Kurt Stolle commited on
Commit
aad0211
·
1 Parent(s): a8517b9

Updated examples and script organization

Browse files
Makefile ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: prepare webdataset parquet clean
2
+
3
+ prepare:
4
+ mkdir -p downloads
5
+ python scripts/prepare.py downloads data manifest.csv
6
+
7
+ webdataset:
8
+ mkdir -p shards
9
+ python scripts/build_webdataset.py data shards
10
+
11
+ parquet:
12
+ python scripts/build_parquet.py
13
+
14
+ clean:
15
+ rm -vr downloads
README.md CHANGED
@@ -89,13 +89,13 @@ python -m pip install cityscapesscripts
89
  Note that this may prompt your [Cityscapes account](https://cityscapes-dataset.com/login/) login credentials.
90
 
91
  ```bash
92
- python csvps.py
93
  ```
94
 
95
  3. Remove the downloaded Cityscapes archive files to save disk space (optional).
96
 
97
  ```bash
98
- rm -r downloads
99
  ```
100
 
101
  ## Usage
@@ -104,7 +104,7 @@ Due to the structure, the dataset can be easily loaded using the `webdataset` li
104
  To convert the `train`, `val` and `test` directories into a `tar` archive, run the following command:
105
 
106
  ```bash
107
- for split in train val test; do tar -cf "shards/csvps-$split-000000.tar" "data/$split" done
108
  ```
109
 
110
  Subsequently, the dataset can be loaded using the `webdataset` library:
@@ -112,7 +112,7 @@ Subsequently, the dataset can be loaded using the `webdataset` library:
112
  ```python
113
  import webdataset as wds
114
 
115
- dataset = wds.WebDataset("shards/csvps-train-{000000}.tar")
116
  ```
117
 
118
 
 
89
  Note that this may prompt your [Cityscapes account](https://cityscapes-dataset.com/login/) login credentials.
90
 
91
  ```bash
92
+ make prepare
93
  ```
94
 
95
  3. Remove the downloaded Cityscapes archive files to save disk space (optional).
96
 
97
  ```bash
98
+ make clean
99
  ```
100
 
101
  ## Usage
 
104
  To convert the `train`, `val` and `test` directories into a `tar` archive, run the following command:
105
 
106
  ```bash
107
+ make webdataset
108
  ```
109
 
110
  Subsequently, the dataset can be loaded using the `webdataset` library:
 
112
  ```python
113
  import webdataset as wds
114
 
115
+ dataset = wds.WebDataset("shards/train.tar")
116
  ```
117
 
118
 
examples.ipynb ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## WebDataset\n",
8
+ "\n",
9
+ "The dataset can be exported to a `.tar` archive and iterated with the `webdataset`\n",
10
+ "package.\n",
11
+ "\n",
12
+ "After building the WebDataset-formatted archives using `make webdataset`, the dataset can be iterated as follows."
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 23,
18
+ "metadata": {},
19
+ "outputs": [
20
+ {
21
+ "name": "stdout",
22
+ "output_type": "stream",
23
+ "text": [
24
+ "000000/000000: image.png timestamp.txt vehicle.json \n",
25
+ "000000/000001: image.png timestamp.txt vehicle.json \n",
26
+ "000000/000002: image.png timestamp.txt vehicle.json \n",
27
+ "000000/000003: image.png timestamp.txt vehicle.json \n",
28
+ "000000/000004: depth.tiff image.png panoptic.png timestamp.txt vehicle.json \n",
29
+ "000000/000005: image.png timestamp.txt vehicle.json \n",
30
+ "000000/000006: image.png timestamp.txt vehicle.json \n",
31
+ "000000/000007: image.png timestamp.txt vehicle.json \n",
32
+ "000000/000008: image.png timestamp.txt vehicle.json \n",
33
+ "000000/000009: depth.tiff image.png panoptic.png timestamp.txt vehicle.json \n",
34
+ "000000/000010: image.png timestamp.txt vehicle.json \n"
35
+ ]
36
+ }
37
+ ],
38
+ "source": [
39
+ "import webdataset as wds\n",
40
+ "\n",
41
+ "# Create iterable dataset\n",
42
+ "ds = wds.WebDataset(\"shards/csvps-val.tar\", shardshuffle=False, verbose=True)\n",
43
+ "\n",
44
+ "# Iterate over the dataset and print the keys and the first few samples\n",
45
+ "for i, sample in enumerate(ds):\n",
46
+ " if i > 10: \n",
47
+ " break\n",
48
+ " print(sample[\"__key__\"], end=\": \")\n",
49
+ " for k in sample:\n",
50
+ " if not k.startswith(\"__\"):\n",
51
+ " print(k, end=\" \")\n",
52
+ " print(flush=True)\n",
53
+ " "
54
+ ]
55
+ }
56
+ ],
57
+ "metadata": {
58
+ "kernelspec": {
59
+ "display_name": "Python 3",
60
+ "language": "python",
61
+ "name": "python3"
62
+ },
63
+ "language_info": {
64
+ "codemirror_mode": {
65
+ "name": "ipython",
66
+ "version": 3
67
+ },
68
+ "file_extension": ".py",
69
+ "mimetype": "text/x-python",
70
+ "name": "python",
71
+ "nbconvert_exporter": "python",
72
+ "pygments_lexer": "ipython3",
73
+ "version": "3.12.2"
74
+ }
75
+ },
76
+ "nbformat": 4,
77
+ "nbformat_minor": 2
78
+ }
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ cityscapesscripts
2
+ webdataset
scripts/build_parquet.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ print("Building a Parquet dataset is not (yet) implemented. Use WebDataset instead.")
2
+ exit(1)
scripts/build_webdataset.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ r"""
3
+ Builds a WebDataset from the Cityscapes Video dataset.
4
+ """
5
+
6
+ import argparse
7
+ import tarfile
8
+
9
+ from pathlib import Path
10
+ from tqdm import tqdm
11
+
12
+
13
+ def parse_args():
14
+ p = argparse.ArgumentParser(
15
+ description="Build a WebDataset from the Cityscapes Video dataset."
16
+ )
17
+ p.add_argument("--prefix", default="csvps", help="Prefix for the tar files.")
18
+ p.add_argument("data", type=Path, help="Path to the Cityscapes Video dataset.")
19
+ p.add_argument("output", type=Path, help="Path to the output directory.")
20
+
21
+ return p.parse_args()
22
+
23
+
24
+ def build_dataset(split: str, data_dir: Path, out_dir: Path, *, prefix: str = ""):
25
+ data_dir = data_dir / split
26
+ name = f"{split}.tar"
27
+ if prefix and prefix != "":
28
+ name = f"{prefix}-{name}"
29
+ tar_path = out_dir / name
30
+
31
+ if tar_path.exists():
32
+ print(f"Error: Tar archive already exists: {tar_path}")
33
+
34
+ with tarfile.open(tar_path, "w") as tar:
35
+ # Add the files to the tar archive
36
+ for file in tqdm(sorted(data_dir.glob("**/*")), desc=f"Building {tar_path}"):
37
+ tar.add(file, arcname=file.relative_to(data_dir))
38
+
39
+
40
+ def main():
41
+ args = parse_args()
42
+
43
+ # For each split, build a tar archive containing the sorted files
44
+ for split in ("train", "val", "test"):
45
+ build_dataset(split, args.data, args.output, prefix=args.prefix)
46
+
47
+
48
+ if __name__ == "__main__":
49
+ main()
csvps.py → scripts/prepare.py RENAMED
@@ -32,19 +32,16 @@ def parse_args() -> argparse.Namespace:
32
  parser.add_argument(
33
  "downloads_dir",
34
  type=Path,
35
- default=Path("downloads"),
36
  help="Path to the directory where ZIP files are/will be stored (e.g., 'downloads').",
37
  )
38
  parser.add_argument(
39
  "data_dir",
40
  type=Path,
41
- default=Path("data"),
42
  help="Path to the directory where extracted files should be moved (e.g., 'data').",
43
  )
44
  parser.add_argument(
45
  "manifest_file",
46
  type=Path,
47
- default=Path("manifest.csv"),
48
  help="Path to the manifest file (e.g., 'manifest.csv').",
49
  )
50
  return parser.parse_args()
 
32
  parser.add_argument(
33
  "downloads_dir",
34
  type=Path,
 
35
  help="Path to the directory where ZIP files are/will be stored (e.g., 'downloads').",
36
  )
37
  parser.add_argument(
38
  "data_dir",
39
  type=Path,
 
40
  help="Path to the directory where extracted files should be moved (e.g., 'data').",
41
  )
42
  parser.add_argument(
43
  "manifest_file",
44
  type=Path,
 
45
  help="Path to the manifest file (e.g., 'manifest.csv').",
46
  )
47
  return parser.parse_args()