
hi : IsPrimary I
x y : R
x✝ : x * y ∈ radical I
m : ℕ
hxy : x ^ m * y ^ m ∈ I
h : y ^ m ∈ radical I
⊢ x ∈ radical I ∨ y ∈ radical I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· | exact Or.inr (mem_radical_of_pow_mem h) | theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· | Mathlib.RingTheory.Ideal.Operations.1909_0.5qK551sG47yBciY | theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
inst✝ : CommSemiring R
I J : Ideal R
hi : IsPrimary I
hj : IsPrimary J
hij : radical I = radical J
x y : R
x✝ : x * y ∈ I ⊓ J
hxyi : x * y ∈ ↑I
hxyj : x * y ∈ ↑J
⊢ x ∈ I ⊓ J ∨ y ∈ radical (I ⊓ J) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
| rw [radical_inf, hij, inf_idem] | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
| Mathlib.RingTheory.Ideal.Operations.1917_0.5qK551sG47yBciY | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
inst✝ : CommSemiring R
I J : Ideal R
hi : IsPrimary I
hj : IsPrimary J
hij : radical I = radical J
x y : R
x✝ : x * y ∈ I ⊓ J
hxyi : x * y ∈ ↑I
hxyj : x * y ∈ ↑J
⊢ x ∈ I ⊓ J ∨ y ∈ radical J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
| cases' hi.2 hxyi with hxi hyi | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
| Mathlib.RingTheory.Ideal.Operations.1917_0.5qK551sG47yBciY | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) | Mathlib_RingTheory_Ideal_Operations |
case inl
R : Type u
inst✝ : CommSemiring R
I J : Ideal R
hi : IsPrimary I
hj : IsPrimary J
hij : radical I = radical J
x y : R
x✝ : x * y ∈ I ⊓ J
hxyi : x * y ∈ ↑I
hxyj : x * y ∈ ↑J
hxi : x ∈ I
⊢ x ∈ I ⊓ J ∨ y ∈ radical J
case inr
R : Type u
inst✝ : CommSemiring R
I J : Ideal R
hi : IsPrimary I
hj : IsPrimary J
hij : radical I = radical J
x y : R
x✝ : x * y ∈ I ⊓ J
hxyi : x * y ∈ ↑I
hxyj : x * y ∈ ↑J
hyi : y ∈ radical I
⊢ x ∈ I ⊓ J ∨ y ∈ radical J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; | cases' hj.2 hxyj with hxj hyj | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; | Mathlib.RingTheory.Ideal.Operations.1917_0.5qK551sG47yBciY | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) | Mathlib_RingTheory_Ideal_Operations |
case inl.inl
R : Type u
inst✝ : CommSemiring R
I J : Ideal R
hi : IsPrimary I
hj : IsPrimary J
hij : radical I = radical J
x y : R
x✝ : x * y ∈ I ⊓ J
hxyi : x * y ∈ ↑I
hxyj : x * y ∈ ↑J
hxi : x ∈ I
hxj : x ∈ J
⊢ x ∈ I ⊓ J ∨ y ∈ radical J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· | exact Or.inl ⟨hxi, hxj⟩ | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· | Mathlib.RingTheory.Ideal.Operations.1917_0.5qK551sG47yBciY | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) | Mathlib_RingTheory_Ideal_Operations |
case inl.inr
R : Type u
inst✝ : CommSemiring R
I J : Ideal R
hi : IsPrimary I
hj : IsPrimary J
hij : radical I = radical J
x y : R
x✝ : x * y ∈ I ⊓ J
hxyi : x * y ∈ ↑I
hxyj : x * y ∈ ↑J
hxi : x ∈ I
hyj : y ∈ radical J
⊢ x ∈ I ⊓ J ∨ y ∈ radical J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· | exact Or.inr hyj | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· | Mathlib.RingTheory.Ideal.Operations.1917_0.5qK551sG47yBciY | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) | Mathlib_RingTheory_Ideal_Operations |
case inr
R : Type u
inst✝ : CommSemiring R
I J : Ideal R
hi : IsPrimary I
hj : IsPrimary J
hij : radical I = radical J
x y : R
x✝ : x * y ∈ I ⊓ J
hxyi : x * y ∈ ↑I
hxyj : x * y ∈ ↑J
hyi : y ∈ radical I
⊢ x ∈ I ⊓ J ∨ y ∈ radical J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· | rw [hij] at hyi | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· | Mathlib.RingTheory.Ideal.Operations.1917_0.5qK551sG47yBciY | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) | Mathlib_RingTheory_Ideal_Operations |
case inr
R : Type u
inst✝ : CommSemiring R
I J : Ideal R
hi : IsPrimary I
hj : IsPrimary J
hij : radical I = radical J
x y : R
x✝ : x * y ∈ I ⊓ J
hxyi : x * y ∈ ↑I
hxyj : x * y ∈ ↑J
hyi : y ∈ radical J
⊢ x ∈ I ⊓ J ∨ y ∈ radical J | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
| exact Or.inr hyi | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
| Mathlib.RingTheory.Ideal.Operations.1917_0.5qK551sG47yBciY | theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) | Mathlib_RingTheory_Ideal_Operations |
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
f : ι →₀ ↥I
⊢ (finsuppTotal ι M I v) f = Finsupp.sum f fun i x => ↑x • v i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
| dsimp [finsuppTotal] | theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
| Mathlib.RingTheory.Ideal.Operations.1948_0.5qK551sG47yBciY | theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i | Mathlib_RingTheory_Ideal_Operations |
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
f : ι →₀ ↥I
⊢ (Finsupp.total ι M R v) (Finsupp.mapRange Subtype.val (_ : (Submodule.subtype I) 0 = 0) f) =
Finsupp.sum f fun i x => ↑x • v i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
| rw [Finsupp.total_apply, Finsupp.sum_mapRange_index] | theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
| Mathlib.RingTheory.Ideal.Operations.1948_0.5qK551sG47yBciY | theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i | Mathlib_RingTheory_Ideal_Operations |
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
f : ι →₀ ↥I
⊢ ∀ (a : ι), 0 • v a = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
| exact fun _ => zero_smul _ _ | theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
| Mathlib.RingTheory.Ideal.Operations.1948_0.5qK551sG47yBciY | theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i | Mathlib_RingTheory_Ideal_Operations |
ι : Type u_1
M : Type u_2
inst✝³ : AddCommGroup M
R : Type u_3
inst✝² : CommRing R
inst✝¹ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
inst✝ : Fintype ι
f : ι →₀ ↥I
⊢ (finsuppTotal ι M I v) f = ∑ i : ι, ↑(f i) • v i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
| rw [finsuppTotal_apply, Finsupp.sum_fintype] | theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
| Mathlib.RingTheory.Ideal.Operations.1955_0.5qK551sG47yBciY | theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i | Mathlib_RingTheory_Ideal_Operations |
case h
ι : Type u_1
M : Type u_2
inst✝³ : AddCommGroup M
R : Type u_3
inst✝² : CommRing R
inst✝¹ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
inst✝ : Fintype ι
f : ι →₀ ↥I
⊢ ∀ (i : ι), ↑0 • v i = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
| exact fun _ => zero_smul _ _ | theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
| Mathlib.RingTheory.Ideal.Operations.1955_0.5qK551sG47yBciY | theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i | Mathlib_RingTheory_Ideal_Operations |
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
⊢ LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
| ext | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
| Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
case h
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
x✝ : M
⊢ x✝ ∈ LinearMap.range (finsuppTotal ι M I v) ↔ x✝ ∈ I • Submodule.span R (Set.range v) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
| rw [Submodule.mem_ideal_smul_span_iff_exists_sum] | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
| Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
case h
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
x✝ : M
⊢ x✝ ∈ LinearMap.range (finsuppTotal ι M I v) ↔ ∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • v i) = x✝ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
| refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩ | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
| Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
case h
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
x✝ : M
⊢ (∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • v i) = x✝) →
x✝ ∈ LinearMap.range (finsuppTotal ι M I v) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
| rintro ⟨a, ha, rfl⟩ | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
| Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
case h.intro.intro
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ (Finsupp.sum a fun i c => c • v i) ∈ LinearMap.range (finsuppTotal ι M I v) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
| classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _ | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
| Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
case h.intro.intro
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ (Finsupp.sum a fun i c => c • v i) ∈ LinearMap.range (finsuppTotal ι M I v) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
| refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩ | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
| Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ (fun r => if h : r ∈ I then { val := r, property := h } else 0) 0 = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by | simp | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by | Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
case h.intro.intro
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ (finsuppTotal ι M I v)
(Finsupp.mapRange (fun r => if h : r ∈ I then { val := r, property := h } else 0)
(_ : (if h : 0 ∈ I then { val := 0, property := h } else 0) = 0) a) =
Finsupp.sum a fun i c => c • v i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
| rw [finsuppTotal_apply, Finsupp.sum_mapRange_index] | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
| Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
case h.intro.intro
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ (Finsupp.sum a fun a b => ↑(if h : b ∈ I then { val := b, property := h } else 0) • v a) =
Finsupp.sum a fun i c => c • v i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· | apply Finsupp.sum_congr | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· | Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
case h.intro.intro.h
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ ∀ x ∈ a.support, ↑(if h : a x ∈ I then { val := a x, property := h } else 0) • v x = a x • v x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
| intro i _ | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
| Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
case h.intro.intro.h
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
i : ι
a✝ : i ∈ a.support
⊢ ↑(if h : a i ∈ I then { val := a i, property := h } else 0) • v i = a i • v i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
| rw [dif_pos (ha i)] | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
| Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
case h.intro.intro
ι : Type u_1
M : Type u_2
inst✝² : AddCommGroup M
R : Type u_3
inst✝¹ : CommRing R
inst✝ : Module R M
I : Ideal R
v : ι → M
hv : Submodule.span R (Set.range v) = ⊤
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ ∀ (a : ι), ↑0 • v a = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· | exact fun _ => zero_smul _ _ | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· | Mathlib.RingTheory.Ideal.Operations.1961_0.5qK551sG47yBciY | theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) | Mathlib_RingTheory_Ideal_Operations |
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝³ : CommSemiring R
inst✝² : CommRing S
inst✝¹ : IsDomain S
inst✝ : Algebra R S
b : Basis ι R S
x : S
hx : x ≠ 0
⊢ LinearMap.range ((Algebra.lmul R S) x) = Submodule.restrictScalars R (span {x}) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
| ext | /-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
| Mathlib.RingTheory.Ideal.Operations.1982_0.5qK551sG47yBciY | /-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) | Mathlib_RingTheory_Ideal_Operations |
case h
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝³ : CommSemiring R
inst✝² : CommRing S
inst✝¹ : IsDomain S
inst✝ : Algebra R S
b : Basis ι R S
x : S
hx : x ≠ 0
x✝ : S
⊢ x✝ ∈ LinearMap.range ((Algebra.lmul R S) x) ↔ x✝ ∈ Submodule.restrictScalars R (span {x}) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
| simp [mem_span_singleton', mul_comm] | /-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
| Mathlib.RingTheory.Ideal.Operations.1982_0.5qK551sG47yBciY | /-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) | Mathlib_RingTheory_Ideal_Operations |
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝³ : CommSemiring R
inst✝² : CommRing S
inst✝¹ : IsDomain S
inst✝ : Algebra R S
b : Basis ι R S
x : S
hx : x ≠ 0
i : ι
⊢ ↑((basisSpanSingleton b hx) i) = x * b i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
| simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply'] | @[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
| Mathlib.RingTheory.Ideal.Operations.1994_0.5qK551sG47yBciY | @[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i | Mathlib_RingTheory_Ideal_Operations |
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝³ : CommSemiring R
inst✝² : CommRing S
inst✝¹ : IsDomain S
inst✝ : Algebra R S
b : Basis ι R S
x : S
hx : x ≠ 0
i : ι
⊢ ↑((LinearEquiv.ofEq (LinearMap.range ((Algebra.lmul R S) x)) (Submodule.restrictScalars R (span {x}))
(_ : LinearMap.range ((Algebra.lmul R S) x) = Submodule.restrictScalars R (span {x})))
((LinearEquiv.ofInjective ((Algebra.lmul R S) x) (_ : Function.Injective ⇑((LinearMap.mul R S) x))) (b i))) =
x * b i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
| erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply'] | @[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
| Mathlib.RingTheory.Ideal.Operations.1994_0.5qK551sG47yBciY | @[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i | Mathlib_RingTheory_Ideal_Operations |
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁶ : CommSemiring R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain S
inst✝³ : Algebra R S
N : Type u_4
inst✝² : Semiring N
inst✝¹ : Module N S
inst✝ : SMulCommClass R N S
b : Basis ι R S
x : S
hx : x ≠ 0
i : ι
⊢ (AddHom.toFun (↑(Basis.constr b N)).toAddHom (Subtype.val ∘ ⇑(basisSpanSingleton b hx))) (b i) =
((Algebra.lmul R S) x) (b i) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
| erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply'] | @[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
| Mathlib.RingTheory.Ideal.Operations.2005_0.5qK551sG47yBciY | @[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x | Mathlib_RingTheory_Ideal_Operations |
R : Type u_1
inst✝ : CommSemiring R
r : R
⊢ Associates.mk (Ideal.span {r}) ≠ 0 ↔ r ≠ 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
| rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot] | theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
| Mathlib.RingTheory.Ideal.Operations.2032_0.5qK551sG47yBciY | theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
T : Type w
F : Type u_1
G : Type u_2
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
rcf : RingHomClass F R S
rcg : RingHomClass G T S
f : F
g : G
r : R
⊢ r ∈ ker f ↔ f r = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by | rw [ker, Ideal.mem_comap, Submodule.mem_bot] | /-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by | Mathlib.RingTheory.Ideal.Operations.2067_0.5qK551sG47yBciY | /-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
T : Type w
F : Type u_1
G : Type u_2
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
rcf : RingHomClass F R S
rcg : RingHomClass G T S
f✝ : F
g✝ : G
f : S →+* R
g : T →+* S
⊢ Ideal.comap g (ker f) = ker (comp f g) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by rw [ker, Ideal.mem_comap, Submodule.mem_bot]
#align ring_hom.mem_ker RingHom.mem_ker
theorem ker_eq : (ker f : Set R) = Set.preimage f {0} :=
rfl
#align ring_hom.ker_eq RingHom.ker_eq
theorem ker_eq_comap_bot (f : F) : ker f = Ideal.comap f ⊥ :=
rfl
#align ring_hom.ker_eq_comap_bot RingHom.ker_eq_comap_bot
theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
| rw [RingHom.ker_eq_comap_bot, Ideal.comap_comap, RingHom.ker_eq_comap_bot] | theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
| Mathlib.RingTheory.Ideal.Operations.2079_0.5qK551sG47yBciY | theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
T : Type w
F : Type u_1
G : Type u_2
inst✝³ : Semiring R
inst✝² : Semiring S
inst✝¹ : Semiring T
rcf : RingHomClass F R S
rcg : RingHomClass G T S
f✝ : F
g : G
inst✝ : Nontrivial S
f : F
⊢ 1 ∉ ker f | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by rw [ker, Ideal.mem_comap, Submodule.mem_bot]
#align ring_hom.mem_ker RingHom.mem_ker
theorem ker_eq : (ker f : Set R) = Set.preimage f {0} :=
rfl
#align ring_hom.ker_eq RingHom.ker_eq
theorem ker_eq_comap_bot (f : F) : ker f = Ideal.comap f ⊥ :=
rfl
#align ring_hom.ker_eq_comap_bot RingHom.ker_eq_comap_bot
theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
rw [RingHom.ker_eq_comap_bot, Ideal.comap_comap, RingHom.ker_eq_comap_bot]
#align ring_hom.comap_ker RingHom.comap_ker
/-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
| rw [mem_ker, map_one] | /-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
| Mathlib.RingTheory.Ideal.Operations.2083_0.5qK551sG47yBciY | /-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
T : Type w
F : Type u_1
G : Type u_2
inst✝³ : Semiring R
inst✝² : Semiring S
inst✝¹ : Semiring T
rcf : RingHomClass F R S
rcg : RingHomClass G T S
f✝ : F
g : G
inst✝ : Nontrivial S
f : F
⊢ ¬1 = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by rw [ker, Ideal.mem_comap, Submodule.mem_bot]
#align ring_hom.mem_ker RingHom.mem_ker
theorem ker_eq : (ker f : Set R) = Set.preimage f {0} :=
rfl
#align ring_hom.ker_eq RingHom.ker_eq
theorem ker_eq_comap_bot (f : F) : ker f = Ideal.comap f ⊥ :=
rfl
#align ring_hom.ker_eq_comap_bot RingHom.ker_eq_comap_bot
theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
rw [RingHom.ker_eq_comap_bot, Ideal.comap_comap, RingHom.ker_eq_comap_bot]
#align ring_hom.comap_ker RingHom.comap_ker
/-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
rw [mem_ker, map_one]
| exact one_ne_zero | /-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
rw [mem_ker, map_one]
| Mathlib.RingTheory.Ideal.Operations.2083_0.5qK551sG47yBciY | /-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f | Mathlib_RingTheory_Ideal_Operations |
R✝ : Type u
S : Type v
T : Type w
F : Type u_1
G : Type u_2
inst✝³ : Semiring R✝
inst✝² : Semiring S
inst✝¹ : Semiring T
rcf : RingHomClass F R✝ S
rcg : RingHomClass G T S
f : F
g : G
ι : Type u_3
R : ι → Type u_4
inst✝ : (i : ι) → Semiring (R i)
φ : (i : ι) → S →+* R i
⊢ ker (Pi.ringHom φ) = ⨅ i, ker (φ i) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by rw [ker, Ideal.mem_comap, Submodule.mem_bot]
#align ring_hom.mem_ker RingHom.mem_ker
theorem ker_eq : (ker f : Set R) = Set.preimage f {0} :=
rfl
#align ring_hom.ker_eq RingHom.ker_eq
theorem ker_eq_comap_bot (f : F) : ker f = Ideal.comap f ⊥ :=
rfl
#align ring_hom.ker_eq_comap_bot RingHom.ker_eq_comap_bot
theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
rw [RingHom.ker_eq_comap_bot, Ideal.comap_comap, RingHom.ker_eq_comap_bot]
#align ring_hom.comap_ker RingHom.comap_ker
/-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
rw [mem_ker, map_one]
exact one_ne_zero
#align ring_hom.not_one_mem_ker RingHom.not_one_mem_ker
theorem ker_ne_top [Nontrivial S] (f : F) : ker f ≠ ⊤ :=
(Ideal.ne_top_iff_one _).mpr <| not_one_mem_ker f
#align ring_hom.ker_ne_top RingHom.ker_ne_top
lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) := by
| ext x | lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) := by
| Mathlib.RingTheory.Ideal.Operations.2093_0.5qK551sG47yBciY | lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) | Mathlib_RingTheory_Ideal_Operations |
case h
R✝ : Type u
S : Type v
T : Type w
F : Type u_1
G : Type u_2
inst✝³ : Semiring R✝
inst✝² : Semiring S
inst✝¹ : Semiring T
rcf : RingHomClass F R✝ S
rcg : RingHomClass G T S
f : F
g : G
ι : Type u_3
R : ι → Type u_4
inst✝ : (i : ι) → Semiring (R i)
φ : (i : ι) → S →+* R i
x : S
⊢ x ∈ ker (Pi.ringHom φ) ↔ x ∈ ⨅ i, ker (φ i) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by rw [ker, Ideal.mem_comap, Submodule.mem_bot]
#align ring_hom.mem_ker RingHom.mem_ker
theorem ker_eq : (ker f : Set R) = Set.preimage f {0} :=
rfl
#align ring_hom.ker_eq RingHom.ker_eq
theorem ker_eq_comap_bot (f : F) : ker f = Ideal.comap f ⊥ :=
rfl
#align ring_hom.ker_eq_comap_bot RingHom.ker_eq_comap_bot
theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
rw [RingHom.ker_eq_comap_bot, Ideal.comap_comap, RingHom.ker_eq_comap_bot]
#align ring_hom.comap_ker RingHom.comap_ker
/-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
rw [mem_ker, map_one]
exact one_ne_zero
#align ring_hom.not_one_mem_ker RingHom.not_one_mem_ker
theorem ker_ne_top [Nontrivial S] (f : F) : ker f ≠ ⊤ :=
(Ideal.ne_top_iff_one _).mpr <| not_one_mem_ker f
#align ring_hom.ker_ne_top RingHom.ker_ne_top
lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) := by
ext x
| simp [mem_ker, Ideal.mem_iInf, Function.funext_iff] | lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) := by
ext x
| Mathlib.RingTheory.Ideal.Operations.2093_0.5qK551sG47yBciY | lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
T : Type w
F : Type u_1
inst✝¹ : Ring R
inst✝ : Semiring S
rc : RingHomClass F R S
f : F
⊢ Function.Injective ⇑f ↔ ker f = ⊥ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by rw [ker, Ideal.mem_comap, Submodule.mem_bot]
#align ring_hom.mem_ker RingHom.mem_ker
theorem ker_eq : (ker f : Set R) = Set.preimage f {0} :=
rfl
#align ring_hom.ker_eq RingHom.ker_eq
theorem ker_eq_comap_bot (f : F) : ker f = Ideal.comap f ⊥ :=
rfl
#align ring_hom.ker_eq_comap_bot RingHom.ker_eq_comap_bot
theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
rw [RingHom.ker_eq_comap_bot, Ideal.comap_comap, RingHom.ker_eq_comap_bot]
#align ring_hom.comap_ker RingHom.comap_ker
/-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
rw [mem_ker, map_one]
exact one_ne_zero
#align ring_hom.not_one_mem_ker RingHom.not_one_mem_ker
theorem ker_ne_top [Nontrivial S] (f : F) : ker f ≠ ⊤ :=
(Ideal.ne_top_iff_one _).mpr <| not_one_mem_ker f
#align ring_hom.ker_ne_top RingHom.ker_ne_top
lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) := by
ext x
simp [mem_ker, Ideal.mem_iInf, Function.funext_iff]
end Semiring
section Ring
variable {F : Type*} [Ring R] [Semiring S] [rc : RingHomClass F R S] (f : F)
theorem injective_iff_ker_eq_bot : Function.Injective f ↔ ker f = ⊥ := by
| rw [SetLike.ext'_iff, ker_eq, Set.ext_iff] | theorem injective_iff_ker_eq_bot : Function.Injective f ↔ ker f = ⊥ := by
| Mathlib.RingTheory.Ideal.Operations.2104_0.5qK551sG47yBciY | theorem injective_iff_ker_eq_bot : Function.Injective f ↔ ker f = ⊥ | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
T : Type w
F : Type u_1
inst✝¹ : Ring R
inst✝ : Semiring S
rc : RingHomClass F R S
f : F
⊢ Function.Injective ⇑f ↔ ∀ (x : R), x ∈ ⇑f ⁻¹' {0} ↔ x ∈ ↑⊥ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by rw [ker, Ideal.mem_comap, Submodule.mem_bot]
#align ring_hom.mem_ker RingHom.mem_ker
theorem ker_eq : (ker f : Set R) = Set.preimage f {0} :=
rfl
#align ring_hom.ker_eq RingHom.ker_eq
theorem ker_eq_comap_bot (f : F) : ker f = Ideal.comap f ⊥ :=
rfl
#align ring_hom.ker_eq_comap_bot RingHom.ker_eq_comap_bot
theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
rw [RingHom.ker_eq_comap_bot, Ideal.comap_comap, RingHom.ker_eq_comap_bot]
#align ring_hom.comap_ker RingHom.comap_ker
/-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
rw [mem_ker, map_one]
exact one_ne_zero
#align ring_hom.not_one_mem_ker RingHom.not_one_mem_ker
theorem ker_ne_top [Nontrivial S] (f : F) : ker f ≠ ⊤ :=
(Ideal.ne_top_iff_one _).mpr <| not_one_mem_ker f
#align ring_hom.ker_ne_top RingHom.ker_ne_top
lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) := by
ext x
simp [mem_ker, Ideal.mem_iInf, Function.funext_iff]
end Semiring
section Ring
variable {F : Type*} [Ring R] [Semiring S] [rc : RingHomClass F R S] (f : F)
theorem injective_iff_ker_eq_bot : Function.Injective f ↔ ker f = ⊥ := by
rw [SetLike.ext'_iff, ker_eq, Set.ext_iff]
| exact injective_iff_map_eq_zero' f | theorem injective_iff_ker_eq_bot : Function.Injective f ↔ ker f = ⊥ := by
rw [SetLike.ext'_iff, ker_eq, Set.ext_iff]
| Mathlib.RingTheory.Ideal.Operations.2104_0.5qK551sG47yBciY | theorem injective_iff_ker_eq_bot : Function.Injective f ↔ ker f = ⊥ | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
T : Type w
F : Type u_1
inst✝¹ : Ring R
inst✝ : Semiring S
rc : RingHomClass F R S
f : F
⊢ ker f = ⊥ ↔ ∀ (x : R), f x = 0 → x = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by rw [ker, Ideal.mem_comap, Submodule.mem_bot]
#align ring_hom.mem_ker RingHom.mem_ker
theorem ker_eq : (ker f : Set R) = Set.preimage f {0} :=
rfl
#align ring_hom.ker_eq RingHom.ker_eq
theorem ker_eq_comap_bot (f : F) : ker f = Ideal.comap f ⊥ :=
rfl
#align ring_hom.ker_eq_comap_bot RingHom.ker_eq_comap_bot
theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
rw [RingHom.ker_eq_comap_bot, Ideal.comap_comap, RingHom.ker_eq_comap_bot]
#align ring_hom.comap_ker RingHom.comap_ker
/-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
rw [mem_ker, map_one]
exact one_ne_zero
#align ring_hom.not_one_mem_ker RingHom.not_one_mem_ker
theorem ker_ne_top [Nontrivial S] (f : F) : ker f ≠ ⊤ :=
(Ideal.ne_top_iff_one _).mpr <| not_one_mem_ker f
#align ring_hom.ker_ne_top RingHom.ker_ne_top
lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) := by
ext x
simp [mem_ker, Ideal.mem_iInf, Function.funext_iff]
end Semiring
section Ring
variable {F : Type*} [Ring R] [Semiring S] [rc : RingHomClass F R S] (f : F)
theorem injective_iff_ker_eq_bot : Function.Injective f ↔ ker f = ⊥ := by
rw [SetLike.ext'_iff, ker_eq, Set.ext_iff]
exact injective_iff_map_eq_zero' f
#align ring_hom.injective_iff_ker_eq_bot RingHom.injective_iff_ker_eq_bot
theorem ker_eq_bot_iff_eq_zero : ker f = ⊥ ↔ ∀ x, f x = 0 → x = 0 := by
| rw [← injective_iff_map_eq_zero f, injective_iff_ker_eq_bot] | theorem ker_eq_bot_iff_eq_zero : ker f = ⊥ ↔ ∀ x, f x = 0 → x = 0 := by
| Mathlib.RingTheory.Ideal.Operations.2109_0.5qK551sG47yBciY | theorem ker_eq_bot_iff_eq_zero : ker f = ⊥ ↔ ∀ x, f x = 0 → x = 0 | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
T : Type w
F : Type u_1
inst✝¹ : Ring R
inst✝ : Semiring S
rc : RingHomClass F R S
f✝ : F
f : R ≃+* S
⊢ ker ↑f = ⊥ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by rw [ker, Ideal.mem_comap, Submodule.mem_bot]
#align ring_hom.mem_ker RingHom.mem_ker
theorem ker_eq : (ker f : Set R) = Set.preimage f {0} :=
rfl
#align ring_hom.ker_eq RingHom.ker_eq
theorem ker_eq_comap_bot (f : F) : ker f = Ideal.comap f ⊥ :=
rfl
#align ring_hom.ker_eq_comap_bot RingHom.ker_eq_comap_bot
theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
rw [RingHom.ker_eq_comap_bot, Ideal.comap_comap, RingHom.ker_eq_comap_bot]
#align ring_hom.comap_ker RingHom.comap_ker
/-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
rw [mem_ker, map_one]
exact one_ne_zero
#align ring_hom.not_one_mem_ker RingHom.not_one_mem_ker
theorem ker_ne_top [Nontrivial S] (f : F) : ker f ≠ ⊤ :=
(Ideal.ne_top_iff_one _).mpr <| not_one_mem_ker f
#align ring_hom.ker_ne_top RingHom.ker_ne_top
lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) := by
ext x
simp [mem_ker, Ideal.mem_iInf, Function.funext_iff]
end Semiring
section Ring
variable {F : Type*} [Ring R] [Semiring S] [rc : RingHomClass F R S] (f : F)
theorem injective_iff_ker_eq_bot : Function.Injective f ↔ ker f = ⊥ := by
rw [SetLike.ext'_iff, ker_eq, Set.ext_iff]
exact injective_iff_map_eq_zero' f
#align ring_hom.injective_iff_ker_eq_bot RingHom.injective_iff_ker_eq_bot
theorem ker_eq_bot_iff_eq_zero : ker f = ⊥ ↔ ∀ x, f x = 0 → x = 0 := by
rw [← injective_iff_map_eq_zero f, injective_iff_ker_eq_bot]
#align ring_hom.ker_eq_bot_iff_eq_zero RingHom.ker_eq_bot_iff_eq_zero
@[simp]
theorem ker_coe_equiv (f : R ≃+* S) : ker (f : R →+* S) = ⊥ := by
| simpa only [← injective_iff_ker_eq_bot] using EquivLike.injective f | @[simp]
theorem ker_coe_equiv (f : R ≃+* S) : ker (f : R →+* S) = ⊥ := by
| Mathlib.RingTheory.Ideal.Operations.2113_0.5qK551sG47yBciY | @[simp]
theorem ker_coe_equiv (f : R ≃+* S) : ker (f : R →+* S) = ⊥ | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
T : Type w
F : Type u_1
inst✝² : Ring R
inst✝¹ : Semiring S
rc : RingHomClass F R S
f✝ : F
F' : Type u_2
inst✝ : RingEquivClass F' R S
f : F'
⊢ ker f = ⊥ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by rw [ker, Ideal.mem_comap, Submodule.mem_bot]
#align ring_hom.mem_ker RingHom.mem_ker
theorem ker_eq : (ker f : Set R) = Set.preimage f {0} :=
rfl
#align ring_hom.ker_eq RingHom.ker_eq
theorem ker_eq_comap_bot (f : F) : ker f = Ideal.comap f ⊥ :=
rfl
#align ring_hom.ker_eq_comap_bot RingHom.ker_eq_comap_bot
theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
rw [RingHom.ker_eq_comap_bot, Ideal.comap_comap, RingHom.ker_eq_comap_bot]
#align ring_hom.comap_ker RingHom.comap_ker
/-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
rw [mem_ker, map_one]
exact one_ne_zero
#align ring_hom.not_one_mem_ker RingHom.not_one_mem_ker
theorem ker_ne_top [Nontrivial S] (f : F) : ker f ≠ ⊤ :=
(Ideal.ne_top_iff_one _).mpr <| not_one_mem_ker f
#align ring_hom.ker_ne_top RingHom.ker_ne_top
lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) := by
ext x
simp [mem_ker, Ideal.mem_iInf, Function.funext_iff]
end Semiring
section Ring
variable {F : Type*} [Ring R] [Semiring S] [rc : RingHomClass F R S] (f : F)
theorem injective_iff_ker_eq_bot : Function.Injective f ↔ ker f = ⊥ := by
rw [SetLike.ext'_iff, ker_eq, Set.ext_iff]
exact injective_iff_map_eq_zero' f
#align ring_hom.injective_iff_ker_eq_bot RingHom.injective_iff_ker_eq_bot
theorem ker_eq_bot_iff_eq_zero : ker f = ⊥ ↔ ∀ x, f x = 0 → x = 0 := by
rw [← injective_iff_map_eq_zero f, injective_iff_ker_eq_bot]
#align ring_hom.ker_eq_bot_iff_eq_zero RingHom.ker_eq_bot_iff_eq_zero
@[simp]
theorem ker_coe_equiv (f : R ≃+* S) : ker (f : R →+* S) = ⊥ := by
simpa only [← injective_iff_ker_eq_bot] using EquivLike.injective f
#align ring_hom.ker_coe_equiv RingHom.ker_coe_equiv
@[simp]
theorem ker_equiv {F' : Type*} [RingEquivClass F' R S] (f : F') : ker f = ⊥ := by
| simpa only [← injective_iff_ker_eq_bot] using EquivLike.injective f | @[simp]
theorem ker_equiv {F' : Type*} [RingEquivClass F' R S] (f : F') : ker f = ⊥ := by
| Mathlib.RingTheory.Ideal.Operations.2118_0.5qK551sG47yBciY | @[simp]
theorem ker_equiv {F' : Type*} [RingEquivClass F' R S] (f : F') : ker f = ⊥ | Mathlib_RingTheory_Ideal_Operations |
R : Type u
S : Type v
T : Type w
F : Type u_1
inst✝¹ : Ring R
inst✝ : Ring S
rc : RingHomClass F R S
f : F
x y : R
⊢ x - y ∈ ker f ↔ f x = f y | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi)
#align ideal.prod_mem_prod Ideal.prod_mem_prod
theorem mul_le : I * J ≤ K ↔ ∀ r ∈ I, ∀ s ∈ J, r * s ∈ K :=
Submodule.smul_le
#align ideal.mul_le Ideal.mul_le
theorem mul_le_left : I * J ≤ J :=
Ideal.mul_le.2 fun _ _ _ => J.mul_mem_left _
#align ideal.mul_le_left Ideal.mul_le_left
theorem mul_le_right : I * J ≤ I :=
Ideal.mul_le.2 fun _ hr _ _ => I.mul_mem_right _ hr
#align ideal.mul_le_right Ideal.mul_le_right
@[simp]
theorem sup_mul_right_self : I ⊔ I * J = I :=
sup_eq_left.2 Ideal.mul_le_right
#align ideal.sup_mul_right_self Ideal.sup_mul_right_self
@[simp]
theorem sup_mul_left_self : I ⊔ J * I = I :=
sup_eq_left.2 Ideal.mul_le_left
#align ideal.sup_mul_left_self Ideal.sup_mul_left_self
@[simp]
theorem mul_right_self_sup : I * J ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_right
#align ideal.mul_right_self_sup Ideal.mul_right_self_sup
@[simp]
theorem mul_left_self_sup : J * I ⊔ I = I :=
sup_eq_right.2 Ideal.mul_le_left
#align ideal.mul_left_self_sup Ideal.mul_left_self_sup
variable (I J K)
protected theorem mul_comm : I * J = J * I :=
le_antisymm (mul_le.2 fun _ hrI _ hsJ => mul_mem_mul_rev hsJ hrI)
(mul_le.2 fun _ hrJ _ hsI => mul_mem_mul_rev hsI hrJ)
#align ideal.mul_comm Ideal.mul_comm
protected theorem mul_assoc : I * J * K = I * (J * K) :=
Submodule.smul_assoc I J K
#align ideal.mul_assoc Ideal.mul_assoc
theorem span_mul_span (S T : Set R) : span S * span T = span (⋃ (s ∈ S) (t ∈ T), {s * t}) :=
Submodule.span_smul_span S T
#align ideal.span_mul_span Ideal.span_mul_span
variable {I J K}
theorem span_mul_span' (S T : Set R) : span S * span T = span (S * T) := by
unfold span
rw [Submodule.span_mul_span]
#align ideal.span_mul_span' Ideal.span_mul_span'
theorem span_singleton_mul_span_singleton (r s : R) :
span {r} * span {s} = (span {r * s} : Ideal R) := by
unfold span
rw [Submodule.span_mul_span, Set.singleton_mul_singleton]
#align ideal.span_singleton_mul_span_singleton Ideal.span_singleton_mul_span_singleton
theorem span_singleton_pow (s : R) (n : ℕ) : span {s} ^ n = (span {s ^ n} : Ideal R) := by
induction' n with n ih; · simp [Set.singleton_one]
simp only [pow_succ, ih, span_singleton_mul_span_singleton]
#align ideal.span_singleton_pow Ideal.span_singleton_pow
theorem mem_mul_span_singleton {x y : R} {I : Ideal R} : x ∈ I * span {y} ↔ ∃ z ∈ I, z * y = x :=
Submodule.mem_smul_span_singleton
#align ideal.mem_mul_span_singleton Ideal.mem_mul_span_singleton
theorem mem_span_singleton_mul {x y : R} {I : Ideal R} : x ∈ span {y} * I ↔ ∃ z ∈ I, y * z = x := by
simp only [mul_comm, mem_mul_span_singleton]
#align ideal.mem_span_singleton_mul Ideal.mem_span_singleton_mul
theorem le_span_singleton_mul_iff {x : R} {I J : Ideal R} :
I ≤ span {x} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI :=
show (∀ {zI} (_ : zI ∈ I), zI ∈ span {x} * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI by
simp only [mem_span_singleton_mul]
#align ideal.le_span_singleton_mul_iff Ideal.le_span_singleton_mul_iff
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} :
span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_span_singleton_mul, mem_span_singleton]
constructor
· intro h zI hzI
exact h x (dvd_refl x) zI hzI
· rintro h _ ⟨z, rfl⟩ zI hzI
rw [mul_comm x z, mul_assoc]
exact J.mul_mem_left _ (h zI hzI)
#align ideal.span_singleton_mul_le_iff Ideal.span_singleton_mul_le_iff
theorem span_singleton_mul_le_span_singleton_mul {x y : R} {I J : Ideal R} :
span {x} * I ≤ span {y} * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ := by
simp only [span_singleton_mul_le_iff, mem_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_le_span_singleton_mul Ideal.span_singleton_mul_le_span_singleton_mul
theorem span_singleton_mul_right_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I ≤ span {x} * J ↔ I ≤ J := by
simp_rw [span_singleton_mul_le_span_singleton_mul, mul_right_inj' hx,
exists_eq_right', SetLike.le_def]
#align ideal.span_singleton_mul_right_mono Ideal.span_singleton_mul_right_mono
theorem span_singleton_mul_left_mono [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} ≤ J * span {x} ↔ I ≤ J := by
simpa only [mul_comm I, mul_comm J] using span_singleton_mul_right_mono hx
#align ideal.span_singleton_mul_left_mono Ideal.span_singleton_mul_left_mono
theorem span_singleton_mul_right_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
span {x} * I = span {x} * J ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_right_mono hx]
#align ideal.span_singleton_mul_right_inj Ideal.span_singleton_mul_right_inj
theorem span_singleton_mul_left_inj [IsDomain R] {x : R} (hx : x ≠ 0) :
I * span {x} = J * span {x} ↔ I = J := by
simp only [le_antisymm_iff, span_singleton_mul_left_mono hx]
#align ideal.span_singleton_mul_left_inj Ideal.span_singleton_mul_left_inj
theorem span_singleton_mul_right_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective ((span {x} : Ideal R) * ·) := fun _ _ =>
(span_singleton_mul_right_inj hx).mp
#align ideal.span_singleton_mul_right_injective Ideal.span_singleton_mul_right_injective
theorem span_singleton_mul_left_injective [IsDomain R] {x : R} (hx : x ≠ 0) :
Function.Injective fun I : Ideal R => I * span {x} := fun _ _ =>
(span_singleton_mul_left_inj hx).mp
#align ideal.span_singleton_mul_left_injective Ideal.span_singleton_mul_left_injective
theorem eq_span_singleton_mul {x : R} (I J : Ideal R) :
I = span {x} * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_span_singleton_mul_iff, span_singleton_mul_le_iff]
#align ideal.eq_span_singleton_mul Ideal.eq_span_singleton_mul
theorem span_singleton_mul_eq_span_singleton_mul {x y : R} (I J : Ideal R) :
span {x} * I = span {y} * J ↔
(∀ zI ∈ I, ∃ zJ ∈ J, x * zI = y * zJ) ∧ ∀ zJ ∈ J, ∃ zI ∈ I, x * zI = y * zJ :=
by simp only [le_antisymm_iff, span_singleton_mul_le_span_singleton_mul, eq_comm]
#align ideal.span_singleton_mul_eq_span_singleton_mul Ideal.span_singleton_mul_eq_span_singleton_mul
theorem prod_span {ι : Type*} (s : Finset ι) (I : ι → Set R) :
(∏ i in s, Ideal.span (I i)) = Ideal.span (∏ i in s, I i) :=
Submodule.prod_span s I
#align ideal.prod_span Ideal.prod_span
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R) :
(∏ i in s, Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} :=
Submodule.prod_span_singleton s I
#align ideal.prod_span_singleton Ideal.prod_span_singleton
@[simp]
theorem multiset_prod_span_singleton (m : Multiset R) :
(m.map fun x => Ideal.span {x}).prod = Ideal.span ({Multiset.prod m} : Set R) :=
Multiset.induction_on m (by simp) fun a m ih => by
simp only [Multiset.map_cons, Multiset.prod_cons, ih, ← Ideal.span_singleton_mul_span_singleton]
#align ideal.multiset_prod_span_singleton Ideal.multiset_prod_span_singleton
theorem finset_inf_span_singleton {ι : Type*} (s : Finset ι) (I : ι → R)
(hI : Set.Pairwise (↑s) (IsCoprime on I)) :
(s.inf fun i => Ideal.span ({I i} : Set R)) = Ideal.span {∏ i in s, I i} := by
ext x
simp only [Submodule.mem_finset_inf, Ideal.mem_span_singleton]
exact ⟨Finset.prod_dvd_of_coprime hI, fun h i hi => (Finset.dvd_prod_of_mem _ hi).trans h⟩
#align ideal.finset_inf_span_singleton Ideal.finset_inf_span_singleton
theorem iInf_span_singleton {ι : Type*} [Fintype ι] {I : ι → R}
(hI : ∀ (i j) (_ : i ≠ j), IsCoprime (I i) (I j)) :
⨅ i, span ({I i} : Set R) = span {∏ i, I i} := by
rw [← Finset.inf_univ_eq_iInf, finset_inf_span_singleton]
rwa [Finset.coe_univ, Set.pairwise_univ]
#align ideal.infi_span_singleton Ideal.iInf_span_singleton
theorem iInf_span_singleton_natCast {R : Type*} [CommRing R] {ι : Type*} [Fintype ι]
{I : ι → ℕ} (hI : ∀ (i j : ι), i ≠ j → (I i).Coprime (I j)) :
⨅ (i : ι), span {(I i : R)} = span {((∏ i : ι, I i : ℕ) : R)} := by
rw [iInf_span_singleton, Nat.cast_prod]
exact fun i j h ↦ (hI i j h).cast
theorem sup_eq_top_iff_isCoprime {R : Type*} [CommSemiring R] (x y : R) :
span ({x} : Set R) ⊔ span {y} = ⊤ ↔ IsCoprime x y := by
rw [eq_top_iff_one, Submodule.mem_sup]
constructor
· rintro ⟨u, hu, v, hv, h1⟩
rw [mem_span_singleton'] at hu hv
rw [← hu.choose_spec, ← hv.choose_spec] at h1
exact ⟨_, _, h1⟩
· exact fun ⟨u, v, h1⟩ =>
⟨_, mem_span_singleton'.mpr ⟨_, rfl⟩, _, mem_span_singleton'.mpr ⟨_, rfl⟩, h1⟩
#align ideal.sup_eq_top_iff_is_coprime Ideal.sup_eq_top_iff_isCoprime
theorem mul_le_inf : I * J ≤ I ⊓ J :=
mul_le.2 fun r hri s hsj => ⟨I.mul_mem_right s hri, J.mul_mem_left r hsj⟩
#align ideal.mul_le_inf Ideal.mul_le_inf
theorem multiset_prod_le_inf {s : Multiset (Ideal R)} : s.prod ≤ s.inf := by
classical
refine' s.induction_on _ _
· rw [Multiset.inf_zero]
exact le_top
intro a s ih
rw [Multiset.prod_cons, Multiset.inf_cons]
exact le_trans mul_le_inf (inf_le_inf le_rfl ih)
#align ideal.multiset_prod_le_inf Ideal.multiset_prod_le_inf
theorem prod_le_inf {s : Finset ι} {f : ι → Ideal R} : s.prod f ≤ s.inf f :=
multiset_prod_le_inf
#align ideal.prod_le_inf Ideal.prod_le_inf
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
le_antisymm mul_le_inf fun r ⟨hri, hrj⟩ =>
let ⟨s, hsi, t, htj, hst⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
mul_one r ▸
hst ▸
(mul_add r s t).symm ▸ Ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
#align ideal.mul_eq_inf_of_coprime Ideal.mul_eq_inf_of_coprime
theorem sup_mul_eq_of_coprime_left (h : I ⊔ J = ⊤) : I ⊔ J * K = I ⊔ K :=
le_antisymm (sup_le_sup_left mul_le_left _) fun i hi => by
rw [eq_top_iff_one] at h; rw [Submodule.mem_sup] at h hi ⊢
obtain ⟨i1, hi1, j, hj, h⟩ := h; obtain ⟨i', hi', k, hk, hi⟩ := hi
refine' ⟨_, add_mem hi' (mul_mem_right k _ hi1), _, mul_mem_mul hj hk, _⟩
rw [add_assoc, ← add_mul, h, one_mul, hi]
#align ideal.sup_mul_eq_of_coprime_left Ideal.sup_mul_eq_of_coprime_left
theorem sup_mul_eq_of_coprime_right (h : I ⊔ K = ⊤) : I ⊔ J * K = I ⊔ J := by
rw [mul_comm]
exact sup_mul_eq_of_coprime_left h
#align ideal.sup_mul_eq_of_coprime_right Ideal.sup_mul_eq_of_coprime_right
theorem mul_sup_eq_of_coprime_left (h : I ⊔ J = ⊤) : I * K ⊔ J = K ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_left h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_left Ideal.mul_sup_eq_of_coprime_left
theorem mul_sup_eq_of_coprime_right (h : K ⊔ J = ⊤) : I * K ⊔ J = I ⊔ J := by
rw [sup_comm] at h
rw [sup_comm, sup_mul_eq_of_coprime_right h, sup_comm]
#align ideal.mul_sup_eq_of_coprime_right Ideal.mul_sup_eq_of_coprime_right
theorem sup_prod_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ∏ i in s, J i) = ⊤ :=
Finset.prod_induction _ (fun J => I ⊔ J = ⊤)
(fun J K hJ hK => (sup_mul_eq_of_coprime_left hJ).trans hK)
(by simp_rw [one_eq_top, sup_top_eq]) h
#align ideal.sup_prod_eq_top Ideal.sup_prod_eq_top
theorem sup_iInf_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → I ⊔ J i = ⊤) :
(I ⊔ ⨅ i ∈ s, J i) = ⊤ :=
eq_top_iff.mpr <|
le_of_eq_of_le (sup_prod_eq_top h).symm <|
sup_le_sup_left (le_of_le_of_eq prod_le_inf <| Finset.inf_eq_iInf _ _) _
#align ideal.sup_infi_eq_top Ideal.sup_iInf_eq_top
theorem prod_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(∏ i in s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_prod_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.prod_sup_eq_top Ideal.prod_sup_eq_top
theorem iInf_sup_eq_top {s : Finset ι} {J : ι → Ideal R} (h : ∀ i, i ∈ s → J i ⊔ I = ⊤) :
(⨅ i ∈ s, J i) ⊔ I = ⊤ :=
sup_comm.trans (sup_iInf_eq_top fun i hi => sup_comm.trans <| h i hi)
#align ideal.infi_sup_eq_top Ideal.iInf_sup_eq_top
theorem sup_pow_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ⊔ J ^ n = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact sup_prod_eq_top fun _ _ => h
#align ideal.sup_pow_eq_top Ideal.sup_pow_eq_top
theorem pow_sup_eq_top {n : ℕ} (h : I ⊔ J = ⊤) : I ^ n ⊔ J = ⊤ := by
rw [← Finset.card_range n, ← Finset.prod_const]
exact prod_sup_eq_top fun _ _ => h
#align ideal.pow_sup_eq_top Ideal.pow_sup_eq_top
theorem pow_sup_pow_eq_top {m n : ℕ} (h : I ⊔ J = ⊤) : I ^ m ⊔ J ^ n = ⊤ :=
sup_pow_eq_top (pow_sup_eq_top h)
#align ideal.pow_sup_pow_eq_top Ideal.pow_sup_pow_eq_top
variable (I)
-- @[simp] -- Porting note: simp can prove this
theorem mul_bot : I * ⊥ = ⊥ := by simp
#align ideal.mul_bot Ideal.mul_bot
-- @[simp] -- Porting note: simp can prove this
theorem bot_mul : ⊥ * I = ⊥ := by simp
#align ideal.bot_mul Ideal.bot_mul
@[simp]
theorem mul_top : I * ⊤ = I :=
Ideal.mul_comm ⊤ I ▸ Submodule.top_smul I
#align ideal.mul_top Ideal.mul_top
@[simp]
theorem top_mul : ⊤ * I = I :=
Submodule.top_smul I
#align ideal.top_mul Ideal.top_mul
variable {I}
theorem mul_mono (hik : I ≤ K) (hjl : J ≤ L) : I * J ≤ K * L :=
Submodule.smul_mono hik hjl
#align ideal.mul_mono Ideal.mul_mono
theorem mul_mono_left (h : I ≤ J) : I * K ≤ J * K :=
Submodule.smul_mono_left h
#align ideal.mul_mono_left Ideal.mul_mono_left
theorem mul_mono_right (h : J ≤ K) : I * J ≤ I * K :=
Submodule.smul_mono_right h
#align ideal.mul_mono_right Ideal.mul_mono_right
variable (I J K)
theorem mul_sup : I * (J ⊔ K) = I * J ⊔ I * K :=
Submodule.smul_sup I J K
#align ideal.mul_sup Ideal.mul_sup
theorem sup_mul : (I ⊔ J) * K = I * K ⊔ J * K :=
Submodule.sup_smul I J K
#align ideal.sup_mul Ideal.sup_mul
variable {I J K}
theorem pow_le_pow_right {m n : ℕ} (h : m ≤ n) : I ^ n ≤ I ^ m := by
cases' Nat.exists_eq_add_of_le h with k hk
rw [hk, pow_add]
exact le_trans mul_le_inf inf_le_left
#align ideal.pow_le_pow_right Ideal.pow_le_pow_right
theorem pow_le_self {n : ℕ} (hn : n ≠ 0) : I ^ n ≤ I :=
calc
I ^ n ≤ I ^ 1 := pow_le_pow_right (Nat.pos_of_ne_zero hn)
_ = I := pow_one _
#align ideal.pow_le_self Ideal.pow_le_self
theorem pow_right_mono {I J : Ideal R} (e : I ≤ J) (n : ℕ) : I ^ n ≤ J ^ n := by
induction' n with _ hn
· rw [pow_zero, pow_zero]
· rw [pow_succ, pow_succ]
exact Ideal.mul_mono e hn
#align ideal.pow_right_mono Ideal.pow_right_mono
theorem mul_eq_bot {R : Type*} [CommSemiring R] [NoZeroDivisors R] {I J : Ideal R} :
I * J = ⊥ ↔ I = ⊥ ∨ J = ⊥ :=
⟨fun hij =>
or_iff_not_imp_left.mpr fun I_ne_bot =>
J.eq_bot_iff.mpr fun j hj =>
let ⟨i, hi, ne0⟩ := I.ne_bot_iff.mp I_ne_bot
Or.resolve_left (mul_eq_zero.mp ((I * J).eq_bot_iff.mp hij _ (mul_mem_mul hi hj))) ne0,
fun h => by cases' h with h h <;> rw [← Ideal.mul_bot, h, Ideal.mul_comm]⟩
#align ideal.mul_eq_bot Ideal.mul_eq_bot
instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R) where
eq_zero_or_eq_zero_of_mul_eq_zero := mul_eq_bot.1
/-- A product of ideals in an integral domain is zero if and only if one of the terms is zero. -/
theorem prod_eq_bot {R : Type*} [CommRing R] [IsDomain R] {s : Multiset (Ideal R)} :
s.prod = ⊥ ↔ ∃ I ∈ s, I = ⊥ := by
rw [bot_eq_zero, prod_zero_iff_exists_zero]
simp
#align ideal.prod_eq_bot Ideal.prod_eq_bot
theorem span_pair_mul_span_pair (w x y z : R) :
(span {w, x} : Ideal R) * span {y, z} = span {w * y, w * z, x * y, x * z} := by
simp_rw [span_insert, sup_mul, mul_sup, span_singleton_mul_span_singleton, sup_assoc]
#align ideal.span_pair_mul_span_pair Ideal.span_pair_mul_span_pair
theorem isCoprime_iff_codisjoint : IsCoprime I J ↔ Codisjoint I J := by
rw [IsCoprime, codisjoint_iff]
constructor
· rintro ⟨x, y, hxy⟩
rw [eq_top_iff_one]
apply (show x * I + y * J ≤ I ⊔ J from
sup_le (mul_le_left.trans le_sup_left) (mul_le_left.trans le_sup_right))
rw [hxy]
simp only [one_eq_top, Submodule.mem_top]
· intro h
refine' ⟨1, 1, _⟩
simpa only [one_eq_top, top_mul, Submodule.add_eq_sup]
theorem isCoprime_iff_add : IsCoprime I J ↔ I + J = 1 := by
rw [isCoprime_iff_codisjoint, codisjoint_iff, add_eq_sup, one_eq_top]
theorem isCoprime_iff_exists : IsCoprime I J ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [← add_eq_one_iff, isCoprime_iff_add]
theorem isCoprime_iff_sup_eq : IsCoprime I J ↔ I ⊔ J = ⊤ := by
rw [isCoprime_iff_codisjoint, codisjoint_iff]
open List in
theorem isCoprime_tfae : TFAE [IsCoprime I J, Codisjoint I J, I + J = 1,
∃ i ∈ I, ∃ j ∈ J, i + j = 1, I ⊔ J = ⊤] := by
rw [← isCoprime_iff_codisjoint, ← isCoprime_iff_add, ← isCoprime_iff_exists,
← isCoprime_iff_sup_eq]
simp
theorem _root_.IsCoprime.codisjoint (h : IsCoprime I J) : Codisjoint I J :=
isCoprime_iff_codisjoint.mp h
theorem _root_.IsCoprime.add_eq (h : IsCoprime I J) : I + J = 1 := isCoprime_iff_add.mp h
theorem _root_.IsCoprime.exists (h : IsCoprime I J) : ∃ i ∈ I, ∃ j ∈ J, i + j = 1 :=
isCoprime_iff_exists.mp h
theorem _root_.IsCoprime.sup_eq (h : IsCoprime I J) : I ⊔ J = ⊤ := isCoprime_iff_sup_eq.mp h
theorem isCoprime_span_singleton_iff (x y : R) :
IsCoprime (span <| singleton x) (span <| singleton y) ↔ IsCoprime x y := by
simp_rw [isCoprime_iff_codisjoint, codisjoint_iff, eq_top_iff_one, mem_span_singleton_sup,
mem_span_singleton]
constructor
· rintro ⟨a, _, ⟨b, rfl⟩, e⟩; exact ⟨a, b, mul_comm b y ▸ e⟩
· rintro ⟨a, b, e⟩; exact ⟨a, _, ⟨b, rfl⟩, mul_comm y b ▸ e⟩
theorem isCoprime_biInf {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K*(I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1+K)*I + K*J i := by ring
_ ≤ I + K ⊓ J i := add_le_add mul_le_left mul_le_inf
/-- The radical of an ideal `I` consists of the elements `r` such that `r ^ n ∈ I` for some `n`. -/
def radical (I : Ideal R) : Ideal R where
carrier := { r | ∃ n : ℕ, r ^ n ∈ I }
zero_mem' := ⟨1, (pow_one (0 : R)).symm ▸ I.zero_mem⟩
add_mem' :=
fun {x y} ⟨m, hxmi⟩ ⟨n, hyni⟩ =>
⟨m + n,
(add_pow x y (m + n)).symm ▸ I.sum_mem <|
show
∀ c ∈ Finset.range (Nat.succ (m + n)), x ^ c * y ^ (m + n - c) * Nat.choose (m + n) c ∈ I
from fun c _ =>
Or.casesOn (le_total c m) (fun hcm =>
I.mul_mem_right _ <|
I.mul_mem_left _ <|
Nat.add_comm n m ▸
(add_tsub_assoc_of_le hcm n).symm ▸
(pow_add y n (m - c)).symm ▸ I.mul_mem_right _ hyni) (fun hmc =>
I.mul_mem_right _ <|
I.mul_mem_right _ <|
add_tsub_cancel_of_le hmc ▸ (pow_add x m (c - m)).symm ▸ I.mul_mem_right _ hxmi)⟩
-- Porting note: Below gives weird errors without `by exact`
smul_mem' {r s} := by exact fun ⟨n, h⟩ ↦ ⟨n, (mul_pow r s n).symm ▸ I.mul_mem_left (r ^ n) h⟩
#align ideal.radical Ideal.radical
/-- An ideal is radical if it contains its radical. -/
def IsRadical (I : Ideal R) : Prop :=
I.radical ≤ I
#align ideal.is_radical Ideal.IsRadical
theorem le_radical : I ≤ radical I := fun r hri => ⟨1, (pow_one r).symm ▸ hri⟩
#align ideal.le_radical Ideal.le_radical
/-- An ideal is radical iff it is equal to its radical. -/
theorem radical_eq_iff : I.radical = I ↔ I.IsRadical := by
rw [le_antisymm_iff, and_iff_left le_radical, IsRadical]
#align ideal.radical_eq_iff Ideal.radical_eq_iff
alias ⟨_, IsRadical.radical⟩ := radical_eq_iff
#align ideal.is_radical.radical Ideal.IsRadical.radical
variable (R)
theorem radical_top : (radical ⊤ : Ideal R) = ⊤ :=
(eq_top_iff_one _).2 ⟨0, Submodule.mem_top⟩
#align ideal.radical_top Ideal.radical_top
variable {R}
theorem radical_mono (H : I ≤ J) : radical I ≤ radical J := fun _ ⟨n, hrni⟩ => ⟨n, H hrni⟩
#align ideal.radical_mono Ideal.radical_mono
variable (I)
theorem radical_isRadical : (radical I).IsRadical := fun r ⟨n, k, hrnki⟩ =>
⟨n * k, (pow_mul r n k).symm ▸ hrnki⟩
#align ideal.radical_is_radical Ideal.radical_isRadical
@[simp]
theorem radical_idem : radical (radical I) = radical I :=
(radical_isRadical I).radical
#align ideal.radical_idem Ideal.radical_idem
variable {I}
theorem IsRadical.radical_le_iff (hJ : J.IsRadical) : I.radical ≤ J ↔ I ≤ J :=
⟨le_trans le_radical, fun h => hJ.radical ▸ radical_mono h⟩
#align ideal.is_radical.radical_le_iff Ideal.IsRadical.radical_le_iff
theorem radical_le_radical_iff : radical I ≤ radical J ↔ I ≤ radical J :=
(radical_isRadical J).radical_le_iff
#align ideal.radical_le_radical_iff Ideal.radical_le_radical_iff
theorem radical_eq_top : radical I = ⊤ ↔ I = ⊤ :=
⟨fun h =>
(eq_top_iff_one _).2 <|
let ⟨n, hn⟩ := (eq_top_iff_one _).1 h
@one_pow R _ n ▸ hn,
fun h => h.symm ▸ radical_top R⟩
#align ideal.radical_eq_top Ideal.radical_eq_top
theorem IsPrime.isRadical (H : IsPrime I) : I.IsRadical := fun _ ⟨n, hrni⟩ =>
H.mem_of_pow_mem n hrni
#align ideal.is_prime.is_radical Ideal.IsPrime.isRadical
theorem IsPrime.radical (H : IsPrime I) : radical I = I :=
IsRadical.radical H.isRadical
#align ideal.is_prime.radical Ideal.IsPrime.radical
variable (I J)
theorem radical_sup : radical (I ⊔ J) = radical (radical I ⊔ radical J) :=
le_antisymm (radical_mono <| sup_le_sup le_radical le_radical) <|
radical_le_radical_iff.2 <| sup_le (radical_mono le_sup_left) (radical_mono le_sup_right)
#align ideal.radical_sup Ideal.radical_sup
theorem radical_inf : radical (I ⊓ J) = radical I ⊓ radical J :=
le_antisymm (le_inf (radical_mono inf_le_left) (radical_mono inf_le_right))
fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ I.mul_mem_right _ hrm,
(pow_add r m n).symm ▸ J.mul_mem_left _ hrn⟩
#align ideal.radical_inf Ideal.radical_inf
theorem radical_mul : radical (I * J) = radical I ⊓ radical J := by
refine le_antisymm ?_ fun r ⟨⟨m, hrm⟩, ⟨n, hrn⟩⟩ =>
⟨m + n, (pow_add r m n).symm ▸ mul_mem_mul hrm hrn⟩
have := radical_mono <| @mul_le_inf _ _ I J
simp_rw [radical_inf I J] at this
assumption
#align ideal.radical_mul Ideal.radical_mul
variable {I J}
theorem IsPrime.radical_le_iff (hJ : IsPrime J) : I.radical ≤ J ↔ I ≤ J :=
IsRadical.radical_le_iff hJ.isRadical
#align ideal.is_prime.radical_le_iff Ideal.IsPrime.radical_le_iff
theorem radical_eq_sInf (I : Ideal R) : radical I = sInf { J : Ideal R | I ≤ J ∧ IsPrime J } :=
le_antisymm (le_sInf fun J hJ ↦ hJ.2.radical_le_iff.2 hJ.1) fun r hr ↦
by_contradiction fun hri ↦
let ⟨m, (hrm : r ∉ radical m), him, hm⟩ :=
zorn_nonempty_partialOrder₀ { K : Ideal R | r ∉ radical K }
(fun c hc hcc y hyc =>
⟨sSup c, fun ⟨n, hrnc⟩ =>
let ⟨y, hyc, hrny⟩ := (Submodule.mem_sSup_of_directed ⟨y, hyc⟩ hcc.directedOn).1 hrnc
hc hyc ⟨n, hrny⟩,
fun z => le_sSup⟩)
I hri
have : ∀ (x) (_ : x ∉ m), r ∈ radical (m ⊔ span {x}) := fun x hxm =>
by_contradiction fun hrmx =>
hxm <|
hm (m ⊔ span {x}) hrmx le_sup_left ▸
(le_sup_right : _ ≤ m ⊔ span {x}) (subset_span <| Set.mem_singleton _)
have : IsPrime m :=
⟨by rintro rfl; rw [radical_top] at hrm; exact hrm trivial, fun {x y} hxym =>
or_iff_not_imp_left.2 fun hxm =>
by_contradiction fun hym =>
let ⟨n, hrn⟩ := this _ hxm
let ⟨p, hpm, q, hq, hpqrn⟩ := Submodule.mem_sup.1 hrn
let ⟨c, hcxq⟩ := mem_span_singleton'.1 hq
let ⟨k, hrk⟩ := this _ hym
let ⟨f, hfm, g, hg, hfgrk⟩ := Submodule.mem_sup.1 hrk
let ⟨d, hdyg⟩ := mem_span_singleton'.1 hg
hrm
⟨n + k, by
rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c * x),
mul_assoc c x (d * y), mul_left_comm x, ← mul_assoc];
refine'
m.add_mem (m.mul_mem_right _ hpm)
(m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩
hrm <|
this.radical.symm ▸ (sInf_le ⟨him, this⟩ : sInf { J : Ideal R | I ≤ J ∧ IsPrime J } ≤ m) hr
#align ideal.radical_eq_Inf Ideal.radical_eq_sInf
theorem isRadical_bot_of_noZeroDivisors {R} [CommSemiring R] [NoZeroDivisors R] :
(⊥ : Ideal R).IsRadical := fun _ hx => hx.recOn fun _ hn => pow_eq_zero hn
#align ideal.is_radical_bot_of_no_zero_divisors Ideal.isRadical_bot_of_noZeroDivisors
@[simp]
theorem radical_bot_of_noZeroDivisors {R : Type u} [CommSemiring R] [NoZeroDivisors R] :
radical (⊥ : Ideal R) = ⊥ :=
eq_bot_iff.2 isRadical_bot_of_noZeroDivisors
#align ideal.radical_bot_of_no_zero_divisors Ideal.radical_bot_of_noZeroDivisors
instance : IdemCommSemiring (Ideal R) :=
inferInstance
variable (R)
theorem top_pow (n : ℕ) : (⊤ ^ n : Ideal R) = ⊤ :=
Nat.recOn n one_eq_top fun n ih => by rw [pow_succ, ih, top_mul]
#align ideal.top_pow Ideal.top_pow
variable {R}
variable (I)
theorem radical_pow (n : ℕ) (H : n > 0) : radical (I ^ n) = radical I :=
Nat.recOn n (Not.elim (by decide))
(fun n ih H =>
Or.casesOn (lt_or_eq_of_le <| Nat.le_of_lt_succ H)
(fun H =>
calc
radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n) := by
rw [pow_succ]
exact radical_mul _ _
_ = radical I ⊓ radical I := by rw [ih H]
_ = radical I := inf_idem
)
fun H => H ▸ (pow_one I).symm ▸ rfl)
H
#align ideal.radical_pow Ideal.radical_pow
theorem IsPrime.mul_le {I J P : Ideal R} (hp : IsPrime P) : I * J ≤ P ↔ I ≤ P ∨ J ≤ P := by
rw [or_comm, Ideal.mul_le]
simp_rw [hp.mul_mem_iff_mem_or_mem, SetLike.le_def, ← forall_or_left, or_comm, forall_or_left]
#align ideal.is_prime.mul_le Ideal.IsPrime.mul_le
theorem IsPrime.inf_le {I J P : Ideal R} (hp : IsPrime P) : I ⊓ J ≤ P ↔ I ≤ P ∨ J ≤ P :=
⟨fun h ↦ hp.mul_le.1 <| mul_le_inf.trans h, fun h ↦ h.elim inf_le_left.trans inf_le_right.trans⟩
#align ideal.is_prime.inf_le Ideal.IsPrime.inf_le
theorem IsPrime.multiset_prod_le {s : Multiset (Ideal R)} {P : Ideal R} (hp : IsPrime P) :
s.prod ≤ P ↔ ∃ I ∈ s, I ≤ P :=
s.induction_on (by simp [hp.ne_top]) fun I s ih ↦ by simp [hp.mul_le, ih]
#align ideal.is_prime.multiset_prod_le Ideal.IsPrime.multiset_prod_le
theorem IsPrime.multiset_prod_map_le {s : Multiset ι} (f : ι → Ideal R) {P : Ideal R}
(hp : IsPrime P) : (s.map f).prod ≤ P ↔ ∃ i ∈ s, f i ≤ P := by
simp_rw [hp.multiset_prod_le, Multiset.mem_map, exists_exists_and_eq_and]
#align ideal.is_prime.multiset_prod_map_le Ideal.IsPrime.multiset_prod_map_le
theorem IsPrime.prod_le {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.prod f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
hp.multiset_prod_map_le f
#align ideal.is_prime.prod_le Ideal.IsPrime.prod_le
theorem IsPrime.inf_le' {s : Finset ι} {f : ι → Ideal R} {P : Ideal R} (hp : IsPrime P) :
s.inf f ≤ P ↔ ∃ i ∈ s, f i ≤ P :=
⟨fun h ↦ hp.prod_le.1 <| prod_le_inf.trans h, fun ⟨_, his, hip⟩ ↦ (Finset.inf_le his).trans hip⟩
#align ideal.is_prime.inf_le' Ideal.IsPrime.inf_le'
-- Porting note: needed to add explicit coercions (· : Set R).
theorem subset_union {R : Type u} [Ring R] {I J K : Ideal R} :
(I : Set R) ⊆ J ∪ K ↔ I ≤ J ∨ I ≤ K :=
AddSubgroupClass.subset_union
#align ideal.subset_union Ideal.subset_union
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι}
(hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i := by
suffices
((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i from
⟨this, fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_left _ _) (Set.subset_union_left _ _))
fun h =>
Or.casesOn h
(fun h =>
Set.Subset.trans h <|
Set.Subset.trans (Set.subset_union_right _ _) (Set.subset_union_left _ _))
fun ⟨i, his, hi⟩ => by
refine' Set.Subset.trans hi <| Set.Subset.trans _ <| Set.subset_union_right _ _;
exact Set.subset_biUnion_of_mem (u := fun x ↦ (f x : Set R)) (Finset.mem_coe.2 his)⟩
generalize hn : s.card = n; intro h
induction' n with n ih generalizing a b s
· clear hp
rw [Finset.card_eq_zero] at hn
subst hn
rw [Finset.coe_empty, Set.biUnion_empty, Set.union_empty, subset_union] at h
simpa only [exists_prop, Finset.not_mem_empty, false_and_iff, exists_false, or_false_iff]
classical
replace hn : ∃ (i : ι) (t : Finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
Finset.card_eq_succ.1 hn
rcases hn with ⟨i, t, hit, rfl, hn⟩
replace hp : IsPrime (f i) ∧ ∀ x ∈ t, IsPrime (f x) := (t.forall_mem_insert _ _).1 hp
by_cases Ht : ∃ j ∈ t, f j ≤ f i
· obtain ⟨j, hjt, hfji⟩ : ∃ j ∈ t, f j ≤ f i := Ht
obtain ⟨u, hju, rfl⟩ : ∃ u, j ∉ u ∧ insert j u = t :=
⟨t.erase j, t.not_mem_erase j, Finset.insert_erase hjt⟩
have hp' : ∀ k ∈ insert i u, IsPrime (f k) := by
rw [Finset.forall_mem_insert] at hp ⊢
exact ⟨hp.1, hp.2.2⟩
have hiu : i ∉ u := mt Finset.mem_insert_of_mem hit
have hn' : (insert i u).card = n := by
rwa [Finset.card_insert_of_not_mem] at hn ⊢
exacts [hiu, hju]
have h' : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ k ∈ (↑(insert i u) : Set ι), f k := by
rw [Finset.coe_insert] at h ⊢
rw [Finset.coe_insert] at h
simp only [Set.biUnion_insert] at h ⊢
rw [← Set.union_assoc (f i : Set R)] at h
erw [Set.union_eq_self_of_subset_right hfji] at h
exact h
specialize ih hp' hn' h'
refine' ih.imp id (Or.imp id (Exists.imp fun k => _))
exact And.imp (fun hk => Finset.insert_subset_insert i (Finset.subset_insert j u) hk) id
by_cases Ha : f a ≤ f i
· have h' : (I : Set R) ⊆ f i ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_right_comm (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Ha] at h
exact h
specialize ih hp.2 hn h'
right
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩
· exact Or.inl ih
· exact Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
by_cases Hb : f b ≤ f i
· have h' : (I : Set R) ⊆ f a ∪ f i ∪ ⋃ j ∈ (↑t : Set ι), f j := by
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_assoc,
Set.union_assoc (f a : Set R)] at h
erw [Set.union_eq_self_of_subset_left Hb] at h
exact h
specialize ih hp.2 hn h'
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· exact Or.inl ih
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, ih⟩)
· exact Or.inr (Or.inr ⟨k, Finset.mem_insert_of_mem hkt, ih⟩)
by_cases Hi : I ≤ f i
· exact Or.inr (Or.inr ⟨i, Finset.mem_insert_self i t, Hi⟩)
have : ¬I ⊓ f a ⊓ f b ⊓ t.inf f ≤ f i := by
simp only [hp.1.inf_le, hp.1.inf_le', not_or]
exact ⟨⟨⟨Hi, Ha⟩, Hb⟩, Ht⟩
rcases Set.not_subset.1 this with ⟨r, ⟨⟨⟨hrI, hra⟩, hrb⟩, hr⟩, hri⟩
by_cases HI : (I : Set R) ⊆ f a ∪ f b ∪ ⋃ j ∈ (↑t : Set ι), f j
· specialize ih hp.2 hn HI
rcases ih with (ih | ih | ⟨k, hkt, ih⟩)
· left
exact ih
· right
left
exact ih
· right
right
exact ⟨k, Finset.mem_insert_of_mem hkt, ih⟩
exfalso
rcases Set.not_subset.1 HI with ⟨s, hsI, hs⟩
rw [Finset.coe_insert, Set.biUnion_insert] at h
have hsi : s ∈ f i := ((h hsI).resolve_left (mt Or.inl hs)).resolve_right (mt Or.inr hs)
rcases h (I.add_mem hrI hsI) with (⟨ha | hb⟩ | hi | ht)
· exact hs (Or.inl <| Or.inl <| add_sub_cancel' r s ▸ (f a).sub_mem ha hra)
· exact hs (Or.inl <| Or.inr <| add_sub_cancel' r s ▸ (f b).sub_mem hb hrb)
· exact hri (add_sub_cancel r s ▸ (f i).sub_mem hi hsi)
· rw [Set.mem_iUnion₂] at ht
rcases ht with ⟨j, hjt, hj⟩
simp only [Finset.inf_eq_iInf, SetLike.mem_coe, Submodule.mem_iInf] at hr
exact hs (Or.inr <| Set.mem_biUnion hjt <| add_sub_cancel' r s ▸ (f j).sub_mem hj <| hr j hjt)
#align ideal.subset_union_prime' Ideal.subset_union_prime'
/-- Prime avoidance. Atiyah-Macdonald 1.11, Eisenbud 3.3, Stacks 00DS, Matsumura Ex.1.6. -/
theorem subset_union_prime {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} (a b : ι)
(hp : ∀ i ∈ s, i ≠ a → i ≠ b → IsPrime (f i)) {I : Ideal R} :
((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) ↔ ∃ i ∈ s, I ≤ f i :=
suffices ((I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i) → ∃ i, i ∈ s ∧ I ≤ f i by
have aux := fun h => (bex_def.2 <| this h)
simp_rw [exists_prop] at aux
refine ⟨aux, fun ⟨i, his, hi⟩ ↦ Set.Subset.trans hi ?_⟩
apply Set.subset_biUnion_of_mem (show i ∈ (↑s : Set ι) from his)
fun h : (I : Set R) ⊆ ⋃ i ∈ (↑s : Set ι), f i => by
classical
by_cases has : a ∈ s
· obtain ⟨t, hat, rfl⟩ : ∃ t, a ∉ t ∧ insert a t = s :=
⟨s.erase a, Finset.not_mem_erase a s, Finset.insert_erase has⟩
by_cases hbt : b ∈ t
· obtain ⟨u, hbu, rfl⟩ : ∃ u, b ∉ u ∧ insert b u = t :=
⟨t.erase b, Finset.not_mem_erase b t, Finset.insert_erase hbt⟩
have hp' : ∀ i ∈ u, IsPrime (f i) := by
intro i hiu
refine' hp i (Finset.mem_insert_of_mem (Finset.mem_insert_of_mem hiu)) _ _ <;>
rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Finset.coe_insert, Set.biUnion_insert, Set.biUnion_insert, ←
Set.union_assoc, subset_union_prime' hp'] at h
rwa [Finset.exists_mem_insert, Finset.exists_mem_insert]
· have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f a : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
· by_cases hbs : b ∈ s
· obtain ⟨t, hbt, rfl⟩ : ∃ t, b ∉ t ∧ insert b t = s :=
⟨s.erase b, Finset.not_mem_erase b s, Finset.insert_erase hbs⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f b : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
rcases s.eq_empty_or_nonempty with hse | hsne
· subst hse
rw [Finset.coe_empty, Set.biUnion_empty, Set.subset_empty_iff] at h
have : (I : Set R) ≠ ∅ := Set.Nonempty.ne_empty (Set.nonempty_of_mem I.zero_mem)
exact absurd h this
· cases' hsne.bex with i his
obtain ⟨t, _, rfl⟩ : ∃ t, i ∉ t ∧ insert i t = s :=
⟨s.erase i, Finset.not_mem_erase i s, Finset.insert_erase his⟩
have hp' : ∀ j ∈ t, IsPrime (f j) := by
intro j hj
refine' hp j (Finset.mem_insert_of_mem hj) _ _ <;> rintro rfl <;>
solve_by_elim only [Finset.mem_insert_of_mem, *]
rw [Finset.coe_insert, Set.biUnion_insert, ← Set.union_self (f i : Set R),
subset_union_prime' hp', ← or_assoc, or_self_iff] at h
rwa [Finset.exists_mem_insert]
#align ideal.subset_union_prime Ideal.subset_union_prime
section Dvd
/-- If `I` divides `J`, then `I` contains `J`.
In a Dedekind domain, to divide and contain are equivalent, see `Ideal.dvd_iff_le`.
-/
theorem le_of_dvd {I J : Ideal R} : I ∣ J → J ≤ I
| ⟨_, h⟩ => h.symm ▸ le_trans mul_le_inf inf_le_left
#align ideal.le_of_dvd Ideal.le_of_dvd
theorem isUnit_iff {I : Ideal R} : IsUnit I ↔ I = ⊤ :=
isUnit_iff_dvd_one.trans
((@one_eq_top R _).symm ▸
⟨fun h => eq_top_iff.mpr (Ideal.le_of_dvd h), fun h => ⟨⊤, by rw [mul_top, h]⟩⟩)
#align ideal.is_unit_iff Ideal.isUnit_iff
instance uniqueUnits : Unique (Ideal R)ˣ where
default := 1
uniq u := Units.ext (show (u : Ideal R) = 1 by rw [isUnit_iff.mp u.isUnit, one_eq_top])
#align ideal.unique_units Ideal.uniqueUnits
end Dvd
end MulAndRadical
section MapAndComap
variable {R : Type u} {S : Type v}
section Semiring
variable {F : Type*} [Semiring R] [Semiring S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
/-- `I.map f` is the span of the image of the ideal `I` under `f`, which may be bigger than
the image itself. -/
def map (I : Ideal R) : Ideal S :=
span (f '' I)
#align ideal.map Ideal.map
/-- `I.comap f` is the preimage of `I` under `f`. -/
def comap (I : Ideal S) : Ideal R where
carrier := f ⁻¹' I
add_mem' {x y} hx hy := by
simp only [Set.mem_preimage, SetLike.mem_coe, map_add] at hx hy ⊢
exact add_mem hx hy
zero_mem' := by simp only [Set.mem_preimage, map_zero, SetLike.mem_coe, Submodule.zero_mem]
smul_mem' c x hx := by
simp only [smul_eq_mul, Set.mem_preimage, map_mul, SetLike.mem_coe] at *
exact mul_mem_left I _ hx
#align ideal.comap Ideal.comap
-- Porting note: new theorem
-- @[simp] -- Porting note: TODO enable simp after the port
theorem coe_comap (I : Ideal S) : (comap f I : Set R) = f ⁻¹' I := rfl
variable {f}
theorem map_mono (h : I ≤ J) : map f I ≤ map f J :=
span_mono <| Set.image_subset _ h
#align ideal.map_mono Ideal.map_mono
theorem mem_map_of_mem (f : F) {I : Ideal R} {x : R} (h : x ∈ I) : f x ∈ map f I :=
subset_span ⟨x, h, rfl⟩
#align ideal.mem_map_of_mem Ideal.mem_map_of_mem
theorem apply_coe_mem_map (f : F) (I : Ideal R) (x : I) : f x ∈ I.map f :=
mem_map_of_mem f x.2
#align ideal.apply_coe_mem_map Ideal.apply_coe_mem_map
theorem map_le_iff_le_comap : map f I ≤ K ↔ I ≤ comap f K :=
span_le.trans Set.image_subset_iff
#align ideal.map_le_iff_le_comap Ideal.map_le_iff_le_comap
@[simp]
theorem mem_comap {x} : x ∈ comap f K ↔ f x ∈ K :=
Iff.rfl
#align ideal.mem_comap Ideal.mem_comap
theorem comap_mono (h : K ≤ L) : comap f K ≤ comap f L :=
Set.preimage_mono fun _ hx => h hx
#align ideal.comap_mono Ideal.comap_mono
variable (f)
theorem comap_ne_top (hK : K ≠ ⊤) : comap f K ≠ ⊤ :=
(ne_top_iff_one _).2 <| by rw [mem_comap, map_one]; exact (ne_top_iff_one _).1 hK
#align ideal.comap_ne_top Ideal.comap_ne_top
variable {G : Type*} [rcg : RingHomClass G S R]
theorem map_le_comap_of_inv_on (g : G) (I : Ideal R) (hf : Set.LeftInvOn g f I) :
I.map f ≤ I.comap g := by
refine' Ideal.span_le.2 _
rintro x ⟨x, hx, rfl⟩
rw [SetLike.mem_coe, mem_comap, hf hx]
exact hx
#align ideal.map_le_comap_of_inv_on Ideal.map_le_comap_of_inv_on
theorem comap_le_map_of_inv_on (g : G) (I : Ideal S) (hf : Set.LeftInvOn g f (f ⁻¹' I)) :
I.comap f ≤ I.map g := fun x (hx : f x ∈ I) => hf hx ▸ Ideal.mem_map_of_mem g hx
#align ideal.comap_le_map_of_inv_on Ideal.comap_le_map_of_inv_on
/-- The `Ideal` version of `Set.image_subset_preimage_of_inverse`. -/
theorem map_le_comap_of_inverse (g : G) (I : Ideal R) (h : Function.LeftInverse g f) :
I.map f ≤ I.comap g :=
map_le_comap_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.map_le_comap_of_inverse Ideal.map_le_comap_of_inverse
/-- The `Ideal` version of `Set.preimage_subset_image_of_inverse`. -/
theorem comap_le_map_of_inverse (g : G) (I : Ideal S) (h : Function.LeftInverse g f) :
I.comap f ≤ I.map g :=
comap_le_map_of_inv_on _ _ _ <| h.leftInvOn _
#align ideal.comap_le_map_of_inverse Ideal.comap_le_map_of_inverse
instance IsPrime.comap [hK : K.IsPrime] : (comap f K).IsPrime :=
⟨comap_ne_top _ hK.1, fun {x y} => by simp only [mem_comap, map_mul]; apply hK.2⟩
#align ideal.is_prime.comap Ideal.IsPrime.comap
variable (I J K L)
theorem map_top : map f ⊤ = ⊤ :=
(eq_top_iff_one _).2 <| subset_span ⟨1, trivial, map_one f⟩
#align ideal.map_top Ideal.map_top
theorem gc_map_comap : GaloisConnection (Ideal.map f) (Ideal.comap f) := fun _ _ =>
Ideal.map_le_iff_le_comap
#align ideal.gc_map_comap Ideal.gc_map_comap
@[simp]
theorem comap_id : I.comap (RingHom.id R) = I :=
Ideal.ext fun _ => Iff.rfl
#align ideal.comap_id Ideal.comap_id
@[simp]
theorem map_id : I.map (RingHom.id R) = I :=
(gc_map_comap (RingHom.id R)).l_unique GaloisConnection.id comap_id
#align ideal.map_id Ideal.map_id
theorem comap_comap {T : Type*} [Semiring T] {I : Ideal T} (f : R →+* S) (g : S →+* T) :
(I.comap g).comap f = I.comap (g.comp f) :=
rfl
#align ideal.comap_comap Ideal.comap_comap
theorem map_map {T : Type*} [Semiring T] {I : Ideal R} (f : R →+* S) (g : S →+* T) :
(I.map f).map g = I.map (g.comp f) :=
((gc_map_comap f).compose (gc_map_comap g)).l_unique (gc_map_comap (g.comp f)) fun _ =>
comap_comap _ _
#align ideal.map_map Ideal.map_map
theorem map_span (f : F) (s : Set R) : map f (span s) = span (f '' s) := by
refine (Submodule.span_eq_of_le _ ?_ ?_).symm
· rintro _ ⟨x, hx, rfl⟩; exact mem_map_of_mem f (subset_span hx)
· rw [map_le_iff_le_comap, span_le, coe_comap, ← Set.image_subset_iff]
exact subset_span
#align ideal.map_span Ideal.map_span
variable {f I J K L}
theorem map_le_of_le_comap : I ≤ K.comap f → I.map f ≤ K :=
(gc_map_comap f).l_le
#align ideal.map_le_of_le_comap Ideal.map_le_of_le_comap
theorem le_comap_of_map_le : I.map f ≤ K → I ≤ K.comap f :=
(gc_map_comap f).le_u
#align ideal.le_comap_of_map_le Ideal.le_comap_of_map_le
theorem le_comap_map : I ≤ (I.map f).comap f :=
(gc_map_comap f).le_u_l _
#align ideal.le_comap_map Ideal.le_comap_map
theorem map_comap_le : (K.comap f).map f ≤ K :=
(gc_map_comap f).l_u_le _
#align ideal.map_comap_le Ideal.map_comap_le
@[simp]
theorem comap_top : (⊤ : Ideal S).comap f = ⊤ :=
(gc_map_comap f).u_top
#align ideal.comap_top Ideal.comap_top
@[simp]
theorem comap_eq_top_iff {I : Ideal S} : I.comap f = ⊤ ↔ I = ⊤ :=
⟨fun h => I.eq_top_iff_one.mpr (map_one f ▸ mem_comap.mp ((I.comap f).eq_top_iff_one.mp h)),
fun h => by rw [h, comap_top]⟩
#align ideal.comap_eq_top_iff Ideal.comap_eq_top_iff
@[simp]
theorem map_bot : (⊥ : Ideal R).map f = ⊥ :=
(gc_map_comap f).l_bot
#align ideal.map_bot Ideal.map_bot
variable (f I J K L)
@[simp]
theorem map_comap_map : ((I.map f).comap f).map f = I.map f :=
(gc_map_comap f).l_u_l_eq_l I
#align ideal.map_comap_map Ideal.map_comap_map
@[simp]
theorem comap_map_comap : ((K.comap f).map f).comap f = K.comap f :=
(gc_map_comap f).u_l_u_eq_u K
#align ideal.comap_map_comap Ideal.comap_map_comap
theorem map_sup : (I ⊔ J).map f = I.map f ⊔ J.map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sup
#align ideal.map_sup Ideal.map_sup
theorem comap_inf : comap f (K ⊓ L) = comap f K ⊓ comap f L :=
rfl
#align ideal.comap_inf Ideal.comap_inf
variable {ι : Sort*}
theorem map_iSup (K : ι → Ideal R) : (iSup K).map f = ⨆ i, (K i).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_iSup
#align ideal.map_supr Ideal.map_iSup
theorem comap_iInf (K : ι → Ideal S) : (iInf K).comap f = ⨅ i, (K i).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_iInf
#align ideal.comap_infi Ideal.comap_iInf
theorem map_sSup (s : Set (Ideal R)) : (sSup s).map f = ⨆ I ∈ s, (I : Ideal R).map f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).l_sSup
#align ideal.map_Sup Ideal.map_sSup
theorem comap_sInf (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ s, (I : Ideal S).comap f :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).u_sInf
#align ideal.comap_Inf Ideal.comap_sInf
theorem comap_sInf' (s : Set (Ideal S)) : (sInf s).comap f = ⨅ I ∈ comap f '' s, I :=
_root_.trans (comap_sInf f s) (by rw [iInf_image])
#align ideal.comap_Inf' Ideal.comap_sInf'
theorem comap_isPrime [H : IsPrime K] : IsPrime (comap f K) :=
⟨comap_ne_top f H.ne_top, fun {x y} h => H.mem_or_mem <| by rwa [mem_comap, map_mul] at h⟩
#align ideal.comap_is_prime Ideal.comap_isPrime
variable {I J K L}
theorem map_inf_le : map f (I ⊓ J) ≤ map f I ⊓ map f J :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_l.map_inf_le _ _
#align ideal.map_inf_le Ideal.map_inf_le
theorem le_comap_sup : comap f K ⊔ comap f L ≤ comap f (K ⊔ L) :=
(gc_map_comap f : GaloisConnection (map f) (comap f)).monotone_u.le_map_sup _ _
#align ideal.le_comap_sup Ideal.le_comap_sup
@[simp]
theorem smul_top_eq_map {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I : Ideal R) : I • (⊤ : Submodule R S) = (I.map (algebraMap R S)).restrictScalars R := by
refine'
le_antisymm (Submodule.smul_le.mpr fun r hr y _ => _) fun x hx =>
Submodule.span_induction hx _ _ _ _
· rw [Algebra.smul_def]
exact mul_mem_right _ _ (mem_map_of_mem _ hr)
· rintro _ ⟨x, hx, rfl⟩
rw [← mul_one (algebraMap R S x), ← Algebra.smul_def]
exact Submodule.smul_mem_smul hx Submodule.mem_top
· exact Submodule.zero_mem _
· intro x y
exact Submodule.add_mem _
intro a x hx
refine' Submodule.smul_induction_on hx _ _
· intro r hr s _
rw [smul_comm]
exact Submodule.smul_mem_smul hr Submodule.mem_top
· intro x y hx hy
rw [smul_add]
exact Submodule.add_mem _ hx hy
#align ideal.smul_top_eq_map Ideal.smul_top_eq_map
@[simp]
theorem coe_restrictScalars {R S : Type*} [CommSemiring R] [Semiring S] [Algebra R S]
(I : Ideal S) : (I.restrictScalars R : Set S) = ↑I :=
rfl
#align ideal.coe_restrict_scalars Ideal.coe_restrictScalars
/-- The smallest `S`-submodule that contains all `x ∈ I * y ∈ J`
is also the smallest `R`-submodule that does so. -/
@[simp]
theorem restrictScalars_mul {R S : Type*} [CommSemiring R] [CommSemiring S] [Algebra R S]
(I J : Ideal S) : (I * J).restrictScalars R = I.restrictScalars R * J.restrictScalars R :=
le_antisymm
(fun _ hx =>
Submodule.mul_induction_on hx (fun _ hx _ hy => Submodule.mul_mem_mul hx hy) fun _ _ =>
Submodule.add_mem _)
(Submodule.mul_le.mpr fun _ hx _ hy => Ideal.mul_mem_mul hx hy)
#align ideal.restrict_scalars_mul Ideal.restrictScalars_mul
section Surjective
variable (hf : Function.Surjective f)
open Function
theorem map_comap_of_surjective (I : Ideal S) : map f (comap f I) = I :=
le_antisymm (map_le_iff_le_comap.2 le_rfl) fun s hsi =>
let ⟨r, hfrs⟩ := hf s
hfrs ▸ (mem_map_of_mem f <| show f r ∈ I from hfrs.symm ▸ hsi)
#align ideal.map_comap_of_surjective Ideal.map_comap_of_surjective
/-- `map` and `comap` are adjoint, and the composition `map f ∘ comap f` is the
identity -/
def giMapComap : GaloisInsertion (map f) (comap f) :=
GaloisInsertion.monotoneIntro (gc_map_comap f).monotone_u (gc_map_comap f).monotone_l
(fun _ => le_comap_map) (map_comap_of_surjective _ hf)
#align ideal.gi_map_comap Ideal.giMapComap
theorem map_surjective_of_surjective : Surjective (map f) :=
(giMapComap f hf).l_surjective
#align ideal.map_surjective_of_surjective Ideal.map_surjective_of_surjective
theorem comap_injective_of_surjective : Injective (comap f) :=
(giMapComap f hf).u_injective
#align ideal.comap_injective_of_surjective Ideal.comap_injective_of_surjective
theorem map_sup_comap_of_surjective (I J : Ideal S) : (I.comap f ⊔ J.comap f).map f = I ⊔ J :=
(giMapComap f hf).l_sup_u _ _
#align ideal.map_sup_comap_of_surjective Ideal.map_sup_comap_of_surjective
theorem map_iSup_comap_of_surjective (K : ι → Ideal S) : (⨆ i, (K i).comap f).map f = iSup K :=
(giMapComap f hf).l_iSup_u _
#align ideal.map_supr_comap_of_surjective Ideal.map_iSup_comap_of_surjective
theorem map_inf_comap_of_surjective (I J : Ideal S) : (I.comap f ⊓ J.comap f).map f = I ⊓ J :=
(giMapComap f hf).l_inf_u _ _
#align ideal.map_inf_comap_of_surjective Ideal.map_inf_comap_of_surjective
theorem map_iInf_comap_of_surjective (K : ι → Ideal S) : (⨅ i, (K i).comap f).map f = iInf K :=
(giMapComap f hf).l_iInf_u _
#align ideal.map_infi_comap_of_surjective Ideal.map_iInf_comap_of_surjective
theorem mem_image_of_mem_map_of_surjective {I : Ideal R} {y} (H : y ∈ map f I) : y ∈ f '' I :=
Submodule.span_induction H (fun _ => id) ⟨0, I.zero_mem, map_zero f⟩
(fun _ _ ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩ =>
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ map_add f _ _⟩)
fun c _ ⟨x, hxi, hxy⟩ =>
let ⟨d, hdc⟩ := hf c
⟨d * x, I.mul_mem_left _ hxi, hdc ▸ hxy ▸ map_mul f _ _⟩
#align ideal.mem_image_of_mem_map_of_surjective Ideal.mem_image_of_mem_map_of_surjective
theorem mem_map_iff_of_surjective {I : Ideal R} {y} : y ∈ map f I ↔ ∃ x, x ∈ I ∧ f x = y :=
⟨fun h => (Set.mem_image _ _ _).2 (mem_image_of_mem_map_of_surjective f hf h), fun ⟨_, hx⟩ =>
hx.right ▸ mem_map_of_mem f hx.left⟩
#align ideal.mem_map_iff_of_surjective Ideal.mem_map_iff_of_surjective
theorem le_map_of_comap_le_of_surjective : comap f K ≤ I → K ≤ map f I := fun h =>
map_comap_of_surjective f hf K ▸ map_mono h
#align ideal.le_map_of_comap_le_of_surjective Ideal.le_map_of_comap_le_of_surjective
theorem map_eq_submodule_map (f : R →+* S) [h : RingHomSurjective f] (I : Ideal R) :
I.map f = Submodule.map f.toSemilinearMap I :=
Submodule.ext fun _ => mem_map_iff_of_surjective f h.1
#align ideal.map_eq_submodule_map Ideal.map_eq_submodule_map
end Surjective
section Injective
variable (hf : Function.Injective f)
theorem comap_bot_le_of_injective : comap f ⊥ ≤ I := by
refine' le_trans (fun x hx => _) bot_le
rw [mem_comap, Submodule.mem_bot, ← map_zero f] at hx
exact Eq.symm (hf hx) ▸ Submodule.zero_mem ⊥
#align ideal.comap_bot_le_of_injective Ideal.comap_bot_le_of_injective
theorem comap_bot_of_injective : Ideal.comap f ⊥ = ⊥ :=
le_bot_iff.mp (Ideal.comap_bot_le_of_injective f hf)
#align ideal.comap_bot_of_injective Ideal.comap_bot_of_injective
end Injective
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm (map f I) = I`. -/
@[simp]
theorem map_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.map (f : R →+* S)).map (f.symm : S →+* R) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, map_map,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, map_id]
#align ideal.map_of_equiv Ideal.map_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`,
then `comap f (comap f.symm I) = I`. -/
@[simp]
theorem comap_of_equiv (I : Ideal R) (f : R ≃+* S) :
(I.comap (f.symm : S →+* R)).comap (f : R →+* S) = I := by
rw [← RingEquiv.toRingHom_eq_coe, ← RingEquiv.toRingHom_eq_coe, comap_comap,
RingEquiv.toRingHom_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.symm_comp, comap_id]
#align ideal.comap_of_equiv Ideal.comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f I = comap f.symm I`. -/
theorem map_comap_of_equiv (I : Ideal R) (f : R ≃+* S) : I.map (f : R →+* S) = I.comap f.symm :=
le_antisymm (Ideal.map_le_comap_of_inverse _ _ _ (Equiv.left_inv' _))
(Ideal.comap_le_map_of_inverse _ _ _ (Equiv.right_inv' _))
#align ideal.map_comap_of_equiv Ideal.map_comap_of_equiv
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `comap f.symm I = map f I`. -/
@[simp]
theorem comap_symm (I : Ideal R) (f : R ≃+* S) : I.comap f.symm = I.map f :=
(map_comap_of_equiv I f).symm
/-- If `f : R ≃+* S` is a ring isomorphism and `I : Ideal R`, then `map f.symm I = comap f I`. -/
@[simp]
theorem map_symm (I : Ideal S) (f : R ≃+* S) : I.map f.symm = I.comap f :=
map_comap_of_equiv I (RingEquiv.symm f)
end Semiring
section Ring
variable {F : Type*} [Ring R] [Ring S]
variable [RingHomClass F R S] (f : F) {I : Ideal R}
section Surjective
variable (hf : Function.Surjective f)
theorem comap_map_of_surjective (I : Ideal R) : comap f (map f I) = I ⊔ comap f ⊥ :=
le_antisymm
(fun r h =>
let ⟨s, hsi, hfsr⟩ := mem_image_of_mem_map_of_surjective f hf h
Submodule.mem_sup.2
⟨s, hsi, r - s, (Submodule.mem_bot S).2 <| by rw [map_sub, hfsr, sub_self],
add_sub_cancel'_right s r⟩)
(sup_le (map_le_iff_le_comap.1 le_rfl) (comap_mono bot_le))
#align ideal.comap_map_of_surjective Ideal.comap_map_of_surjective
/-- Correspondence theorem -/
def relIsoOfSurjective : Ideal S ≃o { p : Ideal R // comap f ⊥ ≤ p } where
toFun J := ⟨comap f J, comap_mono bot_le⟩
invFun I := map f I.1
left_inv J := map_comap_of_surjective f hf J
right_inv I :=
Subtype.eq <|
show comap f (map f I.1) = I.1 from
(comap_map_of_surjective f hf I).symm ▸ le_antisymm (sup_le le_rfl I.2) le_sup_left
map_rel_iff' {I1 I2} :=
⟨fun H => map_comap_of_surjective f hf I1 ▸ map_comap_of_surjective f hf I2 ▸ map_mono H,
comap_mono⟩
#align ideal.rel_iso_of_surjective Ideal.relIsoOfSurjective
/-- The map on ideals induced by a surjective map preserves inclusion. -/
def orderEmbeddingOfSurjective : Ideal S ↪o Ideal R :=
(relIsoOfSurjective f hf).toRelEmbedding.trans (Subtype.relEmbedding (fun x y => x ≤ y) _)
#align ideal.order_embedding_of_surjective Ideal.orderEmbeddingOfSurjective
theorem map_eq_top_or_isMaximal_of_surjective {I : Ideal R} (H : IsMaximal I) :
map f I = ⊤ ∨ IsMaximal (map f I) := by
refine' or_iff_not_imp_left.2 fun ne_top => ⟨⟨fun h => ne_top h, fun J hJ => _⟩⟩
· refine'
(relIsoOfSurjective f hf).injective
(Subtype.ext_iff.2 (Eq.trans (H.1.2 (comap f J) (lt_of_le_of_ne _ _)) comap_top.symm))
· exact map_le_iff_le_comap.1 (le_of_lt hJ)
· exact fun h => hJ.right (le_map_of_comap_le_of_surjective f hf (le_of_eq h.symm))
#align ideal.map_eq_top_or_is_maximal_of_surjective Ideal.map_eq_top_or_isMaximal_of_surjective
theorem comap_isMaximal_of_surjective {K : Ideal S} [H : IsMaximal K] : IsMaximal (comap f K) := by
refine' ⟨⟨comap_ne_top _ H.1.1, fun J hJ => _⟩⟩
suffices map f J = ⊤ by
have := congr_arg (comap f) this
rw [comap_top, comap_map_of_surjective _ hf, eq_top_iff] at this
rw [eq_top_iff]
exact le_trans this (sup_le (le_of_eq rfl) (le_trans (comap_mono bot_le) (le_of_lt hJ)))
refine'
H.1.2 (map f J)
(lt_of_le_of_ne (le_map_of_comap_le_of_surjective _ hf (le_of_lt hJ)) fun h =>
ne_of_lt hJ (_root_.trans (congr_arg (comap f) h) _))
rw [comap_map_of_surjective _ hf, sup_eq_left]
exact le_trans (comap_mono bot_le) (le_of_lt hJ)
#align ideal.comap_is_maximal_of_surjective Ideal.comap_isMaximal_of_surjective
theorem comap_le_comap_iff_of_surjective (I J : Ideal S) : comap f I ≤ comap f J ↔ I ≤ J :=
⟨fun h => (map_comap_of_surjective f hf I).symm.le.trans (map_le_of_le_comap h), fun h =>
le_comap_of_map_le ((map_comap_of_surjective f hf I).le.trans h)⟩
#align ideal.comap_le_comap_iff_of_surjective Ideal.comap_le_comap_iff_of_surjective
end Surjective
section Bijective
variable (hf : Function.Bijective f)
/-- Special case of the correspondence theorem for isomorphic rings -/
def relIsoOfBijective : Ideal S ≃o Ideal R where
toFun := comap f
invFun := map f
left_inv := (relIsoOfSurjective f hf.right).left_inv
right_inv J :=
Subtype.ext_iff.1
((relIsoOfSurjective f hf.right).right_inv ⟨J, comap_bot_le_of_injective f hf.left⟩)
map_rel_iff' {_ _} := (relIsoOfSurjective f hf.right).map_rel_iff'
#align ideal.rel_iso_of_bijective Ideal.relIsoOfBijective
theorem comap_le_iff_le_map {I : Ideal R} {K : Ideal S} : comap f K ≤ I ↔ K ≤ map f I :=
⟨fun h => le_map_of_comap_le_of_surjective f hf.right h, fun h =>
(relIsoOfBijective f hf).right_inv I ▸ comap_mono h⟩
#align ideal.comap_le_iff_le_map Ideal.comap_le_iff_le_map
theorem map.isMaximal {I : Ideal R} (H : IsMaximal I) : IsMaximal (map f I) := by
refine'
or_iff_not_imp_left.1 (map_eq_top_or_isMaximal_of_surjective f hf.right H) fun h => H.1.1 _
calc
I = comap f (map f I) := ((relIsoOfBijective f hf).right_inv I).symm
_ = comap f ⊤ := by rw [h]
_ = ⊤ := by rw [comap_top]
#align ideal.map.is_maximal Ideal.map.isMaximal
end Bijective
theorem RingEquiv.bot_maximal_iff (e : R ≃+* S) :
(⊥ : Ideal R).IsMaximal ↔ (⊥ : Ideal S).IsMaximal :=
⟨fun h => @map_bot _ _ _ _ _ _ e.toRingHom ▸ map.isMaximal e.toRingHom e.bijective h, fun h =>
@map_bot _ _ _ _ _ _ e.symm.toRingHom ▸ map.isMaximal e.symm.toRingHom e.symm.bijective h⟩
#align ideal.ring_equiv.bot_maximal_iff Ideal.RingEquiv.bot_maximal_iff
end Ring
section CommRing
variable {F : Type*} [CommRing R] [CommRing S]
variable [rc : RingHomClass F R S]
variable (f : F)
variable {I J : Ideal R} {K L : Ideal S}
variable (I J K L)
theorem map_mul : map f (I * J) = map f I * map f J :=
le_antisymm
(map_le_iff_le_comap.2 <|
mul_le.2 fun r hri s hsj =>
show (f (r * s)) ∈ map f I * map f J by
rw [_root_.map_mul]; exact mul_mem_mul (mem_map_of_mem f hri) (mem_map_of_mem f hsj))
(span_mul_span (↑f '' ↑I) (↑f '' ↑J) ▸ (span_le.2 <|
Set.iUnion₂_subset fun i ⟨r, hri, hfri⟩ =>
Set.iUnion₂_subset fun j ⟨s, hsj, hfsj⟩ =>
Set.singleton_subset_iff.2 <|
hfri ▸ hfsj ▸ by rw [← _root_.map_mul]; exact mem_map_of_mem f (mul_mem_mul hri hsj)))
#align ideal.map_mul Ideal.map_mul
/-- The pushforward `Ideal.map` as a monoid-with-zero homomorphism. -/
@[simps]
def mapHom : Ideal R →*₀ Ideal S where
toFun := map f
map_mul' I J := Ideal.map_mul f I J
map_one' := by simp only [one_eq_top]; exact Ideal.map_top f
map_zero' := Ideal.map_bot
#align ideal.map_hom Ideal.mapHom
protected theorem map_pow (n : ℕ) : map f (I ^ n) = map f I ^ n :=
map_pow (mapHom f) I n
#align ideal.map_pow Ideal.map_pow
theorem comap_radical : comap f (radical K) = radical (comap f K) := by
ext
simp [radical]
#align ideal.comap_radical Ideal.comap_radical
variable {K}
theorem IsRadical.comap (hK : K.IsRadical) : (comap f K).IsRadical := by
rw [← hK.radical, comap_radical]
apply radical_isRadical
#align ideal.is_radical.comap Ideal.IsRadical.comap
variable {I J L}
theorem map_radical_le : map f (radical I) ≤ radical (map f I) :=
map_le_iff_le_comap.2 fun r ⟨n, hrni⟩ => ⟨n, map_pow f r n ▸ mem_map_of_mem f hrni⟩
#align ideal.map_radical_le Ideal.map_radical_le
theorem le_comap_mul : comap f K * comap f L ≤ comap f (K * L) :=
map_le_iff_le_comap.1 <|
(map_mul f (comap f K) (comap f L)).symm ▸
mul_mono (map_le_iff_le_comap.2 <| le_rfl) (map_le_iff_le_comap.2 <| le_rfl)
#align ideal.le_comap_mul Ideal.le_comap_mul
theorem le_comap_pow (n : ℕ) : K.comap f ^ n ≤ (K ^ n).comap f := by
induction' n with n n_ih
· rw [pow_zero, pow_zero, Ideal.one_eq_top, Ideal.one_eq_top]
exact rfl.le
· rw [pow_succ, pow_succ]
exact (Ideal.mul_mono_right n_ih).trans (Ideal.le_comap_mul f)
#align ideal.le_comap_pow Ideal.le_comap_pow
end CommRing
end MapAndComap
section IsPrimary
variable {R : Type u} [CommSemiring R]
/-- A proper ideal `I` is primary iff `xy ∈ I` implies `x ∈ I` or `y ∈ radical I`. -/
def IsPrimary (I : Ideal R) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
#align ideal.is_primary Ideal.IsPrimary
theorem IsPrime.isPrimary {I : Ideal R} (hi : IsPrime I) : IsPrimary I :=
⟨hi.1, fun {_ _} hxy => (hi.mem_or_mem hxy).imp id fun hyi => le_radical hyi⟩
#align ideal.is_prime.is_primary Ideal.IsPrime.isPrimary
theorem mem_radical_of_pow_mem {I : Ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
x ∈ radical I :=
radical_idem I ▸ ⟨m, hx⟩
#align ideal.mem_radical_of_pow_mem Ideal.mem_radical_of_pow_mem
theorem isPrime_radical {I : Ideal R} (hi : IsPrimary I) : IsPrime (radical I) :=
⟨mt radical_eq_top.1 hi.1,
fun {x y} ⟨m, hxy⟩ => by
rw [mul_pow] at hxy; cases' hi.2 hxy with h h
· exact Or.inl ⟨m, h⟩
· exact Or.inr (mem_radical_of_pow_mem h)⟩
#align ideal.is_prime_radical Ideal.isPrime_radical
theorem isPrimary_inf {I J : Ideal R} (hi : IsPrimary I) (hj : IsPrimary J)
(hij : radical I = radical J) : IsPrimary (I ⊓ J) :=
⟨ne_of_lt <| lt_of_le_of_lt inf_le_left (lt_top_iff_ne_top.2 hi.1),
fun {x y} ⟨hxyi, hxyj⟩ => by
rw [radical_inf, hij, inf_idem]
cases' hi.2 hxyi with hxi hyi; cases' hj.2 hxyj with hxj hyj
· exact Or.inl ⟨hxi, hxj⟩
· exact Or.inr hyj
· rw [hij] at hyi
exact Or.inr hyi⟩
#align ideal.is_primary_inf Ideal.isPrimary_inf
end IsPrimary
section Total
variable (ι : Type*)
variable (M : Type*) [AddCommGroup M] {R : Type*} [CommRing R] [Module R M] (I : Ideal R)
variable (v : ι → M) (hv : Submodule.span R (Set.range v) = ⊤)
open BigOperators
/-- A variant of `Finsupp.total` that takes in vectors valued in `I`. -/
noncomputable def finsuppTotal : (ι →₀ I) →ₗ[R] M :=
(Finsupp.total ι M R v).comp (Finsupp.mapRange.linearMap I.subtype)
#align ideal.finsupp_total Ideal.finsuppTotal
variable {ι M v}
theorem finsuppTotal_apply (f : ι →₀ I) :
finsuppTotal ι M I v f = f.sum fun i x => (x : R) • v i := by
dsimp [finsuppTotal]
rw [Finsupp.total_apply, Finsupp.sum_mapRange_index]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply Ideal.finsuppTotal_apply
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) :
finsuppTotal ι M I v f = ∑ i, (f i : R) • v i := by
rw [finsuppTotal_apply, Finsupp.sum_fintype]
exact fun _ => zero_smul _ _
#align ideal.finsupp_total_apply_eq_of_fintype Ideal.finsuppTotal_apply_eq_of_fintype
theorem range_finsuppTotal :
LinearMap.range (finsuppTotal ι M I v) = I • Submodule.span R (Set.range v) := by
ext
rw [Submodule.mem_ideal_smul_span_iff_exists_sum]
refine' ⟨fun ⟨f, h⟩ => ⟨Finsupp.mapRange.linearMap I.subtype f, fun i => (f i).2, h⟩, _⟩
rintro ⟨a, ha, rfl⟩
classical
refine' ⟨a.mapRange (fun r => if h : r ∈ I then ⟨r, h⟩ else 0) (by simp), _⟩
rw [finsuppTotal_apply, Finsupp.sum_mapRange_index]
· apply Finsupp.sum_congr
intro i _
rw [dif_pos (ha i)]
· exact fun _ => zero_smul _ _
#align ideal.range_finsupp_total Ideal.range_finsuppTotal
end Total
section Basis
variable {ι R S : Type*} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S]
/-- A basis on `S` gives a basis on `Ideal.span {x}`, by multiplying everything by `x`. -/
noncomputable def basisSpanSingleton (b : Basis ι R S) {x : S} (hx : x ≠ 0) :
Basis ι R (span ({x} : Set S)) :=
b.map <|
LinearEquiv.ofInjective (Algebra.lmul R S x) (LinearMap.mul_injective hx) ≪≫ₗ
LinearEquiv.ofEq _ _
(by
ext
simp [mem_span_singleton', mul_comm]) ≪≫ₗ
(Submodule.restrictScalarsEquiv R S S (Ideal.span ({x} : Set S))).restrictScalars R
#align ideal.basis_span_singleton Ideal.basisSpanSingleton
@[simp]
theorem basisSpanSingleton_apply (b : Basis ι R S) {x : S} (hx : x ≠ 0) (i : ι) :
(basisSpanSingleton b hx i : S) = x * b i := by
simp only [basisSpanSingleton, Basis.map_apply, LinearEquiv.trans_apply,
Submodule.restrictScalarsEquiv_apply, LinearEquiv.ofInjective_apply, LinearEquiv.coe_ofEq_apply,
LinearEquiv.restrictScalars_apply, Algebra.coe_lmul_eq_mul, LinearMap.mul_apply']
-- This used to be the end of the proof before leanprover/lean4#2644
erw [LinearEquiv.coe_ofEq_apply, LinearEquiv.ofInjective_apply, Algebra.coe_lmul_eq_mul,
LinearMap.mul_apply']
#align ideal.basis_span_singleton_apply Ideal.basisSpanSingleton_apply
@[simp]
theorem constr_basisSpanSingleton {N : Type*} [Semiring N] [Module N S] [SMulCommClass R N S]
(b : Basis ι R S) {x : S} (hx : x ≠ 0) :
(b.constr N).toFun (((↑) : _ → S) ∘ (basisSpanSingleton b hx)) = Algebra.lmul R S x :=
b.ext fun i => by
erw [Basis.constr_basis, Function.comp_apply, basisSpanSingleton_apply, LinearMap.mul_apply']
#align ideal.constr_basis_span_singleton Ideal.constr_basisSpanSingleton
end Basis
end Ideal
section span_range
variable {α R : Type*} [Semiring R]
theorem Finsupp.mem_ideal_span_range_iff_exists_finsupp {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α →₀ R, (c.sum fun i a => a * v i) = x :=
Finsupp.mem_span_range_iff_exists_finsupp
/-- An element `x` lies in the span of `v` iff it can be written as sum `∑ cᵢ • vᵢ = x`.
-/
theorem mem_ideal_span_range_iff_exists_fun [Fintype α] {x : R} {v : α → R} :
x ∈ Ideal.span (Set.range v) ↔ ∃ c : α → R, ∑ i, c i * v i = x :=
mem_span_range_iff_exists_fun _
end span_range
theorem Associates.mk_ne_zero' {R : Type*} [CommSemiring R] {r : R} :
Associates.mk (Ideal.span {r} : Ideal R) ≠ 0 ↔ r ≠ 0 := by
rw [Associates.mk_ne_zero, Ideal.zero_eq_bot, Ne.def, Ideal.span_singleton_eq_bot]
#align associates.mk_ne_zero' Associates.mk_ne_zero'
-- Porting note: added explicit coercion `(b i : S)`
/-- If `I : Ideal S` has a basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff {ι R S : Type*} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal S}
(b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι →₀ R, x = Finsupp.sum c fun i x => x • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff
#align basis.mem_ideal_iff Basis.mem_ideal_iff
/-- If `I : Ideal S` has a finite basis over `R`,
`x ∈ I` iff it is a linear combination of basis vectors. -/
theorem Basis.mem_ideal_iff' {ι R S : Type*} [Fintype ι] [CommRing R] [CommRing S] [Algebra R S]
{I : Ideal S} (b : Basis ι R I) {x : S} : x ∈ I ↔ ∃ c : ι → R, x = ∑ i, c i • (b i : S) :=
(b.map ((I.restrictScalarsEquiv R _ _).restrictScalars R).symm).mem_submodule_iff'
#align basis.mem_ideal_iff' Basis.mem_ideal_iff'
namespace RingHom
variable {R : Type u} {S : Type v} {T : Type w}
section Semiring
variable {F : Type*} {G : Type*} [Semiring R] [Semiring S] [Semiring T]
variable [rcf : RingHomClass F R S] [rcg : RingHomClass G T S] (f : F) (g : G)
/-- Kernel of a ring homomorphism as an ideal of the domain. -/
def ker : Ideal R :=
Ideal.comap f ⊥
#align ring_hom.ker RingHom.ker
/-- An element is in the kernel if and only if it maps to zero.-/
theorem mem_ker {r} : r ∈ ker f ↔ f r = 0 := by rw [ker, Ideal.mem_comap, Submodule.mem_bot]
#align ring_hom.mem_ker RingHom.mem_ker
theorem ker_eq : (ker f : Set R) = Set.preimage f {0} :=
rfl
#align ring_hom.ker_eq RingHom.ker_eq
theorem ker_eq_comap_bot (f : F) : ker f = Ideal.comap f ⊥ :=
rfl
#align ring_hom.ker_eq_comap_bot RingHom.ker_eq_comap_bot
theorem comap_ker (f : S →+* R) (g : T →+* S) : f.ker.comap g = ker (f.comp g) := by
rw [RingHom.ker_eq_comap_bot, Ideal.comap_comap, RingHom.ker_eq_comap_bot]
#align ring_hom.comap_ker RingHom.comap_ker
/-- If the target is not the zero ring, then one is not in the kernel.-/
theorem not_one_mem_ker [Nontrivial S] (f : F) : (1 : R) ∉ ker f := by
rw [mem_ker, map_one]
exact one_ne_zero
#align ring_hom.not_one_mem_ker RingHom.not_one_mem_ker
theorem ker_ne_top [Nontrivial S] (f : F) : ker f ≠ ⊤ :=
(Ideal.ne_top_iff_one _).mpr <| not_one_mem_ker f
#align ring_hom.ker_ne_top RingHom.ker_ne_top
lemma _root_.Pi.ker_ringHom {ι : Type*} {R : ι → Type*} [∀ i, Semiring (R i)]
(φ : ∀ i, S →+* R i) : ker (Pi.ringHom φ) = ⨅ i, ker (φ i) := by
ext x
simp [mem_ker, Ideal.mem_iInf, Function.funext_iff]
end Semiring
section Ring
variable {F : Type*} [Ring R] [Semiring S] [rc : RingHomClass F R S] (f : F)
theorem injective_iff_ker_eq_bot : Function.Injective f ↔ ker f = ⊥ := by
rw [SetLike.ext'_iff, ker_eq, Set.ext_iff]
exact injective_iff_map_eq_zero' f
#align ring_hom.injective_iff_ker_eq_bot RingHom.injective_iff_ker_eq_bot
theorem ker_eq_bot_iff_eq_zero : ker f = ⊥ ↔ ∀ x, f x = 0 → x = 0 := by
rw [← injective_iff_map_eq_zero f, injective_iff_ker_eq_bot]
#align ring_hom.ker_eq_bot_iff_eq_zero RingHom.ker_eq_bot_iff_eq_zero
@[simp]
theorem ker_coe_equiv (f : R ≃+* S) : ker (f : R →+* S) = ⊥ := by
simpa only [← injective_iff_ker_eq_bot] using EquivLike.injective f
#align ring_hom.ker_coe_equiv RingHom.ker_coe_equiv
@[simp]
theorem ker_equiv {F' : Type*} [RingEquivClass F' R S] (f : F') : ker f = ⊥ := by
simpa only [← injective_iff_ker_eq_bot] using EquivLike.injective f
#align ring_hom.ker_equiv RingHom.ker_equiv
end Ring
section RingRing
variable {F : Type*} [Ring R] [Ring S] [rc : RingHomClass F R S] (f : F)
theorem sub_mem_ker_iff {x y} : x - y ∈ ker f ↔ f x = f y := by | rw [mem_ker, map_sub, sub_eq_zero] | theorem sub_mem_ker_iff {x y} : x - y ∈ ker f ↔ f x = f y := by | Mathlib.RingTheory.Ideal.Operations.2129_0.5qK551sG47yBciY | theorem sub_mem_ker_iff {x y} : x - y ∈ ker f ↔ f x = f y | Mathlib_RingTheory_Ideal_Operations |