File size: 3,929 Bytes
2cf1268
 
 
 
 
 
 
 
acb8fec
 
 
 
 
 
 
 
2cf1268
 
dc9db9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8517b9
dc9db9f
 
 
 
a8517b9
dc9db9f
 
4849086
dc9db9f
 
4849086
 
dc9db9f
 
 
4849086
 
dc9db9f
 
 
4849086
dc9db9f
 
 
 
 
 
 
 
 
3940cc9
eddff0e
 
 
dc9db9f
3940cc9
dc9db9f
4849086
dc9db9f
 
3940cc9
dc9db9f
 
aad0211
dc9db9f
 
3940cc9
2dd98f8
 
3940cc9
2dd98f8
 
3940cc9
dc9db9f
3940cc9
dc9db9f
 
 
 
 
 
 
 
 
f289d1a
 
 
 
 
acb8fec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
pretty_name: Cityscapes VPS
tags:
- image
- datasets
- webdataset
- pandas
- unipercept
license: afl-3.0
task_categories:
- depth-estimation
- image-segmentation
- video-classification
- object-detection
size_categories:
- 10K<n<100K
---

# Cityscapes VPS

This dataset is derived from the videos in the *validation* split of the Cityscapes[^1] dataset.
It aggregates the images and metadata from Cityscapes[^1], Cityscapes-VPS[^2] and Cityscapes-DVPS[^3] into a single structured format. 
This comprehensive derivative was created out of the need for a batteries-included variant of the dataset for academic purposes.
Specifically, joining samples from the individual datasets in their original structure (each is organized differently) involves a significant amount of boilerplate code. 

This dataset is relevant to computer vision research areas such as:

- Segmentation
- Depth estimation
- Autonomous driving
- Video understanding

## Overview
The following variables are included.

1. **Images.** The input data captured by the left camera from Cityscapes[^1], in 8-bit format. Every sequence has 30 frames.
2. **Segmentation labels.** Derived from Cityscapes[^1] and Cityscapes-DVPS[^3], these labels provide detailed semantic segmentation and instance segmentation information for 6 frames of every sequence.
3. **Depth maps.** Improved depth information from Cityscapes-DVPS[^3], offering enhanced quality over the disparity package from Cityscapes[^1], provided for the same samples as the segmentation labels above.
4. **Camera calibrations.** Includes the intrinsic and extrinsic parameters provided by Cityscapes[^1] for each sequence.
5. **Vehicle odometry.** Odometry data for each frame, a subset of those provided in Cityscapes[^1].

Files are grouped by split, sequence and frame.
This leads to the following structure:
```text
data
    train
        000000
            000000.image.png
            000000.panoptic.png
            000000.depth.tiff
            000000.vehicle.json
            000000.timestamp.txt
            000001.image.png
            000001.panoptic.png
            000001.depth.tiff
            000001.vehicle.json
            000001.timestamp.txt
        000000.camera.json
        000001
            ...
        000001.camera.json
        ...
    val
        000000
            ...
        000000.camera.json
        ...
    test
        000000
            ...
        000000.camera.json

```

The `data` directory in this repository only contains the segmentation and depth map annotations.
The remaining data should be downloaded from official sources using the provided preparation script.


## Preparation

1. Clone this dataset repository.
```bash
git clone https://huggingface.co./datasets/khwstolle/csvps && cd csvps
```

2. Install the [Cityscapes developer kit](https://github.com/mcordts/cityscapesScripts) and build dependencies using `pip`.
```bash
python -m pip install -r requirements.txt
```

3. Run the preparation script provided in this repository. 
   Note that this may prompt your [Cityscapes account](https://cityscapes-dataset.com/login/) login credentials.
```bash
make prepare
```

4. To convert the `train`, `val` and `test` directories into a `tar` archive for use with [WebDataset](https://github.com/webdataset/webdataset), run the following command:

```bash
make build 
```

## Usage

See `examples.ipynb` for instructions.

## Citation

If you use this dataset in your research, please cite the original 
[Cityscapes](https://cityscapes-dataset.com), 
[Cityscapes-VPS](https://github.com/mcahny/vps), and
[Cityscapes-DVPS](https://github.com/joe-siyuan-qiao/ViP-DeepLab) datasets.



[^1]: Cordts et al., “The Cityscapes Dataset for Semantic Urban Scene Understanding” (CVPR 2016)

[^2]: Kim et al., "Video Panoptic Segmentation" (CVPR 2020)

[^3]: Qiao et al., "Learning Visual Perception with Depth-aware Video Panoptic Segmentation" (CVPR 2021)