|
--- |
|
language: |
|
- en |
|
|
|
license: apache-2.0 |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 100K<n<1M |
|
tags: |
|
- chart |
|
- plot |
|
- chart-to-text |
|
- vistext |
|
- statista |
|
- pew |
|
- chart-visual-entailment |
|
- chart-understanding |
|
- chart-captioning |
|
- chart-summarization |
|
- document-image |
|
|
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: dev |
|
path: data/dev-* |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: string |
|
- name: sentence |
|
dtype: string |
|
- name: label |
|
dtype: string |
|
- name: manipulation_type |
|
dtype: string |
|
- name: dataset |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 118229163.0 |
|
num_examples: 522531 |
|
- name: dev |
|
num_bytes: 9400046.0 |
|
num_examples: 36002 |
|
download_size: 51634467 |
|
dataset_size: 127629209.0 |
|
--- |
|
# Dataset Card for ChartVE's Training Data |
|
|
|
- [Dataset Description](https://huggingface.co./datasets/khhuang/ChartVE/blob/main/README.md#dataset-description) |
|
- [Paper Information](https://huggingface.co./datasets/khhuang/ChartVE/blob/main/README.md#paper-information) |
|
- [Citation](https://huggingface.co./datasets/khhuang/ChartVE/blob/main/README.md#citation) |
|
|
|
## Dataset Description |
|
|
|
[ChartVE](https://huggingface.co./khhuang/chartve) (Chart Visual Entailment) is a visual entailment model introduced in the paper "Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning" for evaluating the factuality of a generated caption sentence with regard to the input chart. The model takes in a chart figure and a caption sentence as input, and outputs an entailment probability. This repository hosts the training and validation data for ChartVE. |
|
|
|
### Fields |
|
|
|
Below, we illustrate the fields in each instance. |
|
|
|
- `image`: The path to chart image. Images can be found in [image.zip](https://huggingface.co./datasets/khhuang/chartve_dataset/blob/main/images.zip). |
|
- `sentence`: The sentence used as the _hypothesis_. |
|
- `label`: An indicator about whether the chart entails the given `sentence`. |
|
- `manipulation_type`: The type of perturbation that alters the original sentence (this is only applicable for non-entailment instances). |
|
- `dataset`: The source dataset of the chart `image`. |
|
|
|
|
|
|
|
## Paper Information |
|
|
|
- Paper: https://arxiv.org/abs/2312.10160 |
|
- Code: https://github.com/khuangaf/CHOCOLATE/ |
|
- Project: https://khuangaf.github.io/CHOCOLATE |
|
|
|
|
|
## Citation |
|
|
|
If you use the **ChartVE** dataset/model in your work, please kindly cite the paper using this BibTeX: |
|
|
|
``` |
|
@misc{huang-etal-2023-do, |
|
title = "Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning", |
|
author = "Huang, Kung-Hsiang and |
|
Zhou, Mingyang and |
|
Chan, Hou Pong and |
|
Fung, Yi R. and |
|
Wang, Zhenhailong and |
|
Zhang, Lingyu and |
|
Chang, Shih-Fu and |
|
Ji, Heng", |
|
year={2023}, |
|
eprint={2312.10160}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |