Datasets:
File size: 3,929 Bytes
2cf1268 acb8fec 2cf1268 dc9db9f a8517b9 dc9db9f a8517b9 dc9db9f 4849086 dc9db9f 4849086 dc9db9f 4849086 dc9db9f 4849086 dc9db9f 3940cc9 eddff0e dc9db9f 3940cc9 dc9db9f 4849086 dc9db9f 3940cc9 dc9db9f aad0211 dc9db9f 3940cc9 2dd98f8 3940cc9 2dd98f8 3940cc9 dc9db9f 3940cc9 dc9db9f f289d1a acb8fec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
pretty_name: Cityscapes VPS
tags:
- image
- datasets
- webdataset
- pandas
- unipercept
license: afl-3.0
task_categories:
- depth-estimation
- image-segmentation
- video-classification
- object-detection
size_categories:
- 10K<n<100K
---
# Cityscapes VPS
This dataset is derived from the videos in the *validation* split of the Cityscapes[^1] dataset.
It aggregates the images and metadata from Cityscapes[^1], Cityscapes-VPS[^2] and Cityscapes-DVPS[^3] into a single structured format.
This comprehensive derivative was created out of the need for a batteries-included variant of the dataset for academic purposes.
Specifically, joining samples from the individual datasets in their original structure (each is organized differently) involves a significant amount of boilerplate code.
This dataset is relevant to computer vision research areas such as:
- Segmentation
- Depth estimation
- Autonomous driving
- Video understanding
## Overview
The following variables are included.
1. **Images.** The input data captured by the left camera from Cityscapes[^1], in 8-bit format. Every sequence has 30 frames.
2. **Segmentation labels.** Derived from Cityscapes[^1] and Cityscapes-DVPS[^3], these labels provide detailed semantic segmentation and instance segmentation information for 6 frames of every sequence.
3. **Depth maps.** Improved depth information from Cityscapes-DVPS[^3], offering enhanced quality over the disparity package from Cityscapes[^1], provided for the same samples as the segmentation labels above.
4. **Camera calibrations.** Includes the intrinsic and extrinsic parameters provided by Cityscapes[^1] for each sequence.
5. **Vehicle odometry.** Odometry data for each frame, a subset of those provided in Cityscapes[^1].
Files are grouped by split, sequence and frame.
This leads to the following structure:
```text
data
train
000000
000000.image.png
000000.panoptic.png
000000.depth.tiff
000000.vehicle.json
000000.timestamp.txt
000001.image.png
000001.panoptic.png
000001.depth.tiff
000001.vehicle.json
000001.timestamp.txt
000000.camera.json
000001
...
000001.camera.json
...
val
000000
...
000000.camera.json
...
test
000000
...
000000.camera.json
```
The `data` directory in this repository only contains the segmentation and depth map annotations.
The remaining data should be downloaded from official sources using the provided preparation script.
## Preparation
1. Clone this dataset repository.
```bash
git clone https://huggingface.co./datasets/khwstolle/csvps && cd csvps
```
2. Install the [Cityscapes developer kit](https://github.com/mcordts/cityscapesScripts) and build dependencies using `pip`.
```bash
python -m pip install -r requirements.txt
```
3. Run the preparation script provided in this repository.
Note that this may prompt your [Cityscapes account](https://cityscapes-dataset.com/login/) login credentials.
```bash
make prepare
```
4. To convert the `train`, `val` and `test` directories into a `tar` archive for use with [WebDataset](https://github.com/webdataset/webdataset), run the following command:
```bash
make build
```
## Usage
See `examples.ipynb` for instructions.
## Citation
If you use this dataset in your research, please cite the original
[Cityscapes](https://cityscapes-dataset.com),
[Cityscapes-VPS](https://github.com/mcahny/vps), and
[Cityscapes-DVPS](https://github.com/joe-siyuan-qiao/ViP-DeepLab) datasets.
[^1]: Cordts et al., “The Cityscapes Dataset for Semantic Urban Scene Understanding” (CVPR 2016)
[^2]: Kim et al., "Video Panoptic Segmentation" (CVPR 2020)
[^3]: Qiao et al., "Learning Visual Perception with Depth-aware Video Panoptic Segmentation" (CVPR 2021) |