kadirnar commited on
Commit
83792a6
·
1 Parent(s): b89b677

Delete deepcache_stable_diffusion.py

Browse files
Files changed (1) hide show
  1. deepcache_stable_diffusion.py +0 -1133
deepcache_stable_diffusion.py DELETED
@@ -1,1133 +0,0 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import time
15
- import inspect
16
- from typing import Any, Callable, Dict, List, Optional, Union
17
-
18
- import torch
19
- import numpy as np
20
- from packaging import version
21
- from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
22
-
23
- from diffusers.configuration_utils import FrozenDict
24
- from diffusers.image_processor import VaeImageProcessor, PipelineImageInput
25
- from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
26
- from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
27
-
28
- from diffusers.models import AutoencoderKL
29
- from diffusers.models.attention_processor import FusedAttnProcessor2_0
30
- from diffusers.models.lora import adjust_lora_scale_text_encoder
31
- from diffusers.schedulers import KarrasDiffusionSchedulers
32
- from diffusers.utils import (
33
- USE_PEFT_BACKEND,
34
- deprecate,
35
- logging,
36
- replace_example_docstring,
37
- scale_lora_layers,
38
- unscale_lora_layers,
39
- )
40
- from diffusers.utils.torch_utils import randn_tensor
41
-
42
- from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
43
- from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
44
-
45
- from .unet_2d_condition import UNet2DConditionModel, ImageProjection
46
- from .pipeline_utils import DiffusionPipeline
47
-
48
-
49
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
50
-
51
- EXAMPLE_DOC_STRING = """
52
- Examples:
53
- ```py
54
- >>> import torch
55
- >>> from diffusers import StableDiffusionPipeline
56
-
57
- >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
58
- >>> pipe = pipe.to("cuda")
59
-
60
- >>> prompt = "a photo of an astronaut riding a horse on mars"
61
- >>> image = pipe(prompt).images[0]
62
- ```
63
- """
64
-
65
- def sample_gaussian_centered(n=1000, sample_size=100, std_dev=100):
66
- samples = []
67
-
68
- while len(samples) < sample_size:
69
- # Sample from a Gaussian centered at n/2
70
- sample = int(np.random.normal(loc=n/2, scale=std_dev))
71
-
72
- # Check if the sample is in bounds
73
- if 1 <= sample < n and sample not in samples:
74
- samples.append(sample)
75
-
76
- return samples
77
-
78
- def sample_from_quad(total_numbers, n_samples, pow=1.2):
79
- while pow > 1:
80
- # Generate linearly spaced values between 0 and a max value
81
- x_values = np.linspace(0, total_numbers**(1/pow), n_samples+1)
82
-
83
- # Raise these values to the power of 1.5 to get a non-linear distribution
84
- indices = np.unique(np.int32(x_values**pow))[:-1]
85
- if len(indices) == n_samples:
86
- break
87
- pow -=0.02
88
- if pow <= 1:
89
- raise ValueError("Cannot find suitable pow. Please adjust n_samples or decrease center.")
90
- return indices, pow
91
-
92
- def sample_from_quad_center(total_numbers, n_samples, center, pow=1.2):
93
- while pow > 1:
94
- # Generate linearly spaced values between 0 and a max value
95
- x_values = np.linspace((-center)**(1/pow), (total_numbers-center)**(1/pow), n_samples+1)
96
- indices = [0] + [x+center for x in np.unique(np.int32(x_values**pow))[1:-1]]
97
- if len(indices) == n_samples:
98
- break
99
- pow -=0.02
100
- if pow <= 1:
101
- raise ValueError("Cannot find suitable pow. Please adjust n_samples or decrease center.")
102
- return indices, pow
103
-
104
- def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
105
- """
106
- Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
107
- Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
108
- """
109
- std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
110
- std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
111
- # rescale the results from guidance (fixes overexposure)
112
- noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
113
- # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
114
- noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
115
- return noise_cfg
116
-
117
-
118
- def retrieve_timesteps(
119
- scheduler,
120
- num_inference_steps: Optional[int] = None,
121
- device: Optional[Union[str, torch.device]] = None,
122
- timesteps: Optional[List[int]] = None,
123
- **kwargs,
124
- ):
125
- """
126
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
127
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
128
-
129
- Args:
130
- scheduler (`SchedulerMixin`):
131
- The scheduler to get timesteps from.
132
- num_inference_steps (`int`):
133
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
134
- `timesteps` must be `None`.
135
- device (`str` or `torch.device`, *optional*):
136
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
137
- timesteps (`List[int]`, *optional*):
138
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
139
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
140
- must be `None`.
141
-
142
- Returns:
143
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
144
- second element is the number of inference steps.
145
- """
146
- if timesteps is not None:
147
- accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
148
- if not accepts_timesteps:
149
- raise ValueError(
150
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
151
- f" timestep schedules. Please check whether you are using the correct scheduler."
152
- )
153
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
154
- timesteps = scheduler.timesteps
155
- num_inference_steps = len(timesteps)
156
- else:
157
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
158
- timesteps = scheduler.timesteps
159
- return timesteps, num_inference_steps
160
-
161
- class StableDiffusionPipeline(
162
- DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
163
- ):
164
- r"""
165
- Pipeline for text-to-image generation using Stable Diffusion.
166
-
167
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
168
- implemented for all pipelines (downloading, saving, running on a particular device, etc.).
169
-
170
- The pipeline also inherits the following loading methods:
171
- - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
172
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
173
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
174
- - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
175
- - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
176
-
177
- Args:
178
- vae ([`AutoencoderKL`]):
179
- Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
180
- text_encoder ([`~transformers.CLIPTextModel`]):
181
- Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
182
- tokenizer ([`~transformers.CLIPTokenizer`]):
183
- A `CLIPTokenizer` to tokenize text.
184
- unet ([`UNet2DConditionModel`]):
185
- A `UNet2DConditionModel` to denoise the encoded image latents.
186
- scheduler ([`SchedulerMixin`]):
187
- A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
188
- [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
189
- safety_checker ([`StableDiffusionSafetyChecker`]):
190
- Classification module that estimates whether generated images could be considered offensive or harmful.
191
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
192
- about a model's potential harms.
193
- feature_extractor ([`~transformers.CLIPImageProcessor`]):
194
- A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
195
- """
196
-
197
- model_cpu_offload_seq = "text_encoder->unet->vae"
198
- _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
199
- _exclude_from_cpu_offload = ["safety_checker"]
200
- _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
201
-
202
- def __init__(
203
- self,
204
- vae: AutoencoderKL,
205
- text_encoder: CLIPTextModel,
206
- tokenizer: CLIPTokenizer,
207
- unet: UNet2DConditionModel,
208
- scheduler: KarrasDiffusionSchedulers,
209
- safety_checker: StableDiffusionSafetyChecker,
210
- feature_extractor: CLIPImageProcessor,
211
- image_encoder: CLIPVisionModelWithProjection = None,
212
- requires_safety_checker: bool = True,
213
- ):
214
- super().__init__()
215
-
216
- if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
217
- deprecation_message = (
218
- f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
219
- f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
220
- "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
221
- " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
222
- " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
223
- " file"
224
- )
225
- deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
226
- new_config = dict(scheduler.config)
227
- new_config["steps_offset"] = 1
228
- scheduler._internal_dict = FrozenDict(new_config)
229
-
230
- if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
231
- deprecation_message = (
232
- f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
233
- " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
234
- " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
235
- " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
236
- " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
237
- )
238
- deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
239
- new_config = dict(scheduler.config)
240
- new_config["clip_sample"] = False
241
- scheduler._internal_dict = FrozenDict(new_config)
242
-
243
- if safety_checker is None and requires_safety_checker:
244
- logger.warning(
245
- f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
246
- " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
247
- " results in services or applications open to the public. Both the diffusers team and Hugging Face"
248
- " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
249
- " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
250
- " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
251
- )
252
-
253
- if safety_checker is not None and feature_extractor is None:
254
- raise ValueError(
255
- "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
256
- " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
257
- )
258
-
259
- is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
260
- version.parse(unet.config._diffusers_version).base_version
261
- ) < version.parse("0.9.0.dev0")
262
- is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
263
- if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
264
- deprecation_message = (
265
- "The configuration file of the unet has set the default `sample_size` to smaller than"
266
- " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
267
- " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
268
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
269
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
270
- " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
271
- " in the config might lead to incorrect results in future versions. If you have downloaded this"
272
- " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
273
- " the `unet/config.json` file"
274
- )
275
- deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
276
- new_config = dict(unet.config)
277
- new_config["sample_size"] = 64
278
- unet._internal_dict = FrozenDict(new_config)
279
-
280
- self.register_modules(
281
- vae=vae,
282
- text_encoder=text_encoder,
283
- tokenizer=tokenizer,
284
- unet=unet,
285
- scheduler=scheduler,
286
- safety_checker=safety_checker,
287
- feature_extractor=feature_extractor,
288
- image_encoder=image_encoder,
289
- )
290
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
291
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
292
- self.register_to_config(requires_safety_checker=requires_safety_checker)
293
-
294
- def enable_vae_slicing(self):
295
- r"""
296
- Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
297
- compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
298
- """
299
- self.vae.enable_slicing()
300
-
301
- def disable_vae_slicing(self):
302
- r"""
303
- Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
304
- computing decoding in one step.
305
- """
306
- self.vae.disable_slicing()
307
-
308
- def enable_vae_tiling(self):
309
- r"""
310
- Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
311
- compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
312
- processing larger images.
313
- """
314
- self.vae.enable_tiling()
315
-
316
- def disable_vae_tiling(self):
317
- r"""
318
- Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
319
- computing decoding in one step.
320
- """
321
- self.vae.disable_tiling()
322
-
323
- def _encode_prompt(
324
- self,
325
- prompt,
326
- device,
327
- num_images_per_prompt,
328
- do_classifier_free_guidance,
329
- negative_prompt=None,
330
- prompt_embeds: Optional[torch.FloatTensor] = None,
331
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
332
- lora_scale: Optional[float] = None,
333
- **kwargs,
334
- ):
335
- deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
336
- deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
337
-
338
- prompt_embeds_tuple = self.encode_prompt(
339
- prompt=prompt,
340
- device=device,
341
- num_images_per_prompt=num_images_per_prompt,
342
- do_classifier_free_guidance=do_classifier_free_guidance,
343
- negative_prompt=negative_prompt,
344
- prompt_embeds=prompt_embeds,
345
- negative_prompt_embeds=negative_prompt_embeds,
346
- lora_scale=lora_scale,
347
- **kwargs,
348
- )
349
-
350
- # concatenate for backwards comp
351
- prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
352
-
353
- return prompt_embeds
354
-
355
- def encode_prompt(
356
- self,
357
- prompt,
358
- device,
359
- num_images_per_prompt,
360
- do_classifier_free_guidance,
361
- negative_prompt=None,
362
- prompt_embeds: Optional[torch.FloatTensor] = None,
363
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
364
- lora_scale: Optional[float] = None,
365
- clip_skip: Optional[int] = None,
366
- ):
367
- r"""
368
- Encodes the prompt into text encoder hidden states.
369
-
370
- Args:
371
- prompt (`str` or `List[str]`, *optional*):
372
- prompt to be encoded
373
- device: (`torch.device`):
374
- torch device
375
- num_images_per_prompt (`int`):
376
- number of images that should be generated per prompt
377
- do_classifier_free_guidance (`bool`):
378
- whether to use classifier free guidance or not
379
- negative_prompt (`str` or `List[str]`, *optional*):
380
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
381
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
382
- less than `1`).
383
- prompt_embeds (`torch.FloatTensor`, *optional*):
384
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
385
- provided, text embeddings will be generated from `prompt` input argument.
386
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
387
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
388
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
389
- argument.
390
- lora_scale (`float`, *optional*):
391
- A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
392
- clip_skip (`int`, *optional*):
393
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
394
- the output of the pre-final layer will be used for computing the prompt embeddings.
395
- """
396
- # set lora scale so that monkey patched LoRA
397
- # function of text encoder can correctly access it
398
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
399
- self._lora_scale = lora_scale
400
-
401
- # dynamically adjust the LoRA scale
402
- if not USE_PEFT_BACKEND:
403
- adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
404
- else:
405
- scale_lora_layers(self.text_encoder, lora_scale)
406
-
407
- if prompt is not None and isinstance(prompt, str):
408
- batch_size = 1
409
- elif prompt is not None and isinstance(prompt, list):
410
- batch_size = len(prompt)
411
- else:
412
- batch_size = prompt_embeds.shape[0]
413
-
414
- if prompt_embeds is None:
415
- # textual inversion: procecss multi-vector tokens if necessary
416
- if isinstance(self, TextualInversionLoaderMixin):
417
- prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
418
-
419
- text_inputs = self.tokenizer(
420
- prompt,
421
- padding="max_length",
422
- max_length=self.tokenizer.model_max_length,
423
- truncation=True,
424
- return_tensors="pt",
425
- )
426
- text_input_ids = text_inputs.input_ids
427
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
428
-
429
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
430
- text_input_ids, untruncated_ids
431
- ):
432
- removed_text = self.tokenizer.batch_decode(
433
- untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
434
- )
435
- logger.warning(
436
- "The following part of your input was truncated because CLIP can only handle sequences up to"
437
- f" {self.tokenizer.model_max_length} tokens: {removed_text}"
438
- )
439
-
440
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
441
- attention_mask = text_inputs.attention_mask.to(device)
442
- else:
443
- attention_mask = None
444
-
445
- if clip_skip is None:
446
- prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
447
- prompt_embeds = prompt_embeds[0]
448
- else:
449
- prompt_embeds = self.text_encoder(
450
- text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
451
- )
452
- # Access the `hidden_states` first, that contains a tuple of
453
- # all the hidden states from the encoder layers. Then index into
454
- # the tuple to access the hidden states from the desired layer.
455
- prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
456
- # We also need to apply the final LayerNorm here to not mess with the
457
- # representations. The `last_hidden_states` that we typically use for
458
- # obtaining the final prompt representations passes through the LayerNorm
459
- # layer.
460
- prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
461
-
462
- if self.text_encoder is not None:
463
- prompt_embeds_dtype = self.text_encoder.dtype
464
- elif self.unet is not None:
465
- prompt_embeds_dtype = self.unet.dtype
466
- else:
467
- prompt_embeds_dtype = prompt_embeds.dtype
468
-
469
- prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
470
-
471
- bs_embed, seq_len, _ = prompt_embeds.shape
472
- # duplicate text embeddings for each generation per prompt, using mps friendly method
473
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
474
- prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
475
-
476
- # get unconditional embeddings for classifier free guidance
477
- if do_classifier_free_guidance and negative_prompt_embeds is None:
478
- uncond_tokens: List[str]
479
- if negative_prompt is None:
480
- uncond_tokens = [""] * batch_size
481
- elif prompt is not None and type(prompt) is not type(negative_prompt):
482
- raise TypeError(
483
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
484
- f" {type(prompt)}."
485
- )
486
- elif isinstance(negative_prompt, str):
487
- uncond_tokens = [negative_prompt]
488
- elif batch_size != len(negative_prompt):
489
- raise ValueError(
490
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
491
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
492
- " the batch size of `prompt`."
493
- )
494
- else:
495
- uncond_tokens = negative_prompt
496
-
497
- # textual inversion: procecss multi-vector tokens if necessary
498
- if isinstance(self, TextualInversionLoaderMixin):
499
- uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
500
-
501
- max_length = prompt_embeds.shape[1]
502
- uncond_input = self.tokenizer(
503
- uncond_tokens,
504
- padding="max_length",
505
- max_length=max_length,
506
- truncation=True,
507
- return_tensors="pt",
508
- )
509
-
510
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
511
- attention_mask = uncond_input.attention_mask.to(device)
512
- else:
513
- attention_mask = None
514
-
515
- negative_prompt_embeds = self.text_encoder(
516
- uncond_input.input_ids.to(device),
517
- attention_mask=attention_mask,
518
- )
519
- negative_prompt_embeds = negative_prompt_embeds[0]
520
-
521
- if do_classifier_free_guidance:
522
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
523
- seq_len = negative_prompt_embeds.shape[1]
524
-
525
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
526
-
527
- negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
528
- negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
529
-
530
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
531
- # Retrieve the original scale by scaling back the LoRA layers
532
- unscale_lora_layers(self.text_encoder, lora_scale)
533
-
534
- return prompt_embeds, negative_prompt_embeds
535
-
536
- def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
537
- dtype = next(self.image_encoder.parameters()).dtype
538
-
539
- if not isinstance(image, torch.Tensor):
540
- image = self.feature_extractor(image, return_tensors="pt").pixel_values
541
-
542
- image = image.to(device=device, dtype=dtype)
543
- if output_hidden_states:
544
- image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
545
- image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
546
- uncond_image_enc_hidden_states = self.image_encoder(
547
- torch.zeros_like(image), output_hidden_states=True
548
- ).hidden_states[-2]
549
- uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
550
- num_images_per_prompt, dim=0
551
- )
552
- return image_enc_hidden_states, uncond_image_enc_hidden_states
553
- else:
554
- image_embeds = self.image_encoder(image).image_embeds
555
- image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
556
- uncond_image_embeds = torch.zeros_like(image_embeds)
557
-
558
- return image_embeds, uncond_image_embeds
559
-
560
- def run_safety_checker(self, image, device, dtype):
561
- if self.safety_checker is None:
562
- has_nsfw_concept = None
563
- else:
564
- if torch.is_tensor(image):
565
- feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
566
- else:
567
- feature_extractor_input = self.image_processor.numpy_to_pil(image)
568
- safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
569
- image, has_nsfw_concept = self.safety_checker(
570
- images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
571
- )
572
- return image, has_nsfw_concept
573
-
574
- def decode_latents(self, latents):
575
- deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
576
- deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
577
-
578
- latents = 1 / self.vae.config.scaling_factor * latents
579
- image = self.vae.decode(latents, return_dict=False)[0]
580
- image = (image / 2 + 0.5).clamp(0, 1)
581
- # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
582
- image = image.cpu().permute(0, 2, 3, 1).float().numpy()
583
- return image
584
-
585
- def prepare_extra_step_kwargs(self, generator, eta):
586
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
587
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
588
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
589
- # and should be between [0, 1]
590
-
591
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
592
- extra_step_kwargs = {}
593
- if accepts_eta:
594
- extra_step_kwargs["eta"] = eta
595
-
596
- # check if the scheduler accepts generator
597
- accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
598
- if accepts_generator:
599
- extra_step_kwargs["generator"] = generator
600
- return extra_step_kwargs
601
-
602
- def check_inputs(
603
- self,
604
- prompt,
605
- height,
606
- width,
607
- callback_steps,
608
- negative_prompt=None,
609
- prompt_embeds=None,
610
- negative_prompt_embeds=None,
611
- callback_on_step_end_tensor_inputs=None,
612
- ):
613
- if height % 8 != 0 or width % 8 != 0:
614
- raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
615
-
616
- if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
617
- raise ValueError(
618
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
619
- f" {type(callback_steps)}."
620
- )
621
- if callback_on_step_end_tensor_inputs is not None and not all(
622
- k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
623
- ):
624
- raise ValueError(
625
- f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
626
- )
627
-
628
- if prompt is not None and prompt_embeds is not None:
629
- raise ValueError(
630
- f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
631
- " only forward one of the two."
632
- )
633
- elif prompt is None and prompt_embeds is None:
634
- raise ValueError(
635
- "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
636
- )
637
- elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
638
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
639
-
640
- if negative_prompt is not None and negative_prompt_embeds is not None:
641
- raise ValueError(
642
- f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
643
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
644
- )
645
-
646
- if prompt_embeds is not None and negative_prompt_embeds is not None:
647
- if prompt_embeds.shape != negative_prompt_embeds.shape:
648
- raise ValueError(
649
- "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
650
- f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
651
- f" {negative_prompt_embeds.shape}."
652
- )
653
-
654
- def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
655
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
656
- if isinstance(generator, list) and len(generator) != batch_size:
657
- raise ValueError(
658
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
659
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
660
- )
661
-
662
- if latents is None:
663
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
664
- else:
665
- latents = latents.to(device)
666
-
667
- # scale the initial noise by the standard deviation required by the scheduler
668
- latents = latents * self.scheduler.init_noise_sigma
669
- return latents
670
-
671
- def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
672
- r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
673
-
674
- The suffixes after the scaling factors represent the stages where they are being applied.
675
-
676
- Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
677
- that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
678
-
679
- Args:
680
- s1 (`float`):
681
- Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
682
- mitigate "oversmoothing effect" in the enhanced denoising process.
683
- s2 (`float`):
684
- Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
685
- mitigate "oversmoothing effect" in the enhanced denoising process.
686
- b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
687
- b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
688
- """
689
- if not hasattr(self, "unet"):
690
- raise ValueError("The pipeline must have `unet` for using FreeU.")
691
- self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
692
-
693
- def disable_freeu(self):
694
- """Disables the FreeU mechanism if enabled."""
695
- self.unet.disable_freeu()
696
-
697
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
698
- def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
699
- """
700
- Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
701
- key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
702
-
703
- <Tip warning={true}>
704
-
705
- This API is 🧪 experimental.
706
-
707
- </Tip>
708
-
709
- Args:
710
- unet (`bool`, defaults to `True`): To apply fusion on the UNet.
711
- vae (`bool`, defaults to `True`): To apply fusion on the VAE.
712
- """
713
- self.fusing_unet = False
714
- self.fusing_vae = False
715
-
716
- if unet:
717
- self.fusing_unet = True
718
- self.unet.fuse_qkv_projections()
719
- self.unet.set_attn_processor(FusedAttnProcessor2_0())
720
-
721
- if vae:
722
- if not isinstance(self.vae, AutoencoderKL):
723
- raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
724
-
725
- self.fusing_vae = True
726
- self.vae.fuse_qkv_projections()
727
- self.vae.set_attn_processor(FusedAttnProcessor2_0())
728
-
729
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
730
- def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
731
- """Disable QKV projection fusion if enabled.
732
-
733
- <Tip warning={true}>
734
-
735
- This API is 🧪 experimental.
736
-
737
- </Tip>
738
-
739
- Args:
740
- unet (`bool`, defaults to `True`): To apply fusion on the UNet.
741
- vae (`bool`, defaults to `True`): To apply fusion on the VAE.
742
-
743
- """
744
- if unet:
745
- if not self.fusing_unet:
746
- logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
747
- else:
748
- self.unet.unfuse_qkv_projections()
749
- self.fusing_unet = False
750
-
751
- if vae:
752
- if not self.fusing_vae:
753
- logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
754
- else:
755
- self.vae.unfuse_qkv_projections()
756
- self.fusing_vae = False
757
-
758
- # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
759
- def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
760
- """
761
- See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
762
-
763
- Args:
764
- timesteps (`torch.Tensor`):
765
- generate embedding vectors at these timesteps
766
- embedding_dim (`int`, *optional*, defaults to 512):
767
- dimension of the embeddings to generate
768
- dtype:
769
- data type of the generated embeddings
770
-
771
- Returns:
772
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
773
- """
774
- assert len(w.shape) == 1
775
- w = w * 1000.0
776
-
777
- half_dim = embedding_dim // 2
778
- emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
779
- emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
780
- emb = w.to(dtype)[:, None] * emb[None, :]
781
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
782
- if embedding_dim % 2 == 1: # zero pad
783
- emb = torch.nn.functional.pad(emb, (0, 1))
784
- assert emb.shape == (w.shape[0], embedding_dim)
785
- return emb
786
-
787
- @property
788
- def guidance_scale(self):
789
- return self._guidance_scale
790
-
791
- @property
792
- def guidance_rescale(self):
793
- return self._guidance_rescale
794
-
795
- @property
796
- def clip_skip(self):
797
- return self._clip_skip
798
-
799
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
800
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
801
- # corresponds to doing no classifier free guidance.
802
- @property
803
- def do_classifier_free_guidance(self):
804
- return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
805
-
806
- @property
807
- def cross_attention_kwargs(self):
808
- return self._cross_attention_kwargs
809
-
810
- @property
811
- def num_timesteps(self):
812
- return self._num_timesteps
813
-
814
- @torch.no_grad()
815
- @replace_example_docstring(EXAMPLE_DOC_STRING)
816
- def __call__(
817
- self,
818
- prompt: Union[str, List[str]] = None,
819
- height: Optional[int] = None,
820
- width: Optional[int] = None,
821
- num_inference_steps: int = 50,
822
- timesteps: List[int] = None,
823
- guidance_scale: float = 7.5,
824
- negative_prompt: Optional[Union[str, List[str]]] = None,
825
- num_images_per_prompt: Optional[int] = 1,
826
- eta: float = 0.0,
827
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
828
- latents: Optional[torch.FloatTensor] = None,
829
- prompt_embeds: Optional[torch.FloatTensor] = None,
830
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
831
- ip_adapter_image: Optional[PipelineImageInput] = None,
832
- output_type: Optional[str] = "pil",
833
- return_dict: bool = True,
834
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
835
- guidance_rescale: float = 0.0,
836
- clip_skip: Optional[int] = None,
837
- cache_interval: int = 1,
838
- cache_layer_id: int = None,
839
- cache_block_id: int = None,
840
- uniform: bool = True,
841
- pow: float = None,
842
- center: int = None,
843
- output_all_sequence: bool = False,
844
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
845
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
846
- **kwargs,
847
- ):
848
- r"""
849
- The call function to the pipeline for generation.
850
-
851
- Args:
852
- prompt (`str` or `List[str]`, *optional*):
853
- The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
854
- height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
855
- The height in pixels of the generated image.
856
- width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
857
- The width in pixels of the generated image.
858
- num_inference_steps (`int`, *optional*, defaults to 50):
859
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
860
- expense of slower inference.
861
- timesteps (`List[int]`, *optional*):
862
- Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
863
- in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
864
- passed will be used. Must be in descending order.
865
- guidance_scale (`float`, *optional*, defaults to 7.5):
866
- A higher guidance scale value encourages the model to generate images closely linked to the text
867
- `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
868
- negative_prompt (`str` or `List[str]`, *optional*):
869
- The prompt or prompts to guide what to not include in image generation. If not defined, you need to
870
- pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
871
- num_images_per_prompt (`int`, *optional*, defaults to 1):
872
- The number of images to generate per prompt.
873
- eta (`float`, *optional*, defaults to 0.0):
874
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
875
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
876
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
877
- A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
878
- generation deterministic.
879
- latents (`torch.FloatTensor`, *optional*):
880
- Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
881
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
882
- tensor is generated by sampling using the supplied random `generator`.
883
- prompt_embeds (`torch.FloatTensor`, *optional*):
884
- Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
885
- provided, text embeddings are generated from the `prompt` input argument.
886
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
887
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
888
- not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
889
- ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
890
- output_type (`str`, *optional*, defaults to `"pil"`):
891
- The output format of the generated image. Choose between `PIL.Image` or `np.array`.
892
- return_dict (`bool`, *optional*, defaults to `True`):
893
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
894
- plain tuple.
895
- cross_attention_kwargs (`dict`, *optional*):
896
- A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
897
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
898
- guidance_rescale (`float`, *optional*, defaults to 0.0):
899
- Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
900
- Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
901
- using zero terminal SNR.
902
- clip_skip (`int`, *optional*):
903
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
904
- the output of the pre-final layer will be used for computing the prompt embeddings.
905
- callback_on_step_end (`Callable`, *optional*):
906
- A function that calls at the end of each denoising steps during the inference. The function is called
907
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
908
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
909
- `callback_on_step_end_tensor_inputs`.
910
- callback_on_step_end_tensor_inputs (`List`, *optional*):
911
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
912
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
913
- `._callback_tensor_inputs` attribute of your pipeline class.
914
-
915
- Examples:
916
-
917
- Returns:
918
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
919
- If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
920
- otherwise a `tuple` is returned where the first element is a list with the generated images and the
921
- second element is a list of `bool`s indicating whether the corresponding generated image contains
922
- "not-safe-for-work" (nsfw) content.
923
- """
924
-
925
- callback = kwargs.pop("callback", None)
926
- callback_steps = kwargs.pop("callback_steps", None)
927
-
928
- if callback is not None:
929
- deprecate(
930
- "callback",
931
- "1.0.0",
932
- "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
933
- )
934
- if callback_steps is not None:
935
- deprecate(
936
- "callback_steps",
937
- "1.0.0",
938
- "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
939
- )
940
-
941
- # 0. Default height and width to unet
942
- height = height or self.unet.config.sample_size * self.vae_scale_factor
943
- width = width or self.unet.config.sample_size * self.vae_scale_factor
944
- # to deal with lora scaling and other possible forward hooks
945
-
946
- # 1. Check inputs. Raise error if not correct
947
- self.check_inputs(
948
- prompt,
949
- height,
950
- width,
951
- callback_steps,
952
- negative_prompt,
953
- prompt_embeds,
954
- negative_prompt_embeds,
955
- callback_on_step_end_tensor_inputs,
956
- )
957
-
958
- self._guidance_scale = guidance_scale
959
- self._guidance_rescale = guidance_rescale
960
- self._clip_skip = clip_skip
961
- self._cross_attention_kwargs = cross_attention_kwargs
962
-
963
- # 2. Define call parameters
964
- if prompt is not None and isinstance(prompt, str):
965
- batch_size = 1
966
- elif prompt is not None and isinstance(prompt, list):
967
- batch_size = len(prompt)
968
- else:
969
- batch_size = prompt_embeds.shape[0]
970
-
971
- device = self._execution_device
972
-
973
- # 3. Encode input prompt
974
- lora_scale = (
975
- self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
976
- )
977
-
978
- prompt_embeds, negative_prompt_embeds = self.encode_prompt(
979
- prompt,
980
- device,
981
- num_images_per_prompt,
982
- self.do_classifier_free_guidance,
983
- negative_prompt,
984
- prompt_embeds=prompt_embeds,
985
- negative_prompt_embeds=negative_prompt_embeds,
986
- lora_scale=lora_scale,
987
- clip_skip=self.clip_skip,
988
- )
989
-
990
- # For classifier free guidance, we need to do two forward passes.
991
- # Here we concatenate the unconditional and text embeddings into a single batch
992
- # to avoid doing two forward passes
993
- if self.do_classifier_free_guidance:
994
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
995
-
996
- if ip_adapter_image is not None:
997
- output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
998
- image_embeds, negative_image_embeds = self.encode_image(
999
- ip_adapter_image, device, num_images_per_prompt, output_hidden_state
1000
- )
1001
- if self.do_classifier_free_guidance:
1002
- image_embeds = torch.cat([negative_image_embeds, image_embeds])
1003
-
1004
- # 4. Prepare timesteps
1005
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1006
-
1007
- # 5. Prepare latent variables
1008
- num_channels_latents = self.unet.config.in_channels
1009
- latents = self.prepare_latents(
1010
- batch_size * num_images_per_prompt,
1011
- num_channels_latents,
1012
- height,
1013
- width,
1014
- prompt_embeds.dtype,
1015
- device,
1016
- generator,
1017
- latents,
1018
- )
1019
-
1020
- # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1021
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1022
-
1023
- # 6.1 Add image embeds for IP-Adapter
1024
- added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
1025
-
1026
- # 6.2 Optionally get Guidance Scale Embedding
1027
- timestep_cond = None
1028
- if self.unet.config.time_cond_proj_dim is not None:
1029
- guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1030
- timestep_cond = self.get_guidance_scale_embedding(
1031
- guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1032
- ).to(device=device, dtype=latents.dtype)
1033
-
1034
- # 7. Denoising loop
1035
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1036
- self._num_timesteps = len(timesteps)
1037
-
1038
- prv_features = None
1039
- latents_list = [latents]
1040
-
1041
- if cache_interval == 1:
1042
- interval_seq = list(range(num_inference_steps))
1043
- else:
1044
- if uniform:
1045
- interval_seq = list(range(0, num_inference_steps, cache_interval))
1046
- else:
1047
- num_slow_step = num_inference_steps//cache_interval
1048
- if num_inference_steps%cache_interval != 0:
1049
- num_slow_step += 1
1050
-
1051
- interval_seq, pow = sample_from_quad_center(num_inference_steps, num_slow_step, center=center, pow=pow)#[0, 3, 6, 9, 12, 16, 22, 28, 35, 43,]
1052
-
1053
- interval_seq = sorted(interval_seq)
1054
-
1055
- with self.progress_bar(total=num_inference_steps) as progress_bar:
1056
- for i, t in enumerate(timesteps):
1057
- # expand the latents if we are doing classifier free guidance
1058
- latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1059
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1060
-
1061
- if i in interval_seq:
1062
- prv_features = None
1063
-
1064
- # predict the noise residual
1065
- noise_pred, prv_features = self.unet(
1066
- latent_model_input,
1067
- t,
1068
- encoder_hidden_states=prompt_embeds,
1069
- timestep_cond=timestep_cond,
1070
- cross_attention_kwargs=self.cross_attention_kwargs,
1071
- added_cond_kwargs=added_cond_kwargs,
1072
- replicate_prv_feature=prv_features,
1073
- quick_replicate= cache_interval>1,
1074
- cache_layer_id=cache_layer_id,
1075
- cache_block_id=cache_block_id,
1076
-
1077
- return_dict=False,
1078
- )
1079
-
1080
- # perform guidance
1081
- if self.do_classifier_free_guidance:
1082
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1083
- noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1084
-
1085
- if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
1086
- # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1087
- noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
1088
-
1089
- # compute the previous noisy sample x_t -> x_t-1
1090
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1091
- latents_list.append(latents)
1092
-
1093
- if callback_on_step_end is not None:
1094
- callback_kwargs = {}
1095
- for k in callback_on_step_end_tensor_inputs:
1096
- callback_kwargs[k] = locals()[k]
1097
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1098
-
1099
- latents = callback_outputs.pop("latents", latents)
1100
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1101
- negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1102
-
1103
- # call the callback, if provided
1104
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1105
- progress_bar.update()
1106
- if callback is not None and i % callback_steps == 0:
1107
- step_idx = i // getattr(self.scheduler, "order", 1)
1108
- callback(step_idx, t, latents)
1109
-
1110
- if not output_type == "latent":
1111
- image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
1112
- 0
1113
- ]
1114
- image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
1115
- else:
1116
- image = latents
1117
- has_nsfw_concept = None
1118
-
1119
- if has_nsfw_concept is None:
1120
- do_denormalize = [True] * image.shape[0]
1121
- else:
1122
- do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
1123
-
1124
- image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1125
-
1126
- # Offload all models
1127
- self.maybe_free_model_hooks()
1128
-
1129
- if not return_dict:
1130
- return (image, has_nsfw_concept)
1131
-
1132
- return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
1133
-