Upload 4 files
Browse files- deepcache_stable_diffusion.py +1133 -0
- pipeline_utils.py +1837 -0
- unet_2d_blocks.py +0 -0
- unet_2d_condition.py +1152 -0
deepcache_stable_diffusion.py
ADDED
@@ -0,0 +1,1133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import time
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import numpy as np
|
20 |
+
from packaging import version
|
21 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
22 |
+
|
23 |
+
from diffusers.configuration_utils import FrozenDict
|
24 |
+
from diffusers.image_processor import VaeImageProcessor, PipelineImageInput
|
25 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
26 |
+
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
27 |
+
|
28 |
+
from diffusers.models import AutoencoderKL
|
29 |
+
from diffusers.models.attention_processor import FusedAttnProcessor2_0
|
30 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
31 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
32 |
+
from diffusers.utils import (
|
33 |
+
USE_PEFT_BACKEND,
|
34 |
+
deprecate,
|
35 |
+
logging,
|
36 |
+
replace_example_docstring,
|
37 |
+
scale_lora_layers,
|
38 |
+
unscale_lora_layers,
|
39 |
+
)
|
40 |
+
from diffusers.utils.torch_utils import randn_tensor
|
41 |
+
|
42 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
43 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
44 |
+
|
45 |
+
from .unet_2d_condition import UNet2DConditionModel, ImageProjection
|
46 |
+
from .pipeline_utils import DiffusionPipeline
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
50 |
+
|
51 |
+
EXAMPLE_DOC_STRING = """
|
52 |
+
Examples:
|
53 |
+
```py
|
54 |
+
>>> import torch
|
55 |
+
>>> from diffusers import StableDiffusionPipeline
|
56 |
+
|
57 |
+
>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
58 |
+
>>> pipe = pipe.to("cuda")
|
59 |
+
|
60 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
61 |
+
>>> image = pipe(prompt).images[0]
|
62 |
+
```
|
63 |
+
"""
|
64 |
+
|
65 |
+
def sample_gaussian_centered(n=1000, sample_size=100, std_dev=100):
|
66 |
+
samples = []
|
67 |
+
|
68 |
+
while len(samples) < sample_size:
|
69 |
+
# Sample from a Gaussian centered at n/2
|
70 |
+
sample = int(np.random.normal(loc=n/2, scale=std_dev))
|
71 |
+
|
72 |
+
# Check if the sample is in bounds
|
73 |
+
if 1 <= sample < n and sample not in samples:
|
74 |
+
samples.append(sample)
|
75 |
+
|
76 |
+
return samples
|
77 |
+
|
78 |
+
def sample_from_quad(total_numbers, n_samples, pow=1.2):
|
79 |
+
while pow > 1:
|
80 |
+
# Generate linearly spaced values between 0 and a max value
|
81 |
+
x_values = np.linspace(0, total_numbers**(1/pow), n_samples+1)
|
82 |
+
|
83 |
+
# Raise these values to the power of 1.5 to get a non-linear distribution
|
84 |
+
indices = np.unique(np.int32(x_values**pow))[:-1]
|
85 |
+
if len(indices) == n_samples:
|
86 |
+
break
|
87 |
+
pow -=0.02
|
88 |
+
if pow <= 1:
|
89 |
+
raise ValueError("Cannot find suitable pow. Please adjust n_samples or decrease center.")
|
90 |
+
return indices, pow
|
91 |
+
|
92 |
+
def sample_from_quad_center(total_numbers, n_samples, center, pow=1.2):
|
93 |
+
while pow > 1:
|
94 |
+
# Generate linearly spaced values between 0 and a max value
|
95 |
+
x_values = np.linspace((-center)**(1/pow), (total_numbers-center)**(1/pow), n_samples+1)
|
96 |
+
indices = [0] + [x+center for x in np.unique(np.int32(x_values**pow))[1:-1]]
|
97 |
+
if len(indices) == n_samples:
|
98 |
+
break
|
99 |
+
pow -=0.02
|
100 |
+
if pow <= 1:
|
101 |
+
raise ValueError("Cannot find suitable pow. Please adjust n_samples or decrease center.")
|
102 |
+
return indices, pow
|
103 |
+
|
104 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
105 |
+
"""
|
106 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
107 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
108 |
+
"""
|
109 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
110 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
111 |
+
# rescale the results from guidance (fixes overexposure)
|
112 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
113 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
114 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
115 |
+
return noise_cfg
|
116 |
+
|
117 |
+
|
118 |
+
def retrieve_timesteps(
|
119 |
+
scheduler,
|
120 |
+
num_inference_steps: Optional[int] = None,
|
121 |
+
device: Optional[Union[str, torch.device]] = None,
|
122 |
+
timesteps: Optional[List[int]] = None,
|
123 |
+
**kwargs,
|
124 |
+
):
|
125 |
+
"""
|
126 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
127 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
scheduler (`SchedulerMixin`):
|
131 |
+
The scheduler to get timesteps from.
|
132 |
+
num_inference_steps (`int`):
|
133 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
134 |
+
`timesteps` must be `None`.
|
135 |
+
device (`str` or `torch.device`, *optional*):
|
136 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
137 |
+
timesteps (`List[int]`, *optional*):
|
138 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
139 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
140 |
+
must be `None`.
|
141 |
+
|
142 |
+
Returns:
|
143 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
144 |
+
second element is the number of inference steps.
|
145 |
+
"""
|
146 |
+
if timesteps is not None:
|
147 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
148 |
+
if not accepts_timesteps:
|
149 |
+
raise ValueError(
|
150 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
151 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
152 |
+
)
|
153 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
154 |
+
timesteps = scheduler.timesteps
|
155 |
+
num_inference_steps = len(timesteps)
|
156 |
+
else:
|
157 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
158 |
+
timesteps = scheduler.timesteps
|
159 |
+
return timesteps, num_inference_steps
|
160 |
+
|
161 |
+
class StableDiffusionPipeline(
|
162 |
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
|
163 |
+
):
|
164 |
+
r"""
|
165 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
166 |
+
|
167 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
168 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
169 |
+
|
170 |
+
The pipeline also inherits the following loading methods:
|
171 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
172 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
173 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
174 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
175 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
176 |
+
|
177 |
+
Args:
|
178 |
+
vae ([`AutoencoderKL`]):
|
179 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
180 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
181 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
182 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
183 |
+
A `CLIPTokenizer` to tokenize text.
|
184 |
+
unet ([`UNet2DConditionModel`]):
|
185 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
186 |
+
scheduler ([`SchedulerMixin`]):
|
187 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
188 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
189 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
190 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
191 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
192 |
+
about a model's potential harms.
|
193 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
194 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
195 |
+
"""
|
196 |
+
|
197 |
+
model_cpu_offload_seq = "text_encoder->unet->vae"
|
198 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
199 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
200 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
201 |
+
|
202 |
+
def __init__(
|
203 |
+
self,
|
204 |
+
vae: AutoencoderKL,
|
205 |
+
text_encoder: CLIPTextModel,
|
206 |
+
tokenizer: CLIPTokenizer,
|
207 |
+
unet: UNet2DConditionModel,
|
208 |
+
scheduler: KarrasDiffusionSchedulers,
|
209 |
+
safety_checker: StableDiffusionSafetyChecker,
|
210 |
+
feature_extractor: CLIPImageProcessor,
|
211 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
212 |
+
requires_safety_checker: bool = True,
|
213 |
+
):
|
214 |
+
super().__init__()
|
215 |
+
|
216 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
217 |
+
deprecation_message = (
|
218 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
219 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
220 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
221 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
222 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
223 |
+
" file"
|
224 |
+
)
|
225 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
226 |
+
new_config = dict(scheduler.config)
|
227 |
+
new_config["steps_offset"] = 1
|
228 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
229 |
+
|
230 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
231 |
+
deprecation_message = (
|
232 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
233 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
234 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
235 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
236 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
237 |
+
)
|
238 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
239 |
+
new_config = dict(scheduler.config)
|
240 |
+
new_config["clip_sample"] = False
|
241 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
242 |
+
|
243 |
+
if safety_checker is None and requires_safety_checker:
|
244 |
+
logger.warning(
|
245 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
246 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
247 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
248 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
249 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
250 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
251 |
+
)
|
252 |
+
|
253 |
+
if safety_checker is not None and feature_extractor is None:
|
254 |
+
raise ValueError(
|
255 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
256 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
257 |
+
)
|
258 |
+
|
259 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
260 |
+
version.parse(unet.config._diffusers_version).base_version
|
261 |
+
) < version.parse("0.9.0.dev0")
|
262 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
263 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
264 |
+
deprecation_message = (
|
265 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
266 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
267 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
268 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
269 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
270 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
271 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
272 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
273 |
+
" the `unet/config.json` file"
|
274 |
+
)
|
275 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
276 |
+
new_config = dict(unet.config)
|
277 |
+
new_config["sample_size"] = 64
|
278 |
+
unet._internal_dict = FrozenDict(new_config)
|
279 |
+
|
280 |
+
self.register_modules(
|
281 |
+
vae=vae,
|
282 |
+
text_encoder=text_encoder,
|
283 |
+
tokenizer=tokenizer,
|
284 |
+
unet=unet,
|
285 |
+
scheduler=scheduler,
|
286 |
+
safety_checker=safety_checker,
|
287 |
+
feature_extractor=feature_extractor,
|
288 |
+
image_encoder=image_encoder,
|
289 |
+
)
|
290 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
291 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
292 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
293 |
+
|
294 |
+
def enable_vae_slicing(self):
|
295 |
+
r"""
|
296 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
297 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
298 |
+
"""
|
299 |
+
self.vae.enable_slicing()
|
300 |
+
|
301 |
+
def disable_vae_slicing(self):
|
302 |
+
r"""
|
303 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
304 |
+
computing decoding in one step.
|
305 |
+
"""
|
306 |
+
self.vae.disable_slicing()
|
307 |
+
|
308 |
+
def enable_vae_tiling(self):
|
309 |
+
r"""
|
310 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
311 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
312 |
+
processing larger images.
|
313 |
+
"""
|
314 |
+
self.vae.enable_tiling()
|
315 |
+
|
316 |
+
def disable_vae_tiling(self):
|
317 |
+
r"""
|
318 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
319 |
+
computing decoding in one step.
|
320 |
+
"""
|
321 |
+
self.vae.disable_tiling()
|
322 |
+
|
323 |
+
def _encode_prompt(
|
324 |
+
self,
|
325 |
+
prompt,
|
326 |
+
device,
|
327 |
+
num_images_per_prompt,
|
328 |
+
do_classifier_free_guidance,
|
329 |
+
negative_prompt=None,
|
330 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
331 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
332 |
+
lora_scale: Optional[float] = None,
|
333 |
+
**kwargs,
|
334 |
+
):
|
335 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
336 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
337 |
+
|
338 |
+
prompt_embeds_tuple = self.encode_prompt(
|
339 |
+
prompt=prompt,
|
340 |
+
device=device,
|
341 |
+
num_images_per_prompt=num_images_per_prompt,
|
342 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
343 |
+
negative_prompt=negative_prompt,
|
344 |
+
prompt_embeds=prompt_embeds,
|
345 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
346 |
+
lora_scale=lora_scale,
|
347 |
+
**kwargs,
|
348 |
+
)
|
349 |
+
|
350 |
+
# concatenate for backwards comp
|
351 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
352 |
+
|
353 |
+
return prompt_embeds
|
354 |
+
|
355 |
+
def encode_prompt(
|
356 |
+
self,
|
357 |
+
prompt,
|
358 |
+
device,
|
359 |
+
num_images_per_prompt,
|
360 |
+
do_classifier_free_guidance,
|
361 |
+
negative_prompt=None,
|
362 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
363 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
364 |
+
lora_scale: Optional[float] = None,
|
365 |
+
clip_skip: Optional[int] = None,
|
366 |
+
):
|
367 |
+
r"""
|
368 |
+
Encodes the prompt into text encoder hidden states.
|
369 |
+
|
370 |
+
Args:
|
371 |
+
prompt (`str` or `List[str]`, *optional*):
|
372 |
+
prompt to be encoded
|
373 |
+
device: (`torch.device`):
|
374 |
+
torch device
|
375 |
+
num_images_per_prompt (`int`):
|
376 |
+
number of images that should be generated per prompt
|
377 |
+
do_classifier_free_guidance (`bool`):
|
378 |
+
whether to use classifier free guidance or not
|
379 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
380 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
381 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
382 |
+
less than `1`).
|
383 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
384 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
385 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
386 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
387 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
388 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
389 |
+
argument.
|
390 |
+
lora_scale (`float`, *optional*):
|
391 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
392 |
+
clip_skip (`int`, *optional*):
|
393 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
394 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
395 |
+
"""
|
396 |
+
# set lora scale so that monkey patched LoRA
|
397 |
+
# function of text encoder can correctly access it
|
398 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
399 |
+
self._lora_scale = lora_scale
|
400 |
+
|
401 |
+
# dynamically adjust the LoRA scale
|
402 |
+
if not USE_PEFT_BACKEND:
|
403 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
404 |
+
else:
|
405 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
406 |
+
|
407 |
+
if prompt is not None and isinstance(prompt, str):
|
408 |
+
batch_size = 1
|
409 |
+
elif prompt is not None and isinstance(prompt, list):
|
410 |
+
batch_size = len(prompt)
|
411 |
+
else:
|
412 |
+
batch_size = prompt_embeds.shape[0]
|
413 |
+
|
414 |
+
if prompt_embeds is None:
|
415 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
416 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
417 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
418 |
+
|
419 |
+
text_inputs = self.tokenizer(
|
420 |
+
prompt,
|
421 |
+
padding="max_length",
|
422 |
+
max_length=self.tokenizer.model_max_length,
|
423 |
+
truncation=True,
|
424 |
+
return_tensors="pt",
|
425 |
+
)
|
426 |
+
text_input_ids = text_inputs.input_ids
|
427 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
428 |
+
|
429 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
430 |
+
text_input_ids, untruncated_ids
|
431 |
+
):
|
432 |
+
removed_text = self.tokenizer.batch_decode(
|
433 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
434 |
+
)
|
435 |
+
logger.warning(
|
436 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
437 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
438 |
+
)
|
439 |
+
|
440 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
441 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
442 |
+
else:
|
443 |
+
attention_mask = None
|
444 |
+
|
445 |
+
if clip_skip is None:
|
446 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
447 |
+
prompt_embeds = prompt_embeds[0]
|
448 |
+
else:
|
449 |
+
prompt_embeds = self.text_encoder(
|
450 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
451 |
+
)
|
452 |
+
# Access the `hidden_states` first, that contains a tuple of
|
453 |
+
# all the hidden states from the encoder layers. Then index into
|
454 |
+
# the tuple to access the hidden states from the desired layer.
|
455 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
456 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
457 |
+
# representations. The `last_hidden_states` that we typically use for
|
458 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
459 |
+
# layer.
|
460 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
461 |
+
|
462 |
+
if self.text_encoder is not None:
|
463 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
464 |
+
elif self.unet is not None:
|
465 |
+
prompt_embeds_dtype = self.unet.dtype
|
466 |
+
else:
|
467 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
468 |
+
|
469 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
470 |
+
|
471 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
472 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
473 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
474 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
475 |
+
|
476 |
+
# get unconditional embeddings for classifier free guidance
|
477 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
478 |
+
uncond_tokens: List[str]
|
479 |
+
if negative_prompt is None:
|
480 |
+
uncond_tokens = [""] * batch_size
|
481 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
482 |
+
raise TypeError(
|
483 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
484 |
+
f" {type(prompt)}."
|
485 |
+
)
|
486 |
+
elif isinstance(negative_prompt, str):
|
487 |
+
uncond_tokens = [negative_prompt]
|
488 |
+
elif batch_size != len(negative_prompt):
|
489 |
+
raise ValueError(
|
490 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
491 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
492 |
+
" the batch size of `prompt`."
|
493 |
+
)
|
494 |
+
else:
|
495 |
+
uncond_tokens = negative_prompt
|
496 |
+
|
497 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
498 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
499 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
500 |
+
|
501 |
+
max_length = prompt_embeds.shape[1]
|
502 |
+
uncond_input = self.tokenizer(
|
503 |
+
uncond_tokens,
|
504 |
+
padding="max_length",
|
505 |
+
max_length=max_length,
|
506 |
+
truncation=True,
|
507 |
+
return_tensors="pt",
|
508 |
+
)
|
509 |
+
|
510 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
511 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
512 |
+
else:
|
513 |
+
attention_mask = None
|
514 |
+
|
515 |
+
negative_prompt_embeds = self.text_encoder(
|
516 |
+
uncond_input.input_ids.to(device),
|
517 |
+
attention_mask=attention_mask,
|
518 |
+
)
|
519 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
520 |
+
|
521 |
+
if do_classifier_free_guidance:
|
522 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
523 |
+
seq_len = negative_prompt_embeds.shape[1]
|
524 |
+
|
525 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
526 |
+
|
527 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
528 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
529 |
+
|
530 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
531 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
532 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
533 |
+
|
534 |
+
return prompt_embeds, negative_prompt_embeds
|
535 |
+
|
536 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
537 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
538 |
+
|
539 |
+
if not isinstance(image, torch.Tensor):
|
540 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
541 |
+
|
542 |
+
image = image.to(device=device, dtype=dtype)
|
543 |
+
if output_hidden_states:
|
544 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
545 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
546 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
547 |
+
torch.zeros_like(image), output_hidden_states=True
|
548 |
+
).hidden_states[-2]
|
549 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
550 |
+
num_images_per_prompt, dim=0
|
551 |
+
)
|
552 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
553 |
+
else:
|
554 |
+
image_embeds = self.image_encoder(image).image_embeds
|
555 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
556 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
557 |
+
|
558 |
+
return image_embeds, uncond_image_embeds
|
559 |
+
|
560 |
+
def run_safety_checker(self, image, device, dtype):
|
561 |
+
if self.safety_checker is None:
|
562 |
+
has_nsfw_concept = None
|
563 |
+
else:
|
564 |
+
if torch.is_tensor(image):
|
565 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
566 |
+
else:
|
567 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
568 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
569 |
+
image, has_nsfw_concept = self.safety_checker(
|
570 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
571 |
+
)
|
572 |
+
return image, has_nsfw_concept
|
573 |
+
|
574 |
+
def decode_latents(self, latents):
|
575 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
576 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
577 |
+
|
578 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
579 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
580 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
581 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
582 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
583 |
+
return image
|
584 |
+
|
585 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
586 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
587 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
588 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
589 |
+
# and should be between [0, 1]
|
590 |
+
|
591 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
592 |
+
extra_step_kwargs = {}
|
593 |
+
if accepts_eta:
|
594 |
+
extra_step_kwargs["eta"] = eta
|
595 |
+
|
596 |
+
# check if the scheduler accepts generator
|
597 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
598 |
+
if accepts_generator:
|
599 |
+
extra_step_kwargs["generator"] = generator
|
600 |
+
return extra_step_kwargs
|
601 |
+
|
602 |
+
def check_inputs(
|
603 |
+
self,
|
604 |
+
prompt,
|
605 |
+
height,
|
606 |
+
width,
|
607 |
+
callback_steps,
|
608 |
+
negative_prompt=None,
|
609 |
+
prompt_embeds=None,
|
610 |
+
negative_prompt_embeds=None,
|
611 |
+
callback_on_step_end_tensor_inputs=None,
|
612 |
+
):
|
613 |
+
if height % 8 != 0 or width % 8 != 0:
|
614 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
615 |
+
|
616 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
617 |
+
raise ValueError(
|
618 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
619 |
+
f" {type(callback_steps)}."
|
620 |
+
)
|
621 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
622 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
623 |
+
):
|
624 |
+
raise ValueError(
|
625 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
626 |
+
)
|
627 |
+
|
628 |
+
if prompt is not None and prompt_embeds is not None:
|
629 |
+
raise ValueError(
|
630 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
631 |
+
" only forward one of the two."
|
632 |
+
)
|
633 |
+
elif prompt is None and prompt_embeds is None:
|
634 |
+
raise ValueError(
|
635 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
636 |
+
)
|
637 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
638 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
639 |
+
|
640 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
641 |
+
raise ValueError(
|
642 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
643 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
644 |
+
)
|
645 |
+
|
646 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
647 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
648 |
+
raise ValueError(
|
649 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
650 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
651 |
+
f" {negative_prompt_embeds.shape}."
|
652 |
+
)
|
653 |
+
|
654 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
655 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
656 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
657 |
+
raise ValueError(
|
658 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
659 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
660 |
+
)
|
661 |
+
|
662 |
+
if latents is None:
|
663 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
664 |
+
else:
|
665 |
+
latents = latents.to(device)
|
666 |
+
|
667 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
668 |
+
latents = latents * self.scheduler.init_noise_sigma
|
669 |
+
return latents
|
670 |
+
|
671 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
672 |
+
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
673 |
+
|
674 |
+
The suffixes after the scaling factors represent the stages where they are being applied.
|
675 |
+
|
676 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
677 |
+
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
678 |
+
|
679 |
+
Args:
|
680 |
+
s1 (`float`):
|
681 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
682 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
683 |
+
s2 (`float`):
|
684 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
685 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
686 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
687 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
688 |
+
"""
|
689 |
+
if not hasattr(self, "unet"):
|
690 |
+
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
691 |
+
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
692 |
+
|
693 |
+
def disable_freeu(self):
|
694 |
+
"""Disables the FreeU mechanism if enabled."""
|
695 |
+
self.unet.disable_freeu()
|
696 |
+
|
697 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
|
698 |
+
def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
699 |
+
"""
|
700 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
701 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
702 |
+
|
703 |
+
<Tip warning={true}>
|
704 |
+
|
705 |
+
This API is 🧪 experimental.
|
706 |
+
|
707 |
+
</Tip>
|
708 |
+
|
709 |
+
Args:
|
710 |
+
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
711 |
+
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
712 |
+
"""
|
713 |
+
self.fusing_unet = False
|
714 |
+
self.fusing_vae = False
|
715 |
+
|
716 |
+
if unet:
|
717 |
+
self.fusing_unet = True
|
718 |
+
self.unet.fuse_qkv_projections()
|
719 |
+
self.unet.set_attn_processor(FusedAttnProcessor2_0())
|
720 |
+
|
721 |
+
if vae:
|
722 |
+
if not isinstance(self.vae, AutoencoderKL):
|
723 |
+
raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
|
724 |
+
|
725 |
+
self.fusing_vae = True
|
726 |
+
self.vae.fuse_qkv_projections()
|
727 |
+
self.vae.set_attn_processor(FusedAttnProcessor2_0())
|
728 |
+
|
729 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
|
730 |
+
def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
731 |
+
"""Disable QKV projection fusion if enabled.
|
732 |
+
|
733 |
+
<Tip warning={true}>
|
734 |
+
|
735 |
+
This API is 🧪 experimental.
|
736 |
+
|
737 |
+
</Tip>
|
738 |
+
|
739 |
+
Args:
|
740 |
+
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
741 |
+
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
742 |
+
|
743 |
+
"""
|
744 |
+
if unet:
|
745 |
+
if not self.fusing_unet:
|
746 |
+
logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
|
747 |
+
else:
|
748 |
+
self.unet.unfuse_qkv_projections()
|
749 |
+
self.fusing_unet = False
|
750 |
+
|
751 |
+
if vae:
|
752 |
+
if not self.fusing_vae:
|
753 |
+
logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
|
754 |
+
else:
|
755 |
+
self.vae.unfuse_qkv_projections()
|
756 |
+
self.fusing_vae = False
|
757 |
+
|
758 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
759 |
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
760 |
+
"""
|
761 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
762 |
+
|
763 |
+
Args:
|
764 |
+
timesteps (`torch.Tensor`):
|
765 |
+
generate embedding vectors at these timesteps
|
766 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
767 |
+
dimension of the embeddings to generate
|
768 |
+
dtype:
|
769 |
+
data type of the generated embeddings
|
770 |
+
|
771 |
+
Returns:
|
772 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
773 |
+
"""
|
774 |
+
assert len(w.shape) == 1
|
775 |
+
w = w * 1000.0
|
776 |
+
|
777 |
+
half_dim = embedding_dim // 2
|
778 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
779 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
780 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
781 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
782 |
+
if embedding_dim % 2 == 1: # zero pad
|
783 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
784 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
785 |
+
return emb
|
786 |
+
|
787 |
+
@property
|
788 |
+
def guidance_scale(self):
|
789 |
+
return self._guidance_scale
|
790 |
+
|
791 |
+
@property
|
792 |
+
def guidance_rescale(self):
|
793 |
+
return self._guidance_rescale
|
794 |
+
|
795 |
+
@property
|
796 |
+
def clip_skip(self):
|
797 |
+
return self._clip_skip
|
798 |
+
|
799 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
800 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
801 |
+
# corresponds to doing no classifier free guidance.
|
802 |
+
@property
|
803 |
+
def do_classifier_free_guidance(self):
|
804 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
805 |
+
|
806 |
+
@property
|
807 |
+
def cross_attention_kwargs(self):
|
808 |
+
return self._cross_attention_kwargs
|
809 |
+
|
810 |
+
@property
|
811 |
+
def num_timesteps(self):
|
812 |
+
return self._num_timesteps
|
813 |
+
|
814 |
+
@torch.no_grad()
|
815 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
816 |
+
def __call__(
|
817 |
+
self,
|
818 |
+
prompt: Union[str, List[str]] = None,
|
819 |
+
height: Optional[int] = None,
|
820 |
+
width: Optional[int] = None,
|
821 |
+
num_inference_steps: int = 50,
|
822 |
+
timesteps: List[int] = None,
|
823 |
+
guidance_scale: float = 7.5,
|
824 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
825 |
+
num_images_per_prompt: Optional[int] = 1,
|
826 |
+
eta: float = 0.0,
|
827 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
828 |
+
latents: Optional[torch.FloatTensor] = None,
|
829 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
830 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
831 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
832 |
+
output_type: Optional[str] = "pil",
|
833 |
+
return_dict: bool = True,
|
834 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
835 |
+
guidance_rescale: float = 0.0,
|
836 |
+
clip_skip: Optional[int] = None,
|
837 |
+
cache_interval: int = 1,
|
838 |
+
cache_layer_id: int = None,
|
839 |
+
cache_block_id: int = None,
|
840 |
+
uniform: bool = True,
|
841 |
+
pow: float = None,
|
842 |
+
center: int = None,
|
843 |
+
output_all_sequence: bool = False,
|
844 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
845 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
846 |
+
**kwargs,
|
847 |
+
):
|
848 |
+
r"""
|
849 |
+
The call function to the pipeline for generation.
|
850 |
+
|
851 |
+
Args:
|
852 |
+
prompt (`str` or `List[str]`, *optional*):
|
853 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
854 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
855 |
+
The height in pixels of the generated image.
|
856 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
857 |
+
The width in pixels of the generated image.
|
858 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
859 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
860 |
+
expense of slower inference.
|
861 |
+
timesteps (`List[int]`, *optional*):
|
862 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
863 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
864 |
+
passed will be used. Must be in descending order.
|
865 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
866 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
867 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
868 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
869 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
870 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
871 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
872 |
+
The number of images to generate per prompt.
|
873 |
+
eta (`float`, *optional*, defaults to 0.0):
|
874 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
875 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
876 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
877 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
878 |
+
generation deterministic.
|
879 |
+
latents (`torch.FloatTensor`, *optional*):
|
880 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
881 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
882 |
+
tensor is generated by sampling using the supplied random `generator`.
|
883 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
884 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
885 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
886 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
887 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
888 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
889 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
890 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
891 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
892 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
893 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
894 |
+
plain tuple.
|
895 |
+
cross_attention_kwargs (`dict`, *optional*):
|
896 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
897 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
898 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
899 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
900 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
901 |
+
using zero terminal SNR.
|
902 |
+
clip_skip (`int`, *optional*):
|
903 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
904 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
905 |
+
callback_on_step_end (`Callable`, *optional*):
|
906 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
907 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
908 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
909 |
+
`callback_on_step_end_tensor_inputs`.
|
910 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
911 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
912 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
913 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
914 |
+
|
915 |
+
Examples:
|
916 |
+
|
917 |
+
Returns:
|
918 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
919 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
920 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
921 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
922 |
+
"not-safe-for-work" (nsfw) content.
|
923 |
+
"""
|
924 |
+
|
925 |
+
callback = kwargs.pop("callback", None)
|
926 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
927 |
+
|
928 |
+
if callback is not None:
|
929 |
+
deprecate(
|
930 |
+
"callback",
|
931 |
+
"1.0.0",
|
932 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
933 |
+
)
|
934 |
+
if callback_steps is not None:
|
935 |
+
deprecate(
|
936 |
+
"callback_steps",
|
937 |
+
"1.0.0",
|
938 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
939 |
+
)
|
940 |
+
|
941 |
+
# 0. Default height and width to unet
|
942 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
943 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
944 |
+
# to deal with lora scaling and other possible forward hooks
|
945 |
+
|
946 |
+
# 1. Check inputs. Raise error if not correct
|
947 |
+
self.check_inputs(
|
948 |
+
prompt,
|
949 |
+
height,
|
950 |
+
width,
|
951 |
+
callback_steps,
|
952 |
+
negative_prompt,
|
953 |
+
prompt_embeds,
|
954 |
+
negative_prompt_embeds,
|
955 |
+
callback_on_step_end_tensor_inputs,
|
956 |
+
)
|
957 |
+
|
958 |
+
self._guidance_scale = guidance_scale
|
959 |
+
self._guidance_rescale = guidance_rescale
|
960 |
+
self._clip_skip = clip_skip
|
961 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
962 |
+
|
963 |
+
# 2. Define call parameters
|
964 |
+
if prompt is not None and isinstance(prompt, str):
|
965 |
+
batch_size = 1
|
966 |
+
elif prompt is not None and isinstance(prompt, list):
|
967 |
+
batch_size = len(prompt)
|
968 |
+
else:
|
969 |
+
batch_size = prompt_embeds.shape[0]
|
970 |
+
|
971 |
+
device = self._execution_device
|
972 |
+
|
973 |
+
# 3. Encode input prompt
|
974 |
+
lora_scale = (
|
975 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
976 |
+
)
|
977 |
+
|
978 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
979 |
+
prompt,
|
980 |
+
device,
|
981 |
+
num_images_per_prompt,
|
982 |
+
self.do_classifier_free_guidance,
|
983 |
+
negative_prompt,
|
984 |
+
prompt_embeds=prompt_embeds,
|
985 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
986 |
+
lora_scale=lora_scale,
|
987 |
+
clip_skip=self.clip_skip,
|
988 |
+
)
|
989 |
+
|
990 |
+
# For classifier free guidance, we need to do two forward passes.
|
991 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
992 |
+
# to avoid doing two forward passes
|
993 |
+
if self.do_classifier_free_guidance:
|
994 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
995 |
+
|
996 |
+
if ip_adapter_image is not None:
|
997 |
+
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
998 |
+
image_embeds, negative_image_embeds = self.encode_image(
|
999 |
+
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
|
1000 |
+
)
|
1001 |
+
if self.do_classifier_free_guidance:
|
1002 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1003 |
+
|
1004 |
+
# 4. Prepare timesteps
|
1005 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1006 |
+
|
1007 |
+
# 5. Prepare latent variables
|
1008 |
+
num_channels_latents = self.unet.config.in_channels
|
1009 |
+
latents = self.prepare_latents(
|
1010 |
+
batch_size * num_images_per_prompt,
|
1011 |
+
num_channels_latents,
|
1012 |
+
height,
|
1013 |
+
width,
|
1014 |
+
prompt_embeds.dtype,
|
1015 |
+
device,
|
1016 |
+
generator,
|
1017 |
+
latents,
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1021 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1022 |
+
|
1023 |
+
# 6.1 Add image embeds for IP-Adapter
|
1024 |
+
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
1025 |
+
|
1026 |
+
# 6.2 Optionally get Guidance Scale Embedding
|
1027 |
+
timestep_cond = None
|
1028 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1029 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1030 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1031 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1032 |
+
).to(device=device, dtype=latents.dtype)
|
1033 |
+
|
1034 |
+
# 7. Denoising loop
|
1035 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1036 |
+
self._num_timesteps = len(timesteps)
|
1037 |
+
|
1038 |
+
prv_features = None
|
1039 |
+
latents_list = [latents]
|
1040 |
+
|
1041 |
+
if cache_interval == 1:
|
1042 |
+
interval_seq = list(range(num_inference_steps))
|
1043 |
+
else:
|
1044 |
+
if uniform:
|
1045 |
+
interval_seq = list(range(0, num_inference_steps, cache_interval))
|
1046 |
+
else:
|
1047 |
+
num_slow_step = num_inference_steps//cache_interval
|
1048 |
+
if num_inference_steps%cache_interval != 0:
|
1049 |
+
num_slow_step += 1
|
1050 |
+
|
1051 |
+
interval_seq, pow = sample_from_quad_center(num_inference_steps, num_slow_step, center=center, pow=pow)#[0, 3, 6, 9, 12, 16, 22, 28, 35, 43,]
|
1052 |
+
|
1053 |
+
interval_seq = sorted(interval_seq)
|
1054 |
+
|
1055 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1056 |
+
for i, t in enumerate(timesteps):
|
1057 |
+
# expand the latents if we are doing classifier free guidance
|
1058 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1059 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1060 |
+
|
1061 |
+
if i in interval_seq:
|
1062 |
+
prv_features = None
|
1063 |
+
|
1064 |
+
# predict the noise residual
|
1065 |
+
noise_pred, prv_features = self.unet(
|
1066 |
+
latent_model_input,
|
1067 |
+
t,
|
1068 |
+
encoder_hidden_states=prompt_embeds,
|
1069 |
+
timestep_cond=timestep_cond,
|
1070 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1071 |
+
added_cond_kwargs=added_cond_kwargs,
|
1072 |
+
replicate_prv_feature=prv_features,
|
1073 |
+
quick_replicate= cache_interval>1,
|
1074 |
+
cache_layer_id=cache_layer_id,
|
1075 |
+
cache_block_id=cache_block_id,
|
1076 |
+
|
1077 |
+
return_dict=False,
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
# perform guidance
|
1081 |
+
if self.do_classifier_free_guidance:
|
1082 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1083 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1084 |
+
|
1085 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1086 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1087 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1088 |
+
|
1089 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1090 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1091 |
+
latents_list.append(latents)
|
1092 |
+
|
1093 |
+
if callback_on_step_end is not None:
|
1094 |
+
callback_kwargs = {}
|
1095 |
+
for k in callback_on_step_end_tensor_inputs:
|
1096 |
+
callback_kwargs[k] = locals()[k]
|
1097 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1098 |
+
|
1099 |
+
latents = callback_outputs.pop("latents", latents)
|
1100 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1101 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1102 |
+
|
1103 |
+
# call the callback, if provided
|
1104 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1105 |
+
progress_bar.update()
|
1106 |
+
if callback is not None and i % callback_steps == 0:
|
1107 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1108 |
+
callback(step_idx, t, latents)
|
1109 |
+
|
1110 |
+
if not output_type == "latent":
|
1111 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
1112 |
+
0
|
1113 |
+
]
|
1114 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1115 |
+
else:
|
1116 |
+
image = latents
|
1117 |
+
has_nsfw_concept = None
|
1118 |
+
|
1119 |
+
if has_nsfw_concept is None:
|
1120 |
+
do_denormalize = [True] * image.shape[0]
|
1121 |
+
else:
|
1122 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1123 |
+
|
1124 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1125 |
+
|
1126 |
+
# Offload all models
|
1127 |
+
self.maybe_free_model_hooks()
|
1128 |
+
|
1129 |
+
if not return_dict:
|
1130 |
+
return (image, has_nsfw_concept)
|
1131 |
+
|
1132 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
1133 |
+
|
pipeline_utils.py
ADDED
@@ -0,0 +1,1837 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import fnmatch
|
18 |
+
import importlib
|
19 |
+
import inspect
|
20 |
+
import os
|
21 |
+
import re
|
22 |
+
import sys
|
23 |
+
import warnings
|
24 |
+
from dataclasses import dataclass
|
25 |
+
from pathlib import Path
|
26 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
import PIL
|
30 |
+
import torch
|
31 |
+
from huggingface_hub import ModelCard, create_repo, hf_hub_download, model_info, snapshot_download
|
32 |
+
from packaging import version
|
33 |
+
from requests.exceptions import HTTPError
|
34 |
+
from tqdm.auto import tqdm
|
35 |
+
|
36 |
+
import diffusers
|
37 |
+
|
38 |
+
from diffusers import __version__
|
39 |
+
from diffusers.configuration_utils import ConfigMixin
|
40 |
+
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
|
41 |
+
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
|
42 |
+
from diffusers.utils import (
|
43 |
+
CONFIG_NAME,
|
44 |
+
DEPRECATED_REVISION_ARGS,
|
45 |
+
DIFFUSERS_CACHE,
|
46 |
+
HF_HUB_OFFLINE,
|
47 |
+
SAFETENSORS_WEIGHTS_NAME,
|
48 |
+
WEIGHTS_NAME,
|
49 |
+
BaseOutput,
|
50 |
+
deprecate,
|
51 |
+
get_class_from_dynamic_module,
|
52 |
+
is_accelerate_available,
|
53 |
+
is_accelerate_version,
|
54 |
+
is_torch_version,
|
55 |
+
is_transformers_available,
|
56 |
+
logging,
|
57 |
+
numpy_to_pil,
|
58 |
+
)
|
59 |
+
from diffusers.utils.torch_utils import is_compiled_module
|
60 |
+
|
61 |
+
|
62 |
+
if is_transformers_available():
|
63 |
+
import transformers
|
64 |
+
from transformers import PreTrainedModel
|
65 |
+
from transformers.utils import FLAX_WEIGHTS_NAME as TRANSFORMERS_FLAX_WEIGHTS_NAME
|
66 |
+
from transformers.utils import SAFE_WEIGHTS_NAME as TRANSFORMERS_SAFE_WEIGHTS_NAME
|
67 |
+
from transformers.utils import WEIGHTS_NAME as TRANSFORMERS_WEIGHTS_NAME
|
68 |
+
|
69 |
+
from diffusers.utils import FLAX_WEIGHTS_NAME, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, PushToHubMixin
|
70 |
+
|
71 |
+
|
72 |
+
if is_accelerate_available():
|
73 |
+
import accelerate
|
74 |
+
|
75 |
+
|
76 |
+
INDEX_FILE = "diffusion_pytorch_model.bin"
|
77 |
+
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
|
78 |
+
DUMMY_MODULES_FOLDER = "diffusers.utils"
|
79 |
+
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
|
80 |
+
CONNECTED_PIPES_KEYS = ["prior"]
|
81 |
+
|
82 |
+
|
83 |
+
logger = logging.get_logger(__name__)
|
84 |
+
|
85 |
+
|
86 |
+
LOADABLE_CLASSES = {
|
87 |
+
"diffusers": {
|
88 |
+
"ModelMixin": ["save_pretrained", "from_pretrained"],
|
89 |
+
"SchedulerMixin": ["save_pretrained", "from_pretrained"],
|
90 |
+
"DiffusionPipeline": ["save_pretrained", "from_pretrained"],
|
91 |
+
"OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
|
92 |
+
},
|
93 |
+
"transformers": {
|
94 |
+
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
|
95 |
+
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
|
96 |
+
"PreTrainedModel": ["save_pretrained", "from_pretrained"],
|
97 |
+
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
|
98 |
+
"ProcessorMixin": ["save_pretrained", "from_pretrained"],
|
99 |
+
"ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
|
100 |
+
},
|
101 |
+
"onnxruntime.training": {
|
102 |
+
"ORTModule": ["save_pretrained", "from_pretrained"],
|
103 |
+
},
|
104 |
+
}
|
105 |
+
|
106 |
+
ALL_IMPORTABLE_CLASSES = {}
|
107 |
+
for library in LOADABLE_CLASSES:
|
108 |
+
ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])
|
109 |
+
|
110 |
+
|
111 |
+
@dataclass
|
112 |
+
class ImagePipelineOutput(BaseOutput):
|
113 |
+
"""
|
114 |
+
Output class for image pipelines.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
118 |
+
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
|
119 |
+
num_channels)`.
|
120 |
+
"""
|
121 |
+
|
122 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
123 |
+
|
124 |
+
|
125 |
+
@dataclass
|
126 |
+
class AudioPipelineOutput(BaseOutput):
|
127 |
+
"""
|
128 |
+
Output class for audio pipelines.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
audios (`np.ndarray`)
|
132 |
+
List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
|
133 |
+
"""
|
134 |
+
|
135 |
+
audios: np.ndarray
|
136 |
+
|
137 |
+
|
138 |
+
def is_safetensors_compatible(filenames, variant=None, passed_components=None) -> bool:
|
139 |
+
"""
|
140 |
+
Checking for safetensors compatibility:
|
141 |
+
- By default, all models are saved with the default pytorch serialization, so we use the list of default pytorch
|
142 |
+
files to know which safetensors files are needed.
|
143 |
+
- The model is safetensors compatible only if there is a matching safetensors file for every default pytorch file.
|
144 |
+
|
145 |
+
Converting default pytorch serialized filenames to safetensors serialized filenames:
|
146 |
+
- For models from the diffusers library, just replace the ".bin" extension with ".safetensors"
|
147 |
+
- For models from the transformers library, the filename changes from "pytorch_model" to "model", and the ".bin"
|
148 |
+
extension is replaced with ".safetensors"
|
149 |
+
"""
|
150 |
+
pt_filenames = []
|
151 |
+
|
152 |
+
sf_filenames = set()
|
153 |
+
|
154 |
+
passed_components = passed_components or []
|
155 |
+
|
156 |
+
for filename in filenames:
|
157 |
+
_, extension = os.path.splitext(filename)
|
158 |
+
|
159 |
+
if len(filename.split("/")) == 2 and filename.split("/")[0] in passed_components:
|
160 |
+
continue
|
161 |
+
|
162 |
+
if extension == ".bin":
|
163 |
+
pt_filenames.append(filename)
|
164 |
+
elif extension == ".safetensors":
|
165 |
+
sf_filenames.add(filename)
|
166 |
+
|
167 |
+
for filename in pt_filenames:
|
168 |
+
# filename = 'foo/bar/baz.bam' -> path = 'foo/bar', filename = 'baz', extention = '.bam'
|
169 |
+
path, filename = os.path.split(filename)
|
170 |
+
filename, extension = os.path.splitext(filename)
|
171 |
+
|
172 |
+
if filename.startswith("pytorch_model"):
|
173 |
+
filename = filename.replace("pytorch_model", "model")
|
174 |
+
else:
|
175 |
+
filename = filename
|
176 |
+
|
177 |
+
expected_sf_filename = os.path.join(path, filename)
|
178 |
+
expected_sf_filename = f"{expected_sf_filename}.safetensors"
|
179 |
+
|
180 |
+
if expected_sf_filename not in sf_filenames:
|
181 |
+
logger.warning(f"{expected_sf_filename} not found")
|
182 |
+
return False
|
183 |
+
|
184 |
+
return True
|
185 |
+
|
186 |
+
|
187 |
+
def variant_compatible_siblings(filenames, variant=None) -> Union[List[os.PathLike], str]:
|
188 |
+
weight_names = [
|
189 |
+
WEIGHTS_NAME,
|
190 |
+
SAFETENSORS_WEIGHTS_NAME,
|
191 |
+
FLAX_WEIGHTS_NAME,
|
192 |
+
ONNX_WEIGHTS_NAME,
|
193 |
+
ONNX_EXTERNAL_WEIGHTS_NAME,
|
194 |
+
]
|
195 |
+
|
196 |
+
if is_transformers_available():
|
197 |
+
weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME]
|
198 |
+
|
199 |
+
# model_pytorch, diffusion_model_pytorch, ...
|
200 |
+
weight_prefixes = [w.split(".")[0] for w in weight_names]
|
201 |
+
# .bin, .safetensors, ...
|
202 |
+
weight_suffixs = [w.split(".")[-1] for w in weight_names]
|
203 |
+
# -00001-of-00002
|
204 |
+
transformers_index_format = r"\d{5}-of-\d{5}"
|
205 |
+
|
206 |
+
if variant is not None:
|
207 |
+
# `diffusion_pytorch_model.fp16.bin` as well as `model.fp16-00001-of-00002.safetensors`
|
208 |
+
variant_file_re = re.compile(
|
209 |
+
rf"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
|
210 |
+
)
|
211 |
+
# `text_encoder/pytorch_model.bin.index.fp16.json`
|
212 |
+
variant_index_re = re.compile(
|
213 |
+
rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.{variant}\.json$"
|
214 |
+
)
|
215 |
+
|
216 |
+
# `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetensors`
|
217 |
+
non_variant_file_re = re.compile(
|
218 |
+
rf"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
|
219 |
+
)
|
220 |
+
# `text_encoder/pytorch_model.bin.index.json`
|
221 |
+
non_variant_index_re = re.compile(rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.json")
|
222 |
+
|
223 |
+
if variant is not None:
|
224 |
+
variant_weights = {f for f in filenames if variant_file_re.match(f.split("/")[-1]) is not None}
|
225 |
+
variant_indexes = {f for f in filenames if variant_index_re.match(f.split("/")[-1]) is not None}
|
226 |
+
variant_filenames = variant_weights | variant_indexes
|
227 |
+
else:
|
228 |
+
variant_filenames = set()
|
229 |
+
|
230 |
+
non_variant_weights = {f for f in filenames if non_variant_file_re.match(f.split("/")[-1]) is not None}
|
231 |
+
non_variant_indexes = {f for f in filenames if non_variant_index_re.match(f.split("/")[-1]) is not None}
|
232 |
+
non_variant_filenames = non_variant_weights | non_variant_indexes
|
233 |
+
|
234 |
+
# all variant filenames will be used by default
|
235 |
+
usable_filenames = set(variant_filenames)
|
236 |
+
|
237 |
+
def convert_to_variant(filename):
|
238 |
+
if "index" in filename:
|
239 |
+
variant_filename = filename.replace("index", f"index.{variant}")
|
240 |
+
elif re.compile(f"^(.*?){transformers_index_format}").match(filename) is not None:
|
241 |
+
variant_filename = f"{filename.split('-')[0]}.{variant}-{'-'.join(filename.split('-')[1:])}"
|
242 |
+
else:
|
243 |
+
variant_filename = f"{filename.split('.')[0]}.{variant}.{filename.split('.')[1]}"
|
244 |
+
return variant_filename
|
245 |
+
|
246 |
+
for f in non_variant_filenames:
|
247 |
+
variant_filename = convert_to_variant(f)
|
248 |
+
if variant_filename not in usable_filenames:
|
249 |
+
usable_filenames.add(f)
|
250 |
+
|
251 |
+
return usable_filenames, variant_filenames
|
252 |
+
|
253 |
+
|
254 |
+
def warn_deprecated_model_variant(pretrained_model_name_or_path, use_auth_token, variant, revision, model_filenames):
|
255 |
+
info = model_info(
|
256 |
+
pretrained_model_name_or_path,
|
257 |
+
use_auth_token=use_auth_token,
|
258 |
+
revision=None,
|
259 |
+
)
|
260 |
+
filenames = {sibling.rfilename for sibling in info.siblings}
|
261 |
+
comp_model_filenames, _ = variant_compatible_siblings(filenames, variant=revision)
|
262 |
+
comp_model_filenames = [".".join(f.split(".")[:1] + f.split(".")[2:]) for f in comp_model_filenames]
|
263 |
+
|
264 |
+
if set(comp_model_filenames) == set(model_filenames):
|
265 |
+
warnings.warn(
|
266 |
+
f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{revision}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
|
267 |
+
FutureWarning,
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
warnings.warn(
|
271 |
+
f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have the required variant filenames in the 'main' branch. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {revision} files' so that the correct variant file can be added.",
|
272 |
+
FutureWarning,
|
273 |
+
)
|
274 |
+
|
275 |
+
|
276 |
+
def maybe_raise_or_warn(
|
277 |
+
library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
|
278 |
+
):
|
279 |
+
"""Simple helper method to raise or warn in case incorrect module has been passed"""
|
280 |
+
if not is_pipeline_module:
|
281 |
+
library = importlib.import_module(library_name)
|
282 |
+
class_obj = getattr(library, class_name)
|
283 |
+
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
|
284 |
+
|
285 |
+
expected_class_obj = None
|
286 |
+
for class_name, class_candidate in class_candidates.items():
|
287 |
+
if class_candidate is not None and issubclass(class_obj, class_candidate):
|
288 |
+
expected_class_obj = class_candidate
|
289 |
+
|
290 |
+
# Dynamo wraps the original model in a private class.
|
291 |
+
# I didn't find a public API to get the original class.
|
292 |
+
sub_model = passed_class_obj[name]
|
293 |
+
model_cls = sub_model.__class__
|
294 |
+
if is_compiled_module(sub_model):
|
295 |
+
model_cls = sub_model._orig_mod.__class__
|
296 |
+
|
297 |
+
if not issubclass(model_cls, expected_class_obj):
|
298 |
+
raise ValueError(
|
299 |
+
f"{passed_class_obj[name]} is of type: {model_cls}, but should be" f" {expected_class_obj}"
|
300 |
+
)
|
301 |
+
else:
|
302 |
+
logger.warning(
|
303 |
+
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
|
304 |
+
" has the correct type"
|
305 |
+
)
|
306 |
+
|
307 |
+
|
308 |
+
def get_class_obj_and_candidates(library_name, class_name, importable_classes, pipelines, is_pipeline_module):
|
309 |
+
"""Simple helper method to retrieve class object of module as well as potential parent class objects"""
|
310 |
+
if is_pipeline_module:
|
311 |
+
pipeline_module = getattr(pipelines, library_name)
|
312 |
+
|
313 |
+
class_obj = getattr(pipeline_module, class_name)
|
314 |
+
class_candidates = {c: class_obj for c in importable_classes.keys()}
|
315 |
+
else:
|
316 |
+
# else we just import it from the library.
|
317 |
+
if class_name == 'UNet2DConditionModel':
|
318 |
+
library_name = "DeepCache.sd.unet_2d_condition"
|
319 |
+
|
320 |
+
|
321 |
+
library = importlib.import_module(library_name)
|
322 |
+
class_obj = getattr(library, class_name)
|
323 |
+
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
|
324 |
+
|
325 |
+
return class_obj, class_candidates
|
326 |
+
|
327 |
+
|
328 |
+
def _get_pipeline_class(
|
329 |
+
class_obj, config, load_connected_pipeline=False, custom_pipeline=None, cache_dir=None, revision=None
|
330 |
+
):
|
331 |
+
if custom_pipeline is not None:
|
332 |
+
if custom_pipeline.endswith(".py"):
|
333 |
+
path = Path(custom_pipeline)
|
334 |
+
# decompose into folder & file
|
335 |
+
file_name = path.name
|
336 |
+
custom_pipeline = path.parent.absolute()
|
337 |
+
else:
|
338 |
+
file_name = CUSTOM_PIPELINE_FILE_NAME
|
339 |
+
|
340 |
+
return get_class_from_dynamic_module(
|
341 |
+
custom_pipeline, module_file=file_name, cache_dir=cache_dir, revision=revision
|
342 |
+
)
|
343 |
+
|
344 |
+
if class_obj != DiffusionPipeline:
|
345 |
+
return class_obj
|
346 |
+
|
347 |
+
diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])
|
348 |
+
class_name = config["_class_name"]
|
349 |
+
|
350 |
+
if class_name.startswith("Flax"):
|
351 |
+
class_name = class_name[4:]
|
352 |
+
|
353 |
+
pipeline_cls = getattr(diffusers_module, class_name)
|
354 |
+
|
355 |
+
if load_connected_pipeline:
|
356 |
+
from .auto_pipeline import _get_connected_pipeline
|
357 |
+
|
358 |
+
connected_pipeline_cls = _get_connected_pipeline(pipeline_cls)
|
359 |
+
if connected_pipeline_cls is not None:
|
360 |
+
logger.info(
|
361 |
+
f"Loading connected pipeline {connected_pipeline_cls.__name__} instead of {pipeline_cls.__name__} as specified via `load_connected_pipeline=True`"
|
362 |
+
)
|
363 |
+
else:
|
364 |
+
logger.info(f"{pipeline_cls.__name__} has no connected pipeline class. Loading {pipeline_cls.__name__}.")
|
365 |
+
|
366 |
+
pipeline_cls = connected_pipeline_cls or pipeline_cls
|
367 |
+
|
368 |
+
return pipeline_cls
|
369 |
+
|
370 |
+
|
371 |
+
def load_sub_model(
|
372 |
+
library_name: str,
|
373 |
+
class_name: str,
|
374 |
+
importable_classes: List[Any],
|
375 |
+
pipelines: Any,
|
376 |
+
is_pipeline_module: bool,
|
377 |
+
pipeline_class: Any,
|
378 |
+
torch_dtype: torch.dtype,
|
379 |
+
provider: Any,
|
380 |
+
sess_options: Any,
|
381 |
+
device_map: Optional[Union[Dict[str, torch.device], str]],
|
382 |
+
max_memory: Optional[Dict[Union[int, str], Union[int, str]]],
|
383 |
+
offload_folder: Optional[Union[str, os.PathLike]],
|
384 |
+
offload_state_dict: bool,
|
385 |
+
model_variants: Dict[str, str],
|
386 |
+
name: str,
|
387 |
+
from_flax: bool,
|
388 |
+
variant: str,
|
389 |
+
low_cpu_mem_usage: bool,
|
390 |
+
cached_folder: Union[str, os.PathLike],
|
391 |
+
):
|
392 |
+
"""Helper method to load the module `name` from `library_name` and `class_name`"""
|
393 |
+
# retrieve class candidates
|
394 |
+
class_obj, class_candidates = get_class_obj_and_candidates(
|
395 |
+
library_name, class_name, importable_classes, pipelines, is_pipeline_module
|
396 |
+
)
|
397 |
+
|
398 |
+
load_method_name = None
|
399 |
+
# retrive load method name
|
400 |
+
for class_name, class_candidate in class_candidates.items():
|
401 |
+
if class_candidate is not None and issubclass(class_obj, class_candidate):
|
402 |
+
load_method_name = importable_classes[class_name][1]
|
403 |
+
|
404 |
+
# if load method name is None, then we have a dummy module -> raise Error
|
405 |
+
if load_method_name is None:
|
406 |
+
none_module = class_obj.__module__
|
407 |
+
is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
|
408 |
+
TRANSFORMERS_DUMMY_MODULES_FOLDER
|
409 |
+
)
|
410 |
+
if is_dummy_path and "dummy" in none_module:
|
411 |
+
# call class_obj for nice error message of missing requirements
|
412 |
+
class_obj()
|
413 |
+
|
414 |
+
raise ValueError(
|
415 |
+
f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
|
416 |
+
f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
|
417 |
+
)
|
418 |
+
|
419 |
+
load_method = getattr(class_obj, load_method_name)
|
420 |
+
|
421 |
+
# add kwargs to loading method
|
422 |
+
loading_kwargs = {}
|
423 |
+
if issubclass(class_obj, torch.nn.Module):
|
424 |
+
loading_kwargs["torch_dtype"] = torch_dtype
|
425 |
+
if issubclass(class_obj, diffusers.OnnxRuntimeModel):
|
426 |
+
loading_kwargs["provider"] = provider
|
427 |
+
loading_kwargs["sess_options"] = sess_options
|
428 |
+
|
429 |
+
is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)
|
430 |
+
|
431 |
+
if is_transformers_available():
|
432 |
+
transformers_version = version.parse(version.parse(transformers.__version__).base_version)
|
433 |
+
else:
|
434 |
+
transformers_version = "N/A"
|
435 |
+
|
436 |
+
is_transformers_model = (
|
437 |
+
is_transformers_available()
|
438 |
+
and issubclass(class_obj, PreTrainedModel)
|
439 |
+
and transformers_version >= version.parse("4.20.0")
|
440 |
+
)
|
441 |
+
|
442 |
+
# When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
|
443 |
+
# To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
|
444 |
+
# This makes sure that the weights won't be initialized which significantly speeds up loading.
|
445 |
+
if is_diffusers_model or is_transformers_model:
|
446 |
+
loading_kwargs["device_map"] = device_map
|
447 |
+
loading_kwargs["max_memory"] = max_memory
|
448 |
+
loading_kwargs["offload_folder"] = offload_folder
|
449 |
+
loading_kwargs["offload_state_dict"] = offload_state_dict
|
450 |
+
loading_kwargs["variant"] = model_variants.pop(name, None)
|
451 |
+
if from_flax:
|
452 |
+
loading_kwargs["from_flax"] = True
|
453 |
+
|
454 |
+
# the following can be deleted once the minimum required `transformers` version
|
455 |
+
# is higher than 4.27
|
456 |
+
if (
|
457 |
+
is_transformers_model
|
458 |
+
and loading_kwargs["variant"] is not None
|
459 |
+
and transformers_version < version.parse("4.27.0")
|
460 |
+
):
|
461 |
+
raise ImportError(
|
462 |
+
f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0"
|
463 |
+
)
|
464 |
+
elif is_transformers_model and loading_kwargs["variant"] is None:
|
465 |
+
loading_kwargs.pop("variant")
|
466 |
+
|
467 |
+
# if `from_flax` and model is transformer model, can currently not load with `low_cpu_mem_usage`
|
468 |
+
if not (from_flax and is_transformers_model):
|
469 |
+
loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
|
470 |
+
else:
|
471 |
+
loading_kwargs["low_cpu_mem_usage"] = False
|
472 |
+
|
473 |
+
# check if the module is in a subdirectory
|
474 |
+
if os.path.isdir(os.path.join(cached_folder, name)):
|
475 |
+
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
|
476 |
+
else:
|
477 |
+
# else load from the root directory
|
478 |
+
loaded_sub_model = load_method(cached_folder, **loading_kwargs)
|
479 |
+
|
480 |
+
return loaded_sub_model
|
481 |
+
|
482 |
+
|
483 |
+
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
484 |
+
r"""
|
485 |
+
Base class for all pipelines.
|
486 |
+
|
487 |
+
[`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
|
488 |
+
provides methods for loading, downloading and saving models. It also includes methods to:
|
489 |
+
|
490 |
+
- move all PyTorch modules to the device of your choice
|
491 |
+
- enable/disable the progress bar for the denoising iteration
|
492 |
+
|
493 |
+
Class attributes:
|
494 |
+
|
495 |
+
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
|
496 |
+
diffusion pipeline's components.
|
497 |
+
- **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
|
498 |
+
pipeline to function (should be overridden by subclasses).
|
499 |
+
"""
|
500 |
+
config_name = "model_index.json"
|
501 |
+
model_cpu_offload_seq = None
|
502 |
+
_optional_components = []
|
503 |
+
_exclude_from_cpu_offload = []
|
504 |
+
_load_connected_pipes = False
|
505 |
+
_is_onnx = False
|
506 |
+
|
507 |
+
def register_modules(self, **kwargs):
|
508 |
+
# import it here to avoid circular import
|
509 |
+
from diffusers import pipelines
|
510 |
+
|
511 |
+
for name, module in kwargs.items():
|
512 |
+
# retrieve library
|
513 |
+
if module is None:
|
514 |
+
register_dict = {name: (None, None)}
|
515 |
+
else:
|
516 |
+
# register the config from the original module, not the dynamo compiled one
|
517 |
+
if is_compiled_module(module):
|
518 |
+
not_compiled_module = module._orig_mod
|
519 |
+
else:
|
520 |
+
not_compiled_module = module
|
521 |
+
|
522 |
+
library = not_compiled_module.__module__.split(".")[0]
|
523 |
+
|
524 |
+
# check if the module is a pipeline module
|
525 |
+
module_path_items = not_compiled_module.__module__.split(".")
|
526 |
+
pipeline_dir = module_path_items[-2] if len(module_path_items) > 2 else None
|
527 |
+
|
528 |
+
path = not_compiled_module.__module__.split(".")
|
529 |
+
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
|
530 |
+
|
531 |
+
# if library is not in LOADABLE_CLASSES, then it is a custom module.
|
532 |
+
# Or if it's a pipeline module, then the module is inside the pipeline
|
533 |
+
# folder so we set the library to module name.
|
534 |
+
if is_pipeline_module:
|
535 |
+
library = pipeline_dir
|
536 |
+
elif library not in LOADABLE_CLASSES:
|
537 |
+
library = not_compiled_module.__module__
|
538 |
+
|
539 |
+
# retrieve class_name
|
540 |
+
class_name = not_compiled_module.__class__.__name__
|
541 |
+
|
542 |
+
register_dict = {name: (library, class_name)}
|
543 |
+
|
544 |
+
# save model index config
|
545 |
+
self.register_to_config(**register_dict)
|
546 |
+
|
547 |
+
# set models
|
548 |
+
setattr(self, name, module)
|
549 |
+
|
550 |
+
def __setattr__(self, name: str, value: Any):
|
551 |
+
if name in self.__dict__ and hasattr(self.config, name):
|
552 |
+
# We need to overwrite the config if name exists in config
|
553 |
+
if isinstance(getattr(self.config, name), (tuple, list)):
|
554 |
+
if value is not None and self.config[name][0] is not None:
|
555 |
+
class_library_tuple = (value.__module__.split(".")[0], value.__class__.__name__)
|
556 |
+
else:
|
557 |
+
class_library_tuple = (None, None)
|
558 |
+
|
559 |
+
self.register_to_config(**{name: class_library_tuple})
|
560 |
+
else:
|
561 |
+
self.register_to_config(**{name: value})
|
562 |
+
|
563 |
+
super().__setattr__(name, value)
|
564 |
+
|
565 |
+
def save_pretrained(
|
566 |
+
self,
|
567 |
+
save_directory: Union[str, os.PathLike],
|
568 |
+
safe_serialization: bool = True,
|
569 |
+
variant: Optional[str] = None,
|
570 |
+
push_to_hub: bool = False,
|
571 |
+
**kwargs,
|
572 |
+
):
|
573 |
+
"""
|
574 |
+
Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
|
575 |
+
class implements both a save and loading method. The pipeline is easily reloaded using the
|
576 |
+
[`~DiffusionPipeline.from_pretrained`] class method.
|
577 |
+
|
578 |
+
Arguments:
|
579 |
+
save_directory (`str` or `os.PathLike`):
|
580 |
+
Directory to save a pipeline to. Will be created if it doesn't exist.
|
581 |
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
582 |
+
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
583 |
+
variant (`str`, *optional*):
|
584 |
+
If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
|
585 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
586 |
+
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
587 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
588 |
+
namespace).
|
589 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
590 |
+
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
591 |
+
"""
|
592 |
+
model_index_dict = dict(self.config)
|
593 |
+
model_index_dict.pop("_class_name", None)
|
594 |
+
model_index_dict.pop("_diffusers_version", None)
|
595 |
+
model_index_dict.pop("_module", None)
|
596 |
+
model_index_dict.pop("_name_or_path", None)
|
597 |
+
|
598 |
+
if push_to_hub:
|
599 |
+
commit_message = kwargs.pop("commit_message", None)
|
600 |
+
private = kwargs.pop("private", False)
|
601 |
+
create_pr = kwargs.pop("create_pr", False)
|
602 |
+
token = kwargs.pop("token", None)
|
603 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
604 |
+
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
|
605 |
+
|
606 |
+
expected_modules, optional_kwargs = self._get_signature_keys(self)
|
607 |
+
|
608 |
+
def is_saveable_module(name, value):
|
609 |
+
if name not in expected_modules:
|
610 |
+
return False
|
611 |
+
if name in self._optional_components and value[0] is None:
|
612 |
+
return False
|
613 |
+
return True
|
614 |
+
|
615 |
+
model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
|
616 |
+
for pipeline_component_name in model_index_dict.keys():
|
617 |
+
sub_model = getattr(self, pipeline_component_name)
|
618 |
+
model_cls = sub_model.__class__
|
619 |
+
|
620 |
+
# Dynamo wraps the original model in a private class.
|
621 |
+
# I didn't find a public API to get the original class.
|
622 |
+
if is_compiled_module(sub_model):
|
623 |
+
sub_model = sub_model._orig_mod
|
624 |
+
model_cls = sub_model.__class__
|
625 |
+
|
626 |
+
save_method_name = None
|
627 |
+
# search for the model's base class in LOADABLE_CLASSES
|
628 |
+
for library_name, library_classes in LOADABLE_CLASSES.items():
|
629 |
+
if library_name in sys.modules:
|
630 |
+
library = importlib.import_module(library_name)
|
631 |
+
else:
|
632 |
+
logger.info(
|
633 |
+
f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
|
634 |
+
)
|
635 |
+
|
636 |
+
for base_class, save_load_methods in library_classes.items():
|
637 |
+
class_candidate = getattr(library, base_class, None)
|
638 |
+
if class_candidate is not None and issubclass(model_cls, class_candidate):
|
639 |
+
# if we found a suitable base class in LOADABLE_CLASSES then grab its save method
|
640 |
+
save_method_name = save_load_methods[0]
|
641 |
+
break
|
642 |
+
if save_method_name is not None:
|
643 |
+
break
|
644 |
+
|
645 |
+
if save_method_name is None:
|
646 |
+
logger.warn(f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved.")
|
647 |
+
# make sure that unsaveable components are not tried to be loaded afterward
|
648 |
+
self.register_to_config(**{pipeline_component_name: (None, None)})
|
649 |
+
continue
|
650 |
+
|
651 |
+
save_method = getattr(sub_model, save_method_name)
|
652 |
+
|
653 |
+
# Call the save method with the argument safe_serialization only if it's supported
|
654 |
+
save_method_signature = inspect.signature(save_method)
|
655 |
+
save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
|
656 |
+
save_method_accept_variant = "variant" in save_method_signature.parameters
|
657 |
+
|
658 |
+
save_kwargs = {}
|
659 |
+
if save_method_accept_safe:
|
660 |
+
save_kwargs["safe_serialization"] = safe_serialization
|
661 |
+
if save_method_accept_variant:
|
662 |
+
save_kwargs["variant"] = variant
|
663 |
+
|
664 |
+
save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
|
665 |
+
|
666 |
+
# finally save the config
|
667 |
+
self.save_config(save_directory)
|
668 |
+
|
669 |
+
if push_to_hub:
|
670 |
+
self._upload_folder(
|
671 |
+
save_directory,
|
672 |
+
repo_id,
|
673 |
+
token=token,
|
674 |
+
commit_message=commit_message,
|
675 |
+
create_pr=create_pr,
|
676 |
+
)
|
677 |
+
|
678 |
+
def to(
|
679 |
+
self,
|
680 |
+
torch_device: Optional[Union[str, torch.device]] = None,
|
681 |
+
torch_dtype: Optional[torch.dtype] = None,
|
682 |
+
silence_dtype_warnings: bool = False,
|
683 |
+
):
|
684 |
+
if torch_device is None and torch_dtype is None:
|
685 |
+
return self
|
686 |
+
|
687 |
+
# throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
|
688 |
+
def module_is_sequentially_offloaded(module):
|
689 |
+
if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
|
690 |
+
return False
|
691 |
+
|
692 |
+
return hasattr(module, "_hf_hook") and not isinstance(
|
693 |
+
module._hf_hook, (accelerate.hooks.CpuOffload, accelerate.hooks.AlignDevicesHook)
|
694 |
+
)
|
695 |
+
|
696 |
+
def module_is_offloaded(module):
|
697 |
+
if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
|
698 |
+
return False
|
699 |
+
|
700 |
+
return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)
|
701 |
+
|
702 |
+
# .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
|
703 |
+
pipeline_is_sequentially_offloaded = any(
|
704 |
+
module_is_sequentially_offloaded(module) for _, module in self.components.items()
|
705 |
+
)
|
706 |
+
if pipeline_is_sequentially_offloaded and torch_device and torch.device(torch_device).type == "cuda":
|
707 |
+
raise ValueError(
|
708 |
+
"It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
|
709 |
+
)
|
710 |
+
|
711 |
+
# Display a warning in this case (the operation succeeds but the benefits are lost)
|
712 |
+
pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
|
713 |
+
if pipeline_is_offloaded and torch_device and torch.device(torch_device).type == "cuda":
|
714 |
+
logger.warning(
|
715 |
+
f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
|
716 |
+
)
|
717 |
+
|
718 |
+
module_names, _ = self._get_signature_keys(self)
|
719 |
+
modules = [getattr(self, n, None) for n in module_names]
|
720 |
+
modules = [m for m in modules if isinstance(m, torch.nn.Module)]
|
721 |
+
|
722 |
+
is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
|
723 |
+
for module in modules:
|
724 |
+
is_loaded_in_8bit = hasattr(module, "is_loaded_in_8bit") and module.is_loaded_in_8bit
|
725 |
+
|
726 |
+
if is_loaded_in_8bit and torch_dtype is not None:
|
727 |
+
logger.warning(
|
728 |
+
f"The module '{module.__class__.__name__}' has been loaded in 8bit and conversion to {torch_dtype} is not yet supported. Module is still in 8bit precision."
|
729 |
+
)
|
730 |
+
|
731 |
+
if is_loaded_in_8bit and torch_device is not None:
|
732 |
+
logger.warning(
|
733 |
+
f"The module '{module.__class__.__name__}' has been loaded in 8bit and moving it to {torch_dtype} via `.to()` is not yet supported. Module is still on {module.device}."
|
734 |
+
)
|
735 |
+
else:
|
736 |
+
module.to(torch_device, torch_dtype)
|
737 |
+
|
738 |
+
if (
|
739 |
+
module.dtype == torch.float16
|
740 |
+
and str(torch_device) in ["cpu"]
|
741 |
+
and not silence_dtype_warnings
|
742 |
+
and not is_offloaded
|
743 |
+
):
|
744 |
+
logger.warning(
|
745 |
+
"Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` device. It"
|
746 |
+
" is not recommended to move them to `cpu` as running them will fail. Please make"
|
747 |
+
" sure to use an accelerator to run the pipeline in inference, due to the lack of"
|
748 |
+
" support for`float16` operations on this device in PyTorch. Please, remove the"
|
749 |
+
" `torch_dtype=torch.float16` argument, or use another device for inference."
|
750 |
+
)
|
751 |
+
return self
|
752 |
+
|
753 |
+
@property
|
754 |
+
def device(self) -> torch.device:
|
755 |
+
r"""
|
756 |
+
Returns:
|
757 |
+
`torch.device`: The torch device on which the pipeline is located.
|
758 |
+
"""
|
759 |
+
module_names, _ = self._get_signature_keys(self)
|
760 |
+
modules = [getattr(self, n, None) for n in module_names]
|
761 |
+
modules = [m for m in modules if isinstance(m, torch.nn.Module)]
|
762 |
+
|
763 |
+
for module in modules:
|
764 |
+
return module.device
|
765 |
+
|
766 |
+
return torch.device("cpu")
|
767 |
+
|
768 |
+
@classmethod
|
769 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
770 |
+
r"""
|
771 |
+
Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
|
772 |
+
|
773 |
+
The pipeline is set in evaluation mode (`model.eval()`) by default.
|
774 |
+
|
775 |
+
If you get the error message below, you need to finetune the weights for your downstream task:
|
776 |
+
|
777 |
+
```
|
778 |
+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
779 |
+
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
780 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
781 |
+
```
|
782 |
+
|
783 |
+
Parameters:
|
784 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
785 |
+
Can be either:
|
786 |
+
|
787 |
+
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
|
788 |
+
hosted on the Hub.
|
789 |
+
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
|
790 |
+
saved using
|
791 |
+
[`~DiffusionPipeline.save_pretrained`].
|
792 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
793 |
+
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
|
794 |
+
dtype is automatically derived from the model's weights.
|
795 |
+
custom_pipeline (`str`, *optional*):
|
796 |
+
|
797 |
+
<Tip warning={true}>
|
798 |
+
|
799 |
+
🧪 This is an experimental feature and may change in the future.
|
800 |
+
|
801 |
+
</Tip>
|
802 |
+
|
803 |
+
Can be either:
|
804 |
+
|
805 |
+
- A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
|
806 |
+
pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
|
807 |
+
the custom pipeline.
|
808 |
+
- A string, the *file name* of a community pipeline hosted on GitHub under
|
809 |
+
[Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
|
810 |
+
names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
|
811 |
+
instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
|
812 |
+
current main branch of GitHub.
|
813 |
+
- A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
|
814 |
+
must contain a file called `pipeline.py` that defines the custom pipeline.
|
815 |
+
|
816 |
+
For more information on how to load and create custom pipelines, please have a look at [Loading and
|
817 |
+
Adding Custom
|
818 |
+
Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
|
819 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
820 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
821 |
+
cached versions if they exist.
|
822 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
823 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
824 |
+
is not used.
|
825 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
826 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
827 |
+
incompletely downloaded files are deleted.
|
828 |
+
proxies (`Dict[str, str]`, *optional*):
|
829 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
830 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
831 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
832 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
833 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
834 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
835 |
+
won't be downloaded from the Hub.
|
836 |
+
use_auth_token (`str` or *bool*, *optional*):
|
837 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
838 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
839 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
840 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
841 |
+
allowed by Git.
|
842 |
+
custom_revision (`str`, *optional*, defaults to `"main"`):
|
843 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
|
844 |
+
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
|
845 |
+
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
|
846 |
+
mirror (`str`, *optional*):
|
847 |
+
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
|
848 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
849 |
+
information.
|
850 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
851 |
+
A map that specifies where each submodule should go. It doesn’t need to be defined for each
|
852 |
+
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
|
853 |
+
same device.
|
854 |
+
|
855 |
+
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
|
856 |
+
more information about each option see [designing a device
|
857 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
858 |
+
max_memory (`Dict`, *optional*):
|
859 |
+
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
|
860 |
+
each GPU and the available CPU RAM if unset.
|
861 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
862 |
+
The path to offload weights if device_map contains the value `"disk"`.
|
863 |
+
offload_state_dict (`bool`, *optional*):
|
864 |
+
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
|
865 |
+
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
|
866 |
+
when there is some disk offload.
|
867 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
868 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
869 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
870 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
871 |
+
argument to `True` will raise an error.
|
872 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
873 |
+
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
|
874 |
+
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
|
875 |
+
weights. If set to `False`, safetensors weights are not loaded.
|
876 |
+
use_onnx (`bool`, *optional*, defaults to `None`):
|
877 |
+
If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
|
878 |
+
will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
|
879 |
+
`False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
|
880 |
+
with `.onnx` and `.pb`.
|
881 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
882 |
+
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
|
883 |
+
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
|
884 |
+
below for more information.
|
885 |
+
variant (`str`, *optional*):
|
886 |
+
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
|
887 |
+
loading `from_flax`.
|
888 |
+
|
889 |
+
<Tip>
|
890 |
+
|
891 |
+
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
|
892 |
+
`huggingface-cli login`.
|
893 |
+
|
894 |
+
</Tip>
|
895 |
+
|
896 |
+
Examples:
|
897 |
+
|
898 |
+
```py
|
899 |
+
>>> from diffusers import DiffusionPipeline
|
900 |
+
|
901 |
+
>>> # Download pipeline from huggingface.co and cache.
|
902 |
+
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
|
903 |
+
|
904 |
+
>>> # Download pipeline that requires an authorization token
|
905 |
+
>>> # For more information on access tokens, please refer to this section
|
906 |
+
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
|
907 |
+
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
908 |
+
|
909 |
+
>>> # Use a different scheduler
|
910 |
+
>>> from diffusers import LMSDiscreteScheduler
|
911 |
+
|
912 |
+
>>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
|
913 |
+
>>> pipeline.scheduler = scheduler
|
914 |
+
```
|
915 |
+
"""
|
916 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
917 |
+
resume_download = kwargs.pop("resume_download", False)
|
918 |
+
force_download = kwargs.pop("force_download", False)
|
919 |
+
proxies = kwargs.pop("proxies", None)
|
920 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
921 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
922 |
+
revision = kwargs.pop("revision", None)
|
923 |
+
from_flax = kwargs.pop("from_flax", False)
|
924 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
925 |
+
custom_pipeline = kwargs.pop("custom_pipeline", None)
|
926 |
+
custom_revision = kwargs.pop("custom_revision", None)
|
927 |
+
provider = kwargs.pop("provider", None)
|
928 |
+
sess_options = kwargs.pop("sess_options", None)
|
929 |
+
device_map = kwargs.pop("device_map", None)
|
930 |
+
max_memory = kwargs.pop("max_memory", None)
|
931 |
+
offload_folder = kwargs.pop("offload_folder", None)
|
932 |
+
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
933 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
934 |
+
variant = kwargs.pop("variant", None)
|
935 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
936 |
+
use_onnx = kwargs.pop("use_onnx", None)
|
937 |
+
load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
|
938 |
+
|
939 |
+
# 1. Download the checkpoints and configs
|
940 |
+
# use snapshot download here to get it working from from_pretrained
|
941 |
+
if not os.path.isdir(pretrained_model_name_or_path):
|
942 |
+
cached_folder = cls.download(
|
943 |
+
pretrained_model_name_or_path,
|
944 |
+
cache_dir=cache_dir,
|
945 |
+
resume_download=resume_download,
|
946 |
+
force_download=force_download,
|
947 |
+
proxies=proxies,
|
948 |
+
local_files_only=local_files_only,
|
949 |
+
use_auth_token=use_auth_token,
|
950 |
+
revision=revision,
|
951 |
+
from_flax=from_flax,
|
952 |
+
use_safetensors=use_safetensors,
|
953 |
+
use_onnx=use_onnx,
|
954 |
+
custom_pipeline=custom_pipeline,
|
955 |
+
custom_revision=custom_revision,
|
956 |
+
variant=variant,
|
957 |
+
load_connected_pipeline=load_connected_pipeline,
|
958 |
+
**kwargs,
|
959 |
+
)
|
960 |
+
else:
|
961 |
+
cached_folder = pretrained_model_name_or_path
|
962 |
+
|
963 |
+
config_dict = cls.load_config(cached_folder)
|
964 |
+
|
965 |
+
# pop out "_ignore_files" as it is only needed for download
|
966 |
+
config_dict.pop("_ignore_files", None)
|
967 |
+
|
968 |
+
# 2. Define which model components should load variants
|
969 |
+
# We retrieve the information by matching whether variant
|
970 |
+
# model checkpoints exist in the subfolders
|
971 |
+
model_variants = {}
|
972 |
+
if variant is not None:
|
973 |
+
for folder in os.listdir(cached_folder):
|
974 |
+
folder_path = os.path.join(cached_folder, folder)
|
975 |
+
is_folder = os.path.isdir(folder_path) and folder in config_dict
|
976 |
+
variant_exists = is_folder and any(
|
977 |
+
p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)
|
978 |
+
)
|
979 |
+
if variant_exists:
|
980 |
+
model_variants[folder] = variant
|
981 |
+
|
982 |
+
# 3. Load the pipeline class, if using custom module then load it from the hub
|
983 |
+
# if we load from explicit class, let's use it
|
984 |
+
pipeline_class = _get_pipeline_class(
|
985 |
+
cls,
|
986 |
+
config_dict,
|
987 |
+
load_connected_pipeline=load_connected_pipeline,
|
988 |
+
custom_pipeline=custom_pipeline,
|
989 |
+
cache_dir=cache_dir,
|
990 |
+
revision=custom_revision,
|
991 |
+
)
|
992 |
+
|
993 |
+
# DEPRECATED: To be removed in 1.0.0
|
994 |
+
if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
|
995 |
+
version.parse(config_dict["_diffusers_version"]).base_version
|
996 |
+
) <= version.parse("0.5.1"):
|
997 |
+
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy
|
998 |
+
|
999 |
+
pipeline_class = StableDiffusionInpaintPipelineLegacy
|
1000 |
+
|
1001 |
+
deprecation_message = (
|
1002 |
+
"You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
|
1003 |
+
f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
|
1004 |
+
" better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
|
1005 |
+
" checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
|
1006 |
+
f" checkpoint {pretrained_model_name_or_path} to the format of"
|
1007 |
+
" https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
|
1008 |
+
" the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
|
1009 |
+
)
|
1010 |
+
deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)
|
1011 |
+
|
1012 |
+
# 4. Define expected modules given pipeline signature
|
1013 |
+
# and define non-None initialized modules (=`init_kwargs`)
|
1014 |
+
|
1015 |
+
# some modules can be passed directly to the init
|
1016 |
+
# in this case they are already instantiated in `kwargs`
|
1017 |
+
# extract them here
|
1018 |
+
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
|
1019 |
+
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
|
1020 |
+
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
|
1021 |
+
|
1022 |
+
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
|
1023 |
+
|
1024 |
+
# define init kwargs and make sure that optional component modules are filtered out
|
1025 |
+
init_kwargs = {
|
1026 |
+
k: init_dict.pop(k)
|
1027 |
+
for k in optional_kwargs
|
1028 |
+
if k in init_dict and k not in pipeline_class._optional_components
|
1029 |
+
}
|
1030 |
+
init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
|
1031 |
+
|
1032 |
+
# remove `null` components
|
1033 |
+
def load_module(name, value):
|
1034 |
+
if value[0] is None:
|
1035 |
+
return False
|
1036 |
+
if name in passed_class_obj and passed_class_obj[name] is None:
|
1037 |
+
return False
|
1038 |
+
return True
|
1039 |
+
|
1040 |
+
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
|
1041 |
+
|
1042 |
+
# Special case: safety_checker must be loaded separately when using `from_flax`
|
1043 |
+
if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
|
1044 |
+
raise NotImplementedError(
|
1045 |
+
"The safety checker cannot be automatically loaded when loading weights `from_flax`."
|
1046 |
+
" Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
|
1047 |
+
" separately if you need it."
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
# 5. Throw nice warnings / errors for fast accelerate loading
|
1051 |
+
if len(unused_kwargs) > 0:
|
1052 |
+
logger.warning(
|
1053 |
+
f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
1057 |
+
low_cpu_mem_usage = False
|
1058 |
+
logger.warning(
|
1059 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
1060 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
1061 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
1062 |
+
" install accelerate\n```\n."
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
1066 |
+
raise NotImplementedError(
|
1067 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1068 |
+
" `device_map=None`."
|
1069 |
+
)
|
1070 |
+
|
1071 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
1072 |
+
raise NotImplementedError(
|
1073 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1074 |
+
" `low_cpu_mem_usage=False`."
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
if low_cpu_mem_usage is False and device_map is not None:
|
1078 |
+
raise ValueError(
|
1079 |
+
f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
|
1080 |
+
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
# import it here to avoid circular import
|
1084 |
+
from diffusers import pipelines
|
1085 |
+
|
1086 |
+
# 6. Load each module in the pipeline
|
1087 |
+
for name, (library_name, class_name) in tqdm(init_dict.items(), desc="Loading pipeline components..."):
|
1088 |
+
# 6.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
|
1089 |
+
if class_name.startswith("Flax"):
|
1090 |
+
class_name = class_name[4:]
|
1091 |
+
|
1092 |
+
# 6.2 Define all importable classes
|
1093 |
+
is_pipeline_module = hasattr(pipelines, library_name)
|
1094 |
+
importable_classes = ALL_IMPORTABLE_CLASSES
|
1095 |
+
loaded_sub_model = None
|
1096 |
+
|
1097 |
+
# 6.3 Use passed sub model or load class_name from library_name
|
1098 |
+
if name in passed_class_obj:
|
1099 |
+
# if the model is in a pipeline module, then we load it from the pipeline
|
1100 |
+
# check that passed_class_obj has correct parent class
|
1101 |
+
maybe_raise_or_warn(
|
1102 |
+
library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
|
1103 |
+
)
|
1104 |
+
|
1105 |
+
loaded_sub_model = passed_class_obj[name]
|
1106 |
+
else:
|
1107 |
+
# load sub model
|
1108 |
+
loaded_sub_model = load_sub_model(
|
1109 |
+
library_name=library_name,
|
1110 |
+
class_name=class_name,
|
1111 |
+
importable_classes=importable_classes,
|
1112 |
+
pipelines=pipelines,
|
1113 |
+
is_pipeline_module=is_pipeline_module,
|
1114 |
+
pipeline_class=pipeline_class,
|
1115 |
+
torch_dtype=torch_dtype,
|
1116 |
+
provider=provider,
|
1117 |
+
sess_options=sess_options,
|
1118 |
+
device_map=device_map,
|
1119 |
+
max_memory=max_memory,
|
1120 |
+
offload_folder=offload_folder,
|
1121 |
+
offload_state_dict=offload_state_dict,
|
1122 |
+
model_variants=model_variants,
|
1123 |
+
name=name,
|
1124 |
+
from_flax=from_flax,
|
1125 |
+
variant=variant,
|
1126 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
1127 |
+
cached_folder=cached_folder,
|
1128 |
+
)
|
1129 |
+
logger.info(
|
1130 |
+
f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...)
|
1134 |
+
|
1135 |
+
if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
|
1136 |
+
modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
|
1137 |
+
connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
|
1138 |
+
load_kwargs = {
|
1139 |
+
"cache_dir": cache_dir,
|
1140 |
+
"resume_download": resume_download,
|
1141 |
+
"force_download": force_download,
|
1142 |
+
"proxies": proxies,
|
1143 |
+
"local_files_only": local_files_only,
|
1144 |
+
"use_auth_token": use_auth_token,
|
1145 |
+
"revision": revision,
|
1146 |
+
"torch_dtype": torch_dtype,
|
1147 |
+
"custom_pipeline": custom_pipeline,
|
1148 |
+
"custom_revision": custom_revision,
|
1149 |
+
"provider": provider,
|
1150 |
+
"sess_options": sess_options,
|
1151 |
+
"device_map": device_map,
|
1152 |
+
"max_memory": max_memory,
|
1153 |
+
"offload_folder": offload_folder,
|
1154 |
+
"offload_state_dict": offload_state_dict,
|
1155 |
+
"low_cpu_mem_usage": low_cpu_mem_usage,
|
1156 |
+
"variant": variant,
|
1157 |
+
"use_safetensors": use_safetensors,
|
1158 |
+
}
|
1159 |
+
|
1160 |
+
def get_connected_passed_kwargs(prefix):
|
1161 |
+
connected_passed_class_obj = {
|
1162 |
+
k.replace(f"{prefix}_", ""): w for k, w in passed_class_obj.items() if k.split("_")[0] == prefix
|
1163 |
+
}
|
1164 |
+
connected_passed_pipe_kwargs = {
|
1165 |
+
k.replace(f"{prefix}_", ""): w for k, w in passed_pipe_kwargs.items() if k.split("_")[0] == prefix
|
1166 |
+
}
|
1167 |
+
|
1168 |
+
connected_passed_kwargs = {**connected_passed_class_obj, **connected_passed_pipe_kwargs}
|
1169 |
+
return connected_passed_kwargs
|
1170 |
+
|
1171 |
+
connected_pipes = {
|
1172 |
+
prefix: DiffusionPipeline.from_pretrained(
|
1173 |
+
repo_id, **load_kwargs.copy(), **get_connected_passed_kwargs(prefix)
|
1174 |
+
)
|
1175 |
+
for prefix, repo_id in connected_pipes.items()
|
1176 |
+
if repo_id is not None
|
1177 |
+
}
|
1178 |
+
|
1179 |
+
for prefix, connected_pipe in connected_pipes.items():
|
1180 |
+
# add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
|
1181 |
+
init_kwargs.update(
|
1182 |
+
{"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
# 7. Potentially add passed objects if expected
|
1186 |
+
missing_modules = set(expected_modules) - set(init_kwargs.keys())
|
1187 |
+
passed_modules = list(passed_class_obj.keys())
|
1188 |
+
optional_modules = pipeline_class._optional_components
|
1189 |
+
if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
|
1190 |
+
for module in missing_modules:
|
1191 |
+
init_kwargs[module] = passed_class_obj.get(module, None)
|
1192 |
+
elif len(missing_modules) > 0:
|
1193 |
+
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
|
1194 |
+
raise ValueError(
|
1195 |
+
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
# 8. Instantiate the pipeline
|
1199 |
+
model = pipeline_class(**init_kwargs)
|
1200 |
+
|
1201 |
+
# 9. Save where the model was instantiated from
|
1202 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
1203 |
+
return model
|
1204 |
+
|
1205 |
+
@property
|
1206 |
+
def name_or_path(self) -> str:
|
1207 |
+
return getattr(self.config, "_name_or_path", None)
|
1208 |
+
|
1209 |
+
@property
|
1210 |
+
def _execution_device(self):
|
1211 |
+
r"""
|
1212 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
1213 |
+
[`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
|
1214 |
+
Accelerate's module hooks.
|
1215 |
+
"""
|
1216 |
+
for name, model in self.components.items():
|
1217 |
+
if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
|
1218 |
+
continue
|
1219 |
+
|
1220 |
+
if not hasattr(model, "_hf_hook"):
|
1221 |
+
return self.device
|
1222 |
+
for module in model.modules():
|
1223 |
+
if (
|
1224 |
+
hasattr(module, "_hf_hook")
|
1225 |
+
and hasattr(module._hf_hook, "execution_device")
|
1226 |
+
and module._hf_hook.execution_device is not None
|
1227 |
+
):
|
1228 |
+
return torch.device(module._hf_hook.execution_device)
|
1229 |
+
return self.device
|
1230 |
+
|
1231 |
+
def enable_model_cpu_offload(self, gpu_id: int = 0, device: Union[torch.device, str] = "cuda"):
|
1232 |
+
r"""
|
1233 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
1234 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
1235 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
1236 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
1237 |
+
"""
|
1238 |
+
if self.model_cpu_offload_seq is None:
|
1239 |
+
raise ValueError(
|
1240 |
+
"Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
|
1241 |
+
)
|
1242 |
+
|
1243 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
1244 |
+
from accelerate import cpu_offload_with_hook
|
1245 |
+
else:
|
1246 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
1247 |
+
|
1248 |
+
device = torch.device(f"cuda:{gpu_id}")
|
1249 |
+
|
1250 |
+
if self.device.type != "cpu":
|
1251 |
+
self.to("cpu", silence_dtype_warnings=True)
|
1252 |
+
device_mod = getattr(torch, self.device.type, None)
|
1253 |
+
if hasattr(device_mod, "empty_cache") and device_mod.is_available():
|
1254 |
+
device_mod.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
1255 |
+
|
1256 |
+
all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}
|
1257 |
+
|
1258 |
+
self._all_hooks = []
|
1259 |
+
hook = None
|
1260 |
+
for model_str in self.model_cpu_offload_seq.split("->"):
|
1261 |
+
model = all_model_components.pop(model_str, None)
|
1262 |
+
if not isinstance(model, torch.nn.Module):
|
1263 |
+
continue
|
1264 |
+
|
1265 |
+
_, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
|
1266 |
+
self._all_hooks.append(hook)
|
1267 |
+
|
1268 |
+
# CPU offload models that are not in the seq chain unless they are explicitly excluded
|
1269 |
+
# these models will stay on CPU until maybe_free_model_hooks is called
|
1270 |
+
# some models cannot be in the seq chain because they are iteratively called, such as controlnet
|
1271 |
+
for name, model in all_model_components.items():
|
1272 |
+
if not isinstance(model, torch.nn.Module):
|
1273 |
+
continue
|
1274 |
+
|
1275 |
+
if name in self._exclude_from_cpu_offload:
|
1276 |
+
model.to(device)
|
1277 |
+
else:
|
1278 |
+
_, hook = cpu_offload_with_hook(model, device)
|
1279 |
+
self._all_hooks.append(hook)
|
1280 |
+
|
1281 |
+
def maybe_free_model_hooks(self):
|
1282 |
+
r"""
|
1283 |
+
TODO: Better doc string
|
1284 |
+
"""
|
1285 |
+
if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
|
1286 |
+
# `enable_model_cpu_offload` has not be called, so silently do nothing
|
1287 |
+
return
|
1288 |
+
|
1289 |
+
for hook in self._all_hooks:
|
1290 |
+
# offload model and remove hook from model
|
1291 |
+
hook.offload()
|
1292 |
+
hook.remove()
|
1293 |
+
|
1294 |
+
# make sure the model is in the same state as before calling it
|
1295 |
+
self.enable_model_cpu_offload()
|
1296 |
+
|
1297 |
+
def enable_sequential_cpu_offload(self, gpu_id: int = 0, device: Union[torch.device, str] = "cuda"):
|
1298 |
+
r"""
|
1299 |
+
Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
|
1300 |
+
dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
|
1301 |
+
and then moved to `torch.device('meta')` and loaded to GPU only when their specific submodule has its `forward`
|
1302 |
+
method called. Offloading happens on a submodule basis. Memory savings are higher than with
|
1303 |
+
`enable_model_cpu_offload`, but performance is lower.
|
1304 |
+
"""
|
1305 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
1306 |
+
from accelerate import cpu_offload
|
1307 |
+
else:
|
1308 |
+
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
1309 |
+
|
1310 |
+
if device == "cuda":
|
1311 |
+
device = torch.device(f"{device}:{gpu_id}")
|
1312 |
+
|
1313 |
+
if self.device.type != "cpu":
|
1314 |
+
self.to("cpu", silence_dtype_warnings=True)
|
1315 |
+
device_mod = getattr(torch, self.device.type, None)
|
1316 |
+
if hasattr(device_mod, "empty_cache") and device_mod.is_available():
|
1317 |
+
device_mod.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
1318 |
+
|
1319 |
+
for name, model in self.components.items():
|
1320 |
+
if not isinstance(model, torch.nn.Module):
|
1321 |
+
continue
|
1322 |
+
|
1323 |
+
if name in self._exclude_from_cpu_offload:
|
1324 |
+
model.to(device)
|
1325 |
+
else:
|
1326 |
+
# make sure to offload buffers if not all high level weights
|
1327 |
+
# are of type nn.Module
|
1328 |
+
offload_buffers = len(model._parameters) > 0
|
1329 |
+
cpu_offload(model, device, offload_buffers=offload_buffers)
|
1330 |
+
|
1331 |
+
@classmethod
|
1332 |
+
def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
|
1333 |
+
r"""
|
1334 |
+
Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
|
1335 |
+
|
1336 |
+
Parameters:
|
1337 |
+
pretrained_model_name (`str` or `os.PathLike`, *optional*):
|
1338 |
+
A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
|
1339 |
+
hosted on the Hub.
|
1340 |
+
custom_pipeline (`str`, *optional*):
|
1341 |
+
Can be either:
|
1342 |
+
|
1343 |
+
- A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
|
1344 |
+
pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
|
1345 |
+
the custom pipeline.
|
1346 |
+
|
1347 |
+
- A string, the *file name* of a community pipeline hosted on GitHub under
|
1348 |
+
[Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
|
1349 |
+
names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
|
1350 |
+
instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
|
1351 |
+
current `main` branch of GitHub.
|
1352 |
+
|
1353 |
+
- A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
|
1354 |
+
must contain a file called `pipeline.py` that defines the custom pipeline.
|
1355 |
+
|
1356 |
+
<Tip warning={true}>
|
1357 |
+
|
1358 |
+
🧪 This is an experimental feature and may change in the future.
|
1359 |
+
|
1360 |
+
</Tip>
|
1361 |
+
|
1362 |
+
For more information on how to load and create custom pipelines, take a look at [How to contribute a
|
1363 |
+
community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
|
1364 |
+
|
1365 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
1366 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
1367 |
+
cached versions if they exist.
|
1368 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
1369 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
1370 |
+
incompletely downloaded files are deleted.
|
1371 |
+
proxies (`Dict[str, str]`, *optional*):
|
1372 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
1373 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
1374 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
1375 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
1376 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
1377 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
1378 |
+
won't be downloaded from the Hub.
|
1379 |
+
use_auth_token (`str` or *bool*, *optional*):
|
1380 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
1381 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
1382 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
1383 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
1384 |
+
allowed by Git.
|
1385 |
+
custom_revision (`str`, *optional*, defaults to `"main"`):
|
1386 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
|
1387 |
+
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
|
1388 |
+
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
|
1389 |
+
mirror (`str`, *optional*):
|
1390 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
1391 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
1392 |
+
information.
|
1393 |
+
variant (`str`, *optional*):
|
1394 |
+
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
|
1395 |
+
loading `from_flax`.
|
1396 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
1397 |
+
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
|
1398 |
+
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
|
1399 |
+
weights. If set to `False`, safetensors weights are not loaded.
|
1400 |
+
use_onnx (`bool`, *optional*, defaults to `False`):
|
1401 |
+
If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
|
1402 |
+
will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
|
1403 |
+
`False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
|
1404 |
+
with `.onnx` and `.pb`.
|
1405 |
+
|
1406 |
+
Returns:
|
1407 |
+
`os.PathLike`:
|
1408 |
+
A path to the downloaded pipeline.
|
1409 |
+
|
1410 |
+
<Tip>
|
1411 |
+
|
1412 |
+
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
|
1413 |
+
`huggingface-cli login`.
|
1414 |
+
|
1415 |
+
</Tip>
|
1416 |
+
|
1417 |
+
"""
|
1418 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
1419 |
+
resume_download = kwargs.pop("resume_download", False)
|
1420 |
+
force_download = kwargs.pop("force_download", False)
|
1421 |
+
proxies = kwargs.pop("proxies", None)
|
1422 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
1423 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
1424 |
+
revision = kwargs.pop("revision", None)
|
1425 |
+
from_flax = kwargs.pop("from_flax", False)
|
1426 |
+
custom_pipeline = kwargs.pop("custom_pipeline", None)
|
1427 |
+
custom_revision = kwargs.pop("custom_revision", None)
|
1428 |
+
variant = kwargs.pop("variant", None)
|
1429 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
1430 |
+
use_onnx = kwargs.pop("use_onnx", None)
|
1431 |
+
load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
|
1432 |
+
|
1433 |
+
allow_pickle = False
|
1434 |
+
if use_safetensors is None:
|
1435 |
+
use_safetensors = True
|
1436 |
+
allow_pickle = True
|
1437 |
+
|
1438 |
+
allow_patterns = None
|
1439 |
+
ignore_patterns = None
|
1440 |
+
|
1441 |
+
model_info_call_error: Optional[Exception] = None
|
1442 |
+
if not local_files_only:
|
1443 |
+
try:
|
1444 |
+
info = model_info(
|
1445 |
+
pretrained_model_name,
|
1446 |
+
use_auth_token=use_auth_token,
|
1447 |
+
revision=revision,
|
1448 |
+
)
|
1449 |
+
except HTTPError as e:
|
1450 |
+
logger.warn(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
|
1451 |
+
local_files_only = True
|
1452 |
+
model_info_call_error = e # save error to reraise it if model is not cached locally
|
1453 |
+
|
1454 |
+
if not local_files_only:
|
1455 |
+
config_file = hf_hub_download(
|
1456 |
+
pretrained_model_name,
|
1457 |
+
cls.config_name,
|
1458 |
+
cache_dir=cache_dir,
|
1459 |
+
revision=revision,
|
1460 |
+
proxies=proxies,
|
1461 |
+
force_download=force_download,
|
1462 |
+
resume_download=resume_download,
|
1463 |
+
use_auth_token=use_auth_token,
|
1464 |
+
)
|
1465 |
+
|
1466 |
+
config_dict = cls._dict_from_json_file(config_file)
|
1467 |
+
|
1468 |
+
ignore_filenames = config_dict.pop("_ignore_files", [])
|
1469 |
+
|
1470 |
+
# retrieve all folder_names that contain relevant files
|
1471 |
+
folder_names = [k for k, v in config_dict.items() if isinstance(v, list)]
|
1472 |
+
|
1473 |
+
filenames = {sibling.rfilename for sibling in info.siblings}
|
1474 |
+
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)
|
1475 |
+
|
1476 |
+
if len(variant_filenames) == 0 and variant is not None:
|
1477 |
+
deprecation_message = (
|
1478 |
+
f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
|
1479 |
+
f"The default model files: {model_filenames} will be loaded instead. Make sure to not load from `variant={variant}`"
|
1480 |
+
"if such variant modeling files are not available. Doing so will lead to an error in v0.22.0 as defaulting to non-variant"
|
1481 |
+
"modeling files is deprecated."
|
1482 |
+
)
|
1483 |
+
deprecate("no variant default", "0.22.0", deprecation_message, standard_warn=False)
|
1484 |
+
|
1485 |
+
# remove ignored filenames
|
1486 |
+
model_filenames = set(model_filenames) - set(ignore_filenames)
|
1487 |
+
variant_filenames = set(variant_filenames) - set(ignore_filenames)
|
1488 |
+
|
1489 |
+
# if the whole pipeline is cached we don't have to ping the Hub
|
1490 |
+
if revision in DEPRECATED_REVISION_ARGS and version.parse(
|
1491 |
+
version.parse(__version__).base_version
|
1492 |
+
) >= version.parse("0.22.0"):
|
1493 |
+
warn_deprecated_model_variant(
|
1494 |
+
pretrained_model_name, use_auth_token, variant, revision, model_filenames
|
1495 |
+
)
|
1496 |
+
|
1497 |
+
model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names}
|
1498 |
+
|
1499 |
+
# all filenames compatible with variant will be added
|
1500 |
+
allow_patterns = list(model_filenames)
|
1501 |
+
|
1502 |
+
# allow all patterns from non-model folders
|
1503 |
+
# this enables downloading schedulers, tokenizers, ...
|
1504 |
+
allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
|
1505 |
+
# also allow downloading config.json files with the model
|
1506 |
+
allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
|
1507 |
+
|
1508 |
+
allow_patterns += [
|
1509 |
+
SCHEDULER_CONFIG_NAME,
|
1510 |
+
CONFIG_NAME,
|
1511 |
+
cls.config_name,
|
1512 |
+
CUSTOM_PIPELINE_FILE_NAME,
|
1513 |
+
]
|
1514 |
+
|
1515 |
+
# retrieve passed components that should not be downloaded
|
1516 |
+
pipeline_class = _get_pipeline_class(
|
1517 |
+
cls,
|
1518 |
+
config_dict,
|
1519 |
+
load_connected_pipeline=load_connected_pipeline,
|
1520 |
+
custom_pipeline=custom_pipeline,
|
1521 |
+
cache_dir=cache_dir,
|
1522 |
+
revision=custom_revision,
|
1523 |
+
)
|
1524 |
+
expected_components, _ = cls._get_signature_keys(pipeline_class)
|
1525 |
+
passed_components = [k for k in expected_components if k in kwargs]
|
1526 |
+
|
1527 |
+
if (
|
1528 |
+
use_safetensors
|
1529 |
+
and not allow_pickle
|
1530 |
+
and not is_safetensors_compatible(
|
1531 |
+
model_filenames, variant=variant, passed_components=passed_components
|
1532 |
+
)
|
1533 |
+
):
|
1534 |
+
raise EnvironmentError(
|
1535 |
+
f"Could not found the necessary `safetensors` weights in {model_filenames} (variant={variant})"
|
1536 |
+
)
|
1537 |
+
if from_flax:
|
1538 |
+
ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"]
|
1539 |
+
elif use_safetensors and is_safetensors_compatible(
|
1540 |
+
model_filenames, variant=variant, passed_components=passed_components
|
1541 |
+
):
|
1542 |
+
ignore_patterns = ["*.bin", "*.msgpack"]
|
1543 |
+
|
1544 |
+
use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
|
1545 |
+
if not use_onnx:
|
1546 |
+
ignore_patterns += ["*.onnx", "*.pb"]
|
1547 |
+
|
1548 |
+
safetensors_variant_filenames = {f for f in variant_filenames if f.endswith(".safetensors")}
|
1549 |
+
safetensors_model_filenames = {f for f in model_filenames if f.endswith(".safetensors")}
|
1550 |
+
if (
|
1551 |
+
len(safetensors_variant_filenames) > 0
|
1552 |
+
and safetensors_model_filenames != safetensors_variant_filenames
|
1553 |
+
):
|
1554 |
+
logger.warn(
|
1555 |
+
f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
|
1556 |
+
)
|
1557 |
+
else:
|
1558 |
+
ignore_patterns = ["*.safetensors", "*.msgpack"]
|
1559 |
+
|
1560 |
+
use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
|
1561 |
+
if not use_onnx:
|
1562 |
+
ignore_patterns += ["*.onnx", "*.pb"]
|
1563 |
+
|
1564 |
+
bin_variant_filenames = {f for f in variant_filenames if f.endswith(".bin")}
|
1565 |
+
bin_model_filenames = {f for f in model_filenames if f.endswith(".bin")}
|
1566 |
+
if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames:
|
1567 |
+
logger.warn(
|
1568 |
+
f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
|
1569 |
+
)
|
1570 |
+
|
1571 |
+
# Don't download any objects that are passed
|
1572 |
+
allow_patterns = [
|
1573 |
+
p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
|
1574 |
+
]
|
1575 |
+
|
1576 |
+
if pipeline_class._load_connected_pipes:
|
1577 |
+
allow_patterns.append("README.md")
|
1578 |
+
|
1579 |
+
# Don't download index files of forbidden patterns either
|
1580 |
+
ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
|
1581 |
+
|
1582 |
+
re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
|
1583 |
+
re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]
|
1584 |
+
|
1585 |
+
expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
|
1586 |
+
expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
|
1587 |
+
|
1588 |
+
snapshot_folder = Path(config_file).parent
|
1589 |
+
pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
|
1590 |
+
|
1591 |
+
if pipeline_is_cached and not force_download:
|
1592 |
+
# if the pipeline is cached, we can directly return it
|
1593 |
+
# else call snapshot_download
|
1594 |
+
return snapshot_folder
|
1595 |
+
|
1596 |
+
user_agent = {"pipeline_class": cls.__name__}
|
1597 |
+
if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
|
1598 |
+
user_agent["custom_pipeline"] = custom_pipeline
|
1599 |
+
|
1600 |
+
# download all allow_patterns - ignore_patterns
|
1601 |
+
try:
|
1602 |
+
cached_folder = snapshot_download(
|
1603 |
+
pretrained_model_name,
|
1604 |
+
cache_dir=cache_dir,
|
1605 |
+
resume_download=resume_download,
|
1606 |
+
proxies=proxies,
|
1607 |
+
local_files_only=local_files_only,
|
1608 |
+
use_auth_token=use_auth_token,
|
1609 |
+
revision=revision,
|
1610 |
+
allow_patterns=allow_patterns,
|
1611 |
+
ignore_patterns=ignore_patterns,
|
1612 |
+
user_agent=user_agent,
|
1613 |
+
)
|
1614 |
+
|
1615 |
+
# retrieve pipeline class from local file
|
1616 |
+
cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
|
1617 |
+
pipeline_class = getattr(diffusers, cls_name, None)
|
1618 |
+
|
1619 |
+
if pipeline_class is not None and pipeline_class._load_connected_pipes:
|
1620 |
+
modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
|
1621 |
+
connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
|
1622 |
+
for connected_pipe_repo_id in connected_pipes:
|
1623 |
+
download_kwargs = {
|
1624 |
+
"cache_dir": cache_dir,
|
1625 |
+
"resume_download": resume_download,
|
1626 |
+
"force_download": force_download,
|
1627 |
+
"proxies": proxies,
|
1628 |
+
"local_files_only": local_files_only,
|
1629 |
+
"use_auth_token": use_auth_token,
|
1630 |
+
"variant": variant,
|
1631 |
+
"use_safetensors": use_safetensors,
|
1632 |
+
}
|
1633 |
+
DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
|
1634 |
+
|
1635 |
+
return cached_folder
|
1636 |
+
|
1637 |
+
except FileNotFoundError:
|
1638 |
+
# Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
|
1639 |
+
# This can happen in two cases:
|
1640 |
+
# 1. If the user passed `local_files_only=True` => we raise the error directly
|
1641 |
+
# 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
|
1642 |
+
if model_info_call_error is None:
|
1643 |
+
# 1. user passed `local_files_only=True`
|
1644 |
+
raise
|
1645 |
+
else:
|
1646 |
+
# 2. we forced `local_files_only=True` when `model_info` failed
|
1647 |
+
raise EnvironmentError(
|
1648 |
+
f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occured"
|
1649 |
+
" while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
|
1650 |
+
" above."
|
1651 |
+
) from model_info_call_error
|
1652 |
+
|
1653 |
+
@staticmethod
|
1654 |
+
def _get_signature_keys(obj):
|
1655 |
+
parameters = inspect.signature(obj.__init__).parameters
|
1656 |
+
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
|
1657 |
+
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
|
1658 |
+
expected_modules = set(required_parameters.keys()) - {"self"}
|
1659 |
+
return expected_modules, optional_parameters
|
1660 |
+
|
1661 |
+
@property
|
1662 |
+
def components(self) -> Dict[str, Any]:
|
1663 |
+
r"""
|
1664 |
+
The `self.components` property can be useful to run different pipelines with the same weights and
|
1665 |
+
configurations without reallocating additional memory.
|
1666 |
+
|
1667 |
+
Returns (`dict`):
|
1668 |
+
A dictionary containing all the modules needed to initialize the pipeline.
|
1669 |
+
|
1670 |
+
Examples:
|
1671 |
+
|
1672 |
+
```py
|
1673 |
+
>>> from diffusers import (
|
1674 |
+
... StableDiffusionPipeline,
|
1675 |
+
... StableDiffusionImg2ImgPipeline,
|
1676 |
+
... StableDiffusionInpaintPipeline,
|
1677 |
+
... )
|
1678 |
+
|
1679 |
+
>>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
1680 |
+
>>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
|
1681 |
+
>>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
|
1682 |
+
```
|
1683 |
+
"""
|
1684 |
+
expected_modules, optional_parameters = self._get_signature_keys(self)
|
1685 |
+
components = {
|
1686 |
+
k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
|
1687 |
+
}
|
1688 |
+
|
1689 |
+
if set(components.keys()) != expected_modules:
|
1690 |
+
raise ValueError(
|
1691 |
+
f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
|
1692 |
+
f" {expected_modules} to be defined, but {components.keys()} are defined."
|
1693 |
+
)
|
1694 |
+
|
1695 |
+
return components
|
1696 |
+
|
1697 |
+
@staticmethod
|
1698 |
+
def numpy_to_pil(images):
|
1699 |
+
"""
|
1700 |
+
Convert a NumPy image or a batch of images to a PIL image.
|
1701 |
+
"""
|
1702 |
+
return numpy_to_pil(images)
|
1703 |
+
|
1704 |
+
def progress_bar(self, iterable=None, total=None):
|
1705 |
+
if not hasattr(self, "_progress_bar_config"):
|
1706 |
+
self._progress_bar_config = {}
|
1707 |
+
elif not isinstance(self._progress_bar_config, dict):
|
1708 |
+
raise ValueError(
|
1709 |
+
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
|
1710 |
+
)
|
1711 |
+
|
1712 |
+
if iterable is not None:
|
1713 |
+
return tqdm(iterable, **self._progress_bar_config)
|
1714 |
+
elif total is not None:
|
1715 |
+
return tqdm(total=total, **self._progress_bar_config)
|
1716 |
+
else:
|
1717 |
+
raise ValueError("Either `total` or `iterable` has to be defined.")
|
1718 |
+
|
1719 |
+
def set_progress_bar_config(self, **kwargs):
|
1720 |
+
self._progress_bar_config = kwargs
|
1721 |
+
|
1722 |
+
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
|
1723 |
+
r"""
|
1724 |
+
Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
|
1725 |
+
option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
|
1726 |
+
up during training is not guaranteed.
|
1727 |
+
|
1728 |
+
<Tip warning={true}>
|
1729 |
+
|
1730 |
+
⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
|
1731 |
+
precedent.
|
1732 |
+
|
1733 |
+
</Tip>
|
1734 |
+
|
1735 |
+
Parameters:
|
1736 |
+
attention_op (`Callable`, *optional*):
|
1737 |
+
Override the default `None` operator for use as `op` argument to the
|
1738 |
+
[`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
|
1739 |
+
function of xFormers.
|
1740 |
+
|
1741 |
+
Examples:
|
1742 |
+
|
1743 |
+
```py
|
1744 |
+
>>> import torch
|
1745 |
+
>>> from diffusers import DiffusionPipeline
|
1746 |
+
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
|
1747 |
+
|
1748 |
+
>>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
|
1749 |
+
>>> pipe = pipe.to("cuda")
|
1750 |
+
>>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
|
1751 |
+
>>> # Workaround for not accepting attention shape using VAE for Flash Attention
|
1752 |
+
>>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
|
1753 |
+
```
|
1754 |
+
"""
|
1755 |
+
self.set_use_memory_efficient_attention_xformers(True, attention_op)
|
1756 |
+
|
1757 |
+
def disable_xformers_memory_efficient_attention(self):
|
1758 |
+
r"""
|
1759 |
+
Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
|
1760 |
+
"""
|
1761 |
+
self.set_use_memory_efficient_attention_xformers(False)
|
1762 |
+
|
1763 |
+
def set_use_memory_efficient_attention_xformers(
|
1764 |
+
self, valid: bool, attention_op: Optional[Callable] = None
|
1765 |
+
) -> None:
|
1766 |
+
# Recursively walk through all the children.
|
1767 |
+
# Any children which exposes the set_use_memory_efficient_attention_xformers method
|
1768 |
+
# gets the message
|
1769 |
+
def fn_recursive_set_mem_eff(module: torch.nn.Module):
|
1770 |
+
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
|
1771 |
+
module.set_use_memory_efficient_attention_xformers(valid, attention_op)
|
1772 |
+
|
1773 |
+
for child in module.children():
|
1774 |
+
fn_recursive_set_mem_eff(child)
|
1775 |
+
|
1776 |
+
module_names, _ = self._get_signature_keys(self)
|
1777 |
+
modules = [getattr(self, n, None) for n in module_names]
|
1778 |
+
modules = [m for m in modules if isinstance(m, torch.nn.Module)]
|
1779 |
+
|
1780 |
+
for module in modules:
|
1781 |
+
fn_recursive_set_mem_eff(module)
|
1782 |
+
|
1783 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
1784 |
+
r"""
|
1785 |
+
Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
|
1786 |
+
in slices to compute attention in several steps. For more than one attention head, the computation is performed
|
1787 |
+
sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.
|
1788 |
+
|
1789 |
+
<Tip warning={true}>
|
1790 |
+
|
1791 |
+
⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
|
1792 |
+
2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
|
1793 |
+
this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!
|
1794 |
+
|
1795 |
+
</Tip>
|
1796 |
+
|
1797 |
+
Args:
|
1798 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
1799 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
1800 |
+
`"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
|
1801 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
1802 |
+
must be a multiple of `slice_size`.
|
1803 |
+
|
1804 |
+
Examples:
|
1805 |
+
|
1806 |
+
```py
|
1807 |
+
>>> import torch
|
1808 |
+
>>> from diffusers import StableDiffusionPipeline
|
1809 |
+
|
1810 |
+
>>> pipe = StableDiffusionPipeline.from_pretrained(
|
1811 |
+
... "runwayml/stable-diffusion-v1-5",
|
1812 |
+
... torch_dtype=torch.float16,
|
1813 |
+
... use_safetensors=True,
|
1814 |
+
... )
|
1815 |
+
|
1816 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
1817 |
+
>>> pipe.enable_attention_slicing()
|
1818 |
+
>>> image = pipe(prompt).images[0]
|
1819 |
+
```
|
1820 |
+
"""
|
1821 |
+
self.set_attention_slice(slice_size)
|
1822 |
+
|
1823 |
+
def disable_attention_slicing(self):
|
1824 |
+
r"""
|
1825 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
|
1826 |
+
computed in one step.
|
1827 |
+
"""
|
1828 |
+
# set slice_size = `None` to disable `attention slicing`
|
1829 |
+
self.enable_attention_slicing(None)
|
1830 |
+
|
1831 |
+
def set_attention_slice(self, slice_size: Optional[int]):
|
1832 |
+
module_names, _ = self._get_signature_keys(self)
|
1833 |
+
modules = [getattr(self, n, None) for n in module_names]
|
1834 |
+
modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
|
1835 |
+
|
1836 |
+
for module in modules:
|
1837 |
+
module.set_attention_slice(slice_size)
|
unet_2d_blocks.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unet_2d_condition.py
ADDED
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
from diffusers.models.attention_processor import (
|
26 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
27 |
+
CROSS_ATTENTION_PROCESSORS,
|
28 |
+
AttentionProcessor,
|
29 |
+
AttnAddedKVProcessor,
|
30 |
+
AttnProcessor,
|
31 |
+
)
|
32 |
+
from diffusers.models.embeddings import (
|
33 |
+
GaussianFourierProjection,
|
34 |
+
ImageHintTimeEmbedding,
|
35 |
+
ImageProjection,
|
36 |
+
ImageTimeEmbedding,
|
37 |
+
PositionNet,
|
38 |
+
TextImageProjection,
|
39 |
+
TextImageTimeEmbedding,
|
40 |
+
TextTimeEmbedding,
|
41 |
+
TimestepEmbedding,
|
42 |
+
Timesteps,
|
43 |
+
)
|
44 |
+
from diffusers.models.modeling_utils import ModelMixin
|
45 |
+
|
46 |
+
from deepcache.unet_2d_blocks import (
|
47 |
+
UNetMidBlock2DCrossAttn,
|
48 |
+
UNetMidBlock2DSimpleCrossAttn,
|
49 |
+
get_down_block,
|
50 |
+
get_up_block,
|
51 |
+
)
|
52 |
+
|
53 |
+
import time
|
54 |
+
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
57 |
+
|
58 |
+
|
59 |
+
@dataclass
|
60 |
+
class UNet2DConditionOutput(BaseOutput):
|
61 |
+
"""
|
62 |
+
The output of [`UNet2DConditionModel`].
|
63 |
+
|
64 |
+
Args:
|
65 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
66 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
67 |
+
"""
|
68 |
+
|
69 |
+
sample: torch.FloatTensor = None
|
70 |
+
|
71 |
+
|
72 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
73 |
+
r"""
|
74 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
75 |
+
shaped output.
|
76 |
+
|
77 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
78 |
+
for all models (such as downloading or saving).
|
79 |
+
|
80 |
+
Parameters:
|
81 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
82 |
+
Height and width of input/output sample.
|
83 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
84 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
85 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
86 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
87 |
+
Whether to flip the sin to cos in the time embedding.
|
88 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
89 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
90 |
+
The tuple of downsample blocks to use.
|
91 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
92 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
93 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
94 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
95 |
+
The tuple of upsample blocks to use.
|
96 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
97 |
+
Whether to include self-attention in the basic transformer blocks, see
|
98 |
+
[`~models.attention.BasicTransformerBlock`].
|
99 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
100 |
+
The tuple of output channels for each block.
|
101 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
102 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
103 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
104 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
105 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
106 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
107 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
108 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
109 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
110 |
+
The dimension of the cross attention features.
|
111 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
112 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
113 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
114 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
115 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
116 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
117 |
+
dimension to `cross_attention_dim`.
|
118 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
119 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
120 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
121 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
122 |
+
num_attention_heads (`int`, *optional*):
|
123 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
124 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
125 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
126 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
127 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
128 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
129 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
130 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
131 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
132 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
133 |
+
Dimension for the timestep embeddings.
|
134 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
135 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
136 |
+
class conditioning with `class_embed_type` equal to `None`.
|
137 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
138 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
139 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
140 |
+
An optional override for the dimension of the projected time embedding.
|
141 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
142 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
143 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
144 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
145 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
146 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
147 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
148 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
149 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
150 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
151 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
152 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
153 |
+
embeddings with the class embeddings.
|
154 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
155 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
156 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
157 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
158 |
+
otherwise.
|
159 |
+
"""
|
160 |
+
|
161 |
+
_supports_gradient_checkpointing = True
|
162 |
+
|
163 |
+
@register_to_config
|
164 |
+
def __init__(
|
165 |
+
self,
|
166 |
+
sample_size: Optional[int] = None,
|
167 |
+
in_channels: int = 4,
|
168 |
+
out_channels: int = 4,
|
169 |
+
center_input_sample: bool = False,
|
170 |
+
flip_sin_to_cos: bool = True,
|
171 |
+
freq_shift: int = 0,
|
172 |
+
down_block_types: Tuple[str] = (
|
173 |
+
"CrossAttnDownBlock2D",
|
174 |
+
"CrossAttnDownBlock2D",
|
175 |
+
"CrossAttnDownBlock2D",
|
176 |
+
"DownBlock2D",
|
177 |
+
),
|
178 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
179 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
180 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
181 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
182 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
183 |
+
downsample_padding: int = 1,
|
184 |
+
mid_block_scale_factor: float = 1,
|
185 |
+
dropout: float = 0.0,
|
186 |
+
act_fn: str = "silu",
|
187 |
+
norm_num_groups: Optional[int] = 32,
|
188 |
+
norm_eps: float = 1e-5,
|
189 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
190 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
191 |
+
encoder_hid_dim: Optional[int] = None,
|
192 |
+
encoder_hid_dim_type: Optional[str] = None,
|
193 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
194 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
195 |
+
dual_cross_attention: bool = False,
|
196 |
+
use_linear_projection: bool = False,
|
197 |
+
class_embed_type: Optional[str] = None,
|
198 |
+
addition_embed_type: Optional[str] = None,
|
199 |
+
addition_time_embed_dim: Optional[int] = None,
|
200 |
+
num_class_embeds: Optional[int] = None,
|
201 |
+
upcast_attention: bool = False,
|
202 |
+
resnet_time_scale_shift: str = "default",
|
203 |
+
resnet_skip_time_act: bool = False,
|
204 |
+
resnet_out_scale_factor: int = 1.0,
|
205 |
+
time_embedding_type: str = "positional",
|
206 |
+
time_embedding_dim: Optional[int] = None,
|
207 |
+
time_embedding_act_fn: Optional[str] = None,
|
208 |
+
timestep_post_act: Optional[str] = None,
|
209 |
+
time_cond_proj_dim: Optional[int] = None,
|
210 |
+
conv_in_kernel: int = 3,
|
211 |
+
conv_out_kernel: int = 3,
|
212 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
213 |
+
attention_type: str = "default",
|
214 |
+
class_embeddings_concat: bool = False,
|
215 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
216 |
+
cross_attention_norm: Optional[str] = None,
|
217 |
+
addition_embed_type_num_heads=64,
|
218 |
+
):
|
219 |
+
super().__init__()
|
220 |
+
|
221 |
+
self.sample_size = sample_size
|
222 |
+
|
223 |
+
if num_attention_heads is not None:
|
224 |
+
raise ValueError(
|
225 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
226 |
+
)
|
227 |
+
|
228 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
229 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
230 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
231 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
232 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
233 |
+
# which is why we correct for the naming here.
|
234 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
235 |
+
|
236 |
+
# Check inputs
|
237 |
+
if len(down_block_types) != len(up_block_types):
|
238 |
+
raise ValueError(
|
239 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
240 |
+
)
|
241 |
+
|
242 |
+
if len(block_out_channels) != len(down_block_types):
|
243 |
+
raise ValueError(
|
244 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
245 |
+
)
|
246 |
+
|
247 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
248 |
+
raise ValueError(
|
249 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
250 |
+
)
|
251 |
+
|
252 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
253 |
+
raise ValueError(
|
254 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
255 |
+
)
|
256 |
+
|
257 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
258 |
+
raise ValueError(
|
259 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
260 |
+
)
|
261 |
+
|
262 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
263 |
+
raise ValueError(
|
264 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
265 |
+
)
|
266 |
+
|
267 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
268 |
+
raise ValueError(
|
269 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
270 |
+
)
|
271 |
+
|
272 |
+
# input
|
273 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
274 |
+
self.conv_in = nn.Conv2d(
|
275 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
276 |
+
)
|
277 |
+
|
278 |
+
# time
|
279 |
+
if time_embedding_type == "fourier":
|
280 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
281 |
+
if time_embed_dim % 2 != 0:
|
282 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
283 |
+
self.time_proj = GaussianFourierProjection(
|
284 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
285 |
+
)
|
286 |
+
timestep_input_dim = time_embed_dim
|
287 |
+
elif time_embedding_type == "positional":
|
288 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
289 |
+
|
290 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
291 |
+
timestep_input_dim = block_out_channels[0]
|
292 |
+
else:
|
293 |
+
raise ValueError(
|
294 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
295 |
+
)
|
296 |
+
|
297 |
+
self.time_embedding = TimestepEmbedding(
|
298 |
+
timestep_input_dim,
|
299 |
+
time_embed_dim,
|
300 |
+
act_fn=act_fn,
|
301 |
+
post_act_fn=timestep_post_act,
|
302 |
+
cond_proj_dim=time_cond_proj_dim,
|
303 |
+
)
|
304 |
+
|
305 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
306 |
+
encoder_hid_dim_type = "text_proj"
|
307 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
308 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
309 |
+
|
310 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
311 |
+
raise ValueError(
|
312 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
313 |
+
)
|
314 |
+
|
315 |
+
if encoder_hid_dim_type == "text_proj":
|
316 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
317 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
318 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
319 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
320 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
321 |
+
self.encoder_hid_proj = TextImageProjection(
|
322 |
+
text_embed_dim=encoder_hid_dim,
|
323 |
+
image_embed_dim=cross_attention_dim,
|
324 |
+
cross_attention_dim=cross_attention_dim,
|
325 |
+
)
|
326 |
+
elif encoder_hid_dim_type == "image_proj":
|
327 |
+
# Kandinsky 2.2
|
328 |
+
self.encoder_hid_proj = ImageProjection(
|
329 |
+
image_embed_dim=encoder_hid_dim,
|
330 |
+
cross_attention_dim=cross_attention_dim,
|
331 |
+
)
|
332 |
+
elif encoder_hid_dim_type is not None:
|
333 |
+
raise ValueError(
|
334 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
self.encoder_hid_proj = None
|
338 |
+
|
339 |
+
# class embedding
|
340 |
+
if class_embed_type is None and num_class_embeds is not None:
|
341 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
342 |
+
elif class_embed_type == "timestep":
|
343 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
344 |
+
elif class_embed_type == "identity":
|
345 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
346 |
+
elif class_embed_type == "projection":
|
347 |
+
if projection_class_embeddings_input_dim is None:
|
348 |
+
raise ValueError(
|
349 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
350 |
+
)
|
351 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
352 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
353 |
+
# 2. it projects from an arbitrary input dimension.
|
354 |
+
#
|
355 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
356 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
357 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
358 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
359 |
+
elif class_embed_type == "simple_projection":
|
360 |
+
if projection_class_embeddings_input_dim is None:
|
361 |
+
raise ValueError(
|
362 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
363 |
+
)
|
364 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
365 |
+
else:
|
366 |
+
self.class_embedding = None
|
367 |
+
|
368 |
+
if addition_embed_type == "text":
|
369 |
+
if encoder_hid_dim is not None:
|
370 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
371 |
+
else:
|
372 |
+
text_time_embedding_from_dim = cross_attention_dim
|
373 |
+
|
374 |
+
self.add_embedding = TextTimeEmbedding(
|
375 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
376 |
+
)
|
377 |
+
elif addition_embed_type == "text_image":
|
378 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
379 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
380 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
381 |
+
self.add_embedding = TextImageTimeEmbedding(
|
382 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
383 |
+
)
|
384 |
+
elif addition_embed_type == "text_time":
|
385 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
386 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
387 |
+
elif addition_embed_type == "image":
|
388 |
+
# Kandinsky 2.2
|
389 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
390 |
+
elif addition_embed_type == "image_hint":
|
391 |
+
# Kandinsky 2.2 ControlNet
|
392 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
393 |
+
elif addition_embed_type is not None:
|
394 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
395 |
+
|
396 |
+
if time_embedding_act_fn is None:
|
397 |
+
self.time_embed_act = None
|
398 |
+
else:
|
399 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
400 |
+
|
401 |
+
self.down_blocks = nn.ModuleList([])
|
402 |
+
self.up_blocks = nn.ModuleList([])
|
403 |
+
|
404 |
+
if isinstance(only_cross_attention, bool):
|
405 |
+
if mid_block_only_cross_attention is None:
|
406 |
+
mid_block_only_cross_attention = only_cross_attention
|
407 |
+
|
408 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
409 |
+
|
410 |
+
if mid_block_only_cross_attention is None:
|
411 |
+
mid_block_only_cross_attention = False
|
412 |
+
|
413 |
+
if isinstance(num_attention_heads, int):
|
414 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
415 |
+
|
416 |
+
if isinstance(attention_head_dim, int):
|
417 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
418 |
+
|
419 |
+
if isinstance(cross_attention_dim, int):
|
420 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
421 |
+
|
422 |
+
if isinstance(layers_per_block, int):
|
423 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
424 |
+
|
425 |
+
if isinstance(transformer_layers_per_block, int):
|
426 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
427 |
+
|
428 |
+
if class_embeddings_concat:
|
429 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
430 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
431 |
+
# regular time embeddings
|
432 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
433 |
+
else:
|
434 |
+
blocks_time_embed_dim = time_embed_dim
|
435 |
+
|
436 |
+
# down
|
437 |
+
output_channel = block_out_channels[0]
|
438 |
+
for i, down_block_type in enumerate(down_block_types):
|
439 |
+
input_channel = output_channel
|
440 |
+
output_channel = block_out_channels[i]
|
441 |
+
is_final_block = i == len(block_out_channels) - 1
|
442 |
+
|
443 |
+
down_block = get_down_block(
|
444 |
+
down_block_type,
|
445 |
+
num_layers=layers_per_block[i],
|
446 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
447 |
+
in_channels=input_channel,
|
448 |
+
out_channels=output_channel,
|
449 |
+
temb_channels=blocks_time_embed_dim,
|
450 |
+
add_downsample=not is_final_block,
|
451 |
+
resnet_eps=norm_eps,
|
452 |
+
resnet_act_fn=act_fn,
|
453 |
+
resnet_groups=norm_num_groups,
|
454 |
+
cross_attention_dim=cross_attention_dim[i],
|
455 |
+
num_attention_heads=num_attention_heads[i],
|
456 |
+
downsample_padding=downsample_padding,
|
457 |
+
dual_cross_attention=dual_cross_attention,
|
458 |
+
use_linear_projection=use_linear_projection,
|
459 |
+
only_cross_attention=only_cross_attention[i],
|
460 |
+
upcast_attention=upcast_attention,
|
461 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
462 |
+
attention_type=attention_type,
|
463 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
464 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
465 |
+
cross_attention_norm=cross_attention_norm,
|
466 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
467 |
+
dropout=dropout,
|
468 |
+
)
|
469 |
+
self.down_blocks.append(down_block)
|
470 |
+
|
471 |
+
# mid
|
472 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
473 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
474 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
475 |
+
in_channels=block_out_channels[-1],
|
476 |
+
temb_channels=blocks_time_embed_dim,
|
477 |
+
dropout=dropout,
|
478 |
+
resnet_eps=norm_eps,
|
479 |
+
resnet_act_fn=act_fn,
|
480 |
+
output_scale_factor=mid_block_scale_factor,
|
481 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
482 |
+
cross_attention_dim=cross_attention_dim[-1],
|
483 |
+
num_attention_heads=num_attention_heads[-1],
|
484 |
+
resnet_groups=norm_num_groups,
|
485 |
+
dual_cross_attention=dual_cross_attention,
|
486 |
+
use_linear_projection=use_linear_projection,
|
487 |
+
upcast_attention=upcast_attention,
|
488 |
+
attention_type=attention_type,
|
489 |
+
)
|
490 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
491 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
492 |
+
in_channels=block_out_channels[-1],
|
493 |
+
temb_channels=blocks_time_embed_dim,
|
494 |
+
dropout=dropout,
|
495 |
+
resnet_eps=norm_eps,
|
496 |
+
resnet_act_fn=act_fn,
|
497 |
+
output_scale_factor=mid_block_scale_factor,
|
498 |
+
cross_attention_dim=cross_attention_dim[-1],
|
499 |
+
attention_head_dim=attention_head_dim[-1],
|
500 |
+
resnet_groups=norm_num_groups,
|
501 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
502 |
+
skip_time_act=resnet_skip_time_act,
|
503 |
+
only_cross_attention=mid_block_only_cross_attention,
|
504 |
+
cross_attention_norm=cross_attention_norm,
|
505 |
+
)
|
506 |
+
elif mid_block_type is None:
|
507 |
+
self.mid_block = None
|
508 |
+
else:
|
509 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
510 |
+
|
511 |
+
# count how many layers upsample the images
|
512 |
+
self.num_upsamplers = 0
|
513 |
+
|
514 |
+
# up
|
515 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
516 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
517 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
518 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
519 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
520 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
521 |
+
|
522 |
+
output_channel = reversed_block_out_channels[0]
|
523 |
+
for i, up_block_type in enumerate(up_block_types):
|
524 |
+
is_final_block = i == len(block_out_channels) - 1
|
525 |
+
|
526 |
+
prev_output_channel = output_channel
|
527 |
+
output_channel = reversed_block_out_channels[i]
|
528 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
529 |
+
|
530 |
+
# add upsample block for all BUT final layer
|
531 |
+
if not is_final_block:
|
532 |
+
add_upsample = True
|
533 |
+
self.num_upsamplers += 1
|
534 |
+
else:
|
535 |
+
add_upsample = False
|
536 |
+
|
537 |
+
up_block = get_up_block(
|
538 |
+
up_block_type,
|
539 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
540 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
541 |
+
in_channels=input_channel,
|
542 |
+
out_channels=output_channel,
|
543 |
+
prev_output_channel=prev_output_channel,
|
544 |
+
temb_channels=blocks_time_embed_dim,
|
545 |
+
add_upsample=add_upsample,
|
546 |
+
resnet_eps=norm_eps,
|
547 |
+
resnet_act_fn=act_fn,
|
548 |
+
resnet_groups=norm_num_groups,
|
549 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
550 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
551 |
+
dual_cross_attention=dual_cross_attention,
|
552 |
+
use_linear_projection=use_linear_projection,
|
553 |
+
only_cross_attention=only_cross_attention[i],
|
554 |
+
upcast_attention=upcast_attention,
|
555 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
556 |
+
attention_type=attention_type,
|
557 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
558 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
559 |
+
cross_attention_norm=cross_attention_norm,
|
560 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
561 |
+
dropout=dropout,
|
562 |
+
)
|
563 |
+
self.up_blocks.append(up_block)
|
564 |
+
prev_output_channel = output_channel
|
565 |
+
|
566 |
+
# out
|
567 |
+
if norm_num_groups is not None:
|
568 |
+
self.conv_norm_out = nn.GroupNorm(
|
569 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
570 |
+
)
|
571 |
+
|
572 |
+
self.conv_act = get_activation(act_fn)
|
573 |
+
|
574 |
+
else:
|
575 |
+
self.conv_norm_out = None
|
576 |
+
self.conv_act = None
|
577 |
+
|
578 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
579 |
+
self.conv_out = nn.Conv2d(
|
580 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
581 |
+
)
|
582 |
+
|
583 |
+
if attention_type in ["gated", "gated-text-image"]:
|
584 |
+
positive_len = 768
|
585 |
+
if isinstance(cross_attention_dim, int):
|
586 |
+
positive_len = cross_attention_dim
|
587 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
588 |
+
positive_len = cross_attention_dim[0]
|
589 |
+
|
590 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
591 |
+
self.position_net = PositionNet(
|
592 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
593 |
+
)
|
594 |
+
|
595 |
+
@property
|
596 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
597 |
+
r"""
|
598 |
+
Returns:
|
599 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
600 |
+
indexed by its weight name.
|
601 |
+
"""
|
602 |
+
# set recursively
|
603 |
+
processors = {}
|
604 |
+
|
605 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
606 |
+
if hasattr(module, "get_processor"):
|
607 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
608 |
+
|
609 |
+
for sub_name, child in module.named_children():
|
610 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
611 |
+
|
612 |
+
return processors
|
613 |
+
|
614 |
+
for name, module in self.named_children():
|
615 |
+
fn_recursive_add_processors(name, module, processors)
|
616 |
+
|
617 |
+
return processors
|
618 |
+
|
619 |
+
def set_attn_processor(
|
620 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
621 |
+
):
|
622 |
+
r"""
|
623 |
+
Sets the attention processor to use to compute attention.
|
624 |
+
|
625 |
+
Parameters:
|
626 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
627 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
628 |
+
for **all** `Attention` layers.
|
629 |
+
|
630 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
631 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
632 |
+
|
633 |
+
"""
|
634 |
+
count = len(self.attn_processors.keys())
|
635 |
+
|
636 |
+
if isinstance(processor, dict) and len(processor) != count:
|
637 |
+
raise ValueError(
|
638 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
639 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
640 |
+
)
|
641 |
+
|
642 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
643 |
+
if hasattr(module, "set_processor"):
|
644 |
+
if not isinstance(processor, dict):
|
645 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
646 |
+
else:
|
647 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
648 |
+
|
649 |
+
for sub_name, child in module.named_children():
|
650 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
651 |
+
|
652 |
+
for name, module in self.named_children():
|
653 |
+
fn_recursive_attn_processor(name, module, processor)
|
654 |
+
|
655 |
+
def set_default_attn_processor(self):
|
656 |
+
"""
|
657 |
+
Disables custom attention processors and sets the default attention implementation.
|
658 |
+
"""
|
659 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
660 |
+
processor = AttnAddedKVProcessor()
|
661 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
662 |
+
processor = AttnProcessor()
|
663 |
+
else:
|
664 |
+
raise ValueError(
|
665 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
666 |
+
)
|
667 |
+
|
668 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
669 |
+
|
670 |
+
def set_attention_slice(self, slice_size):
|
671 |
+
r"""
|
672 |
+
Enable sliced attention computation.
|
673 |
+
|
674 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
675 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
676 |
+
|
677 |
+
Args:
|
678 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
679 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
680 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
681 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
682 |
+
must be a multiple of `slice_size`.
|
683 |
+
"""
|
684 |
+
sliceable_head_dims = []
|
685 |
+
|
686 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
687 |
+
if hasattr(module, "set_attention_slice"):
|
688 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
689 |
+
|
690 |
+
for child in module.children():
|
691 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
692 |
+
|
693 |
+
# retrieve number of attention layers
|
694 |
+
for module in self.children():
|
695 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
696 |
+
|
697 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
698 |
+
|
699 |
+
if slice_size == "auto":
|
700 |
+
# half the attention head size is usually a good trade-off between
|
701 |
+
# speed and memory
|
702 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
703 |
+
elif slice_size == "max":
|
704 |
+
# make smallest slice possible
|
705 |
+
slice_size = num_sliceable_layers * [1]
|
706 |
+
|
707 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
708 |
+
|
709 |
+
if len(slice_size) != len(sliceable_head_dims):
|
710 |
+
raise ValueError(
|
711 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
712 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
713 |
+
)
|
714 |
+
|
715 |
+
for i in range(len(slice_size)):
|
716 |
+
size = slice_size[i]
|
717 |
+
dim = sliceable_head_dims[i]
|
718 |
+
if size is not None and size > dim:
|
719 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
720 |
+
|
721 |
+
# Recursively walk through all the children.
|
722 |
+
# Any children which exposes the set_attention_slice method
|
723 |
+
# gets the message
|
724 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
725 |
+
if hasattr(module, "set_attention_slice"):
|
726 |
+
module.set_attention_slice(slice_size.pop())
|
727 |
+
|
728 |
+
for child in module.children():
|
729 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
730 |
+
|
731 |
+
reversed_slice_size = list(reversed(slice_size))
|
732 |
+
for module in self.children():
|
733 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
734 |
+
|
735 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
736 |
+
if hasattr(module, "gradient_checkpointing"):
|
737 |
+
module.gradient_checkpointing = value
|
738 |
+
|
739 |
+
def forward(
|
740 |
+
self,
|
741 |
+
sample: torch.FloatTensor,
|
742 |
+
timestep: Union[torch.Tensor, float, int],
|
743 |
+
encoder_hidden_states: torch.Tensor,
|
744 |
+
class_labels: Optional[torch.Tensor] = None,
|
745 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
746 |
+
attention_mask: Optional[torch.Tensor] = None,
|
747 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
748 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
749 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
750 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
751 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
752 |
+
quick_replicate: bool = False,
|
753 |
+
replicate_prv_feature: Optional[List[torch.Tensor]] = None,
|
754 |
+
cache_layer_id: Optional[int] = None,
|
755 |
+
cache_block_id: Optional[int] = None,
|
756 |
+
return_dict: bool = True,
|
757 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
758 |
+
r"""
|
759 |
+
The [`UNet2DConditionModel`] forward method.
|
760 |
+
|
761 |
+
Args:
|
762 |
+
sample (`torch.FloatTensor`):
|
763 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
764 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
765 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
766 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
767 |
+
encoder_attention_mask (`torch.Tensor`):
|
768 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
769 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
770 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
771 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
772 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
773 |
+
tuple.
|
774 |
+
cross_attention_kwargs (`dict`, *optional*):
|
775 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
776 |
+
added_cond_kwargs: (`dict`, *optional*):
|
777 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
778 |
+
are passed along to the UNet blocks.
|
779 |
+
|
780 |
+
Returns:
|
781 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
782 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
783 |
+
a `tuple` is returned where the first element is the sample tensor.
|
784 |
+
"""
|
785 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
786 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
787 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
788 |
+
# on the fly if necessary.
|
789 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
790 |
+
|
791 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
792 |
+
forward_upsample_size = False
|
793 |
+
upsample_size = None
|
794 |
+
|
795 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
796 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
797 |
+
forward_upsample_size = True
|
798 |
+
|
799 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
800 |
+
# expects mask of shape:
|
801 |
+
# [batch, key_tokens]
|
802 |
+
# adds singleton query_tokens dimension:
|
803 |
+
# [batch, 1, key_tokens]
|
804 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
805 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
806 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
807 |
+
if attention_mask is not None:
|
808 |
+
# assume that mask is expressed as:
|
809 |
+
# (1 = keep, 0 = discard)
|
810 |
+
# convert mask into a bias that can be added to attention scores:
|
811 |
+
# (keep = +0, discard = -10000.0)
|
812 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
813 |
+
attention_mask = attention_mask.unsqueeze(1)
|
814 |
+
|
815 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
816 |
+
if encoder_attention_mask is not None:
|
817 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
818 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
819 |
+
|
820 |
+
# 0. center input if necessary
|
821 |
+
if self.config.center_input_sample:
|
822 |
+
sample = 2 * sample - 1.0
|
823 |
+
|
824 |
+
# 1. time
|
825 |
+
timesteps = timestep
|
826 |
+
if not torch.is_tensor(timesteps):
|
827 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
828 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
829 |
+
is_mps = sample.device.type == "mps"
|
830 |
+
if isinstance(timestep, float):
|
831 |
+
dtype = torch.float32 if is_mps else torch.float64
|
832 |
+
else:
|
833 |
+
dtype = torch.int32 if is_mps else torch.int64
|
834 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
835 |
+
elif len(timesteps.shape) == 0:
|
836 |
+
timesteps = timesteps[None].to(sample.device)
|
837 |
+
|
838 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
839 |
+
timesteps = timesteps.expand(sample.shape[0])
|
840 |
+
|
841 |
+
t_emb = self.time_proj(timesteps)
|
842 |
+
|
843 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
844 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
845 |
+
# there might be better ways to encapsulate this.
|
846 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
847 |
+
|
848 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
849 |
+
aug_emb = None
|
850 |
+
|
851 |
+
if self.class_embedding is not None:
|
852 |
+
if class_labels is None:
|
853 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
854 |
+
|
855 |
+
if self.config.class_embed_type == "timestep":
|
856 |
+
class_labels = self.time_proj(class_labels)
|
857 |
+
|
858 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
859 |
+
# there might be better ways to encapsulate this.
|
860 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
861 |
+
|
862 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
863 |
+
|
864 |
+
if self.config.class_embeddings_concat:
|
865 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
866 |
+
else:
|
867 |
+
emb = emb + class_emb
|
868 |
+
|
869 |
+
if self.config.addition_embed_type == "text":
|
870 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
871 |
+
elif self.config.addition_embed_type == "text_image":
|
872 |
+
# Kandinsky 2.1 - style
|
873 |
+
if "image_embeds" not in added_cond_kwargs:
|
874 |
+
raise ValueError(
|
875 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
876 |
+
)
|
877 |
+
|
878 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
879 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
880 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
881 |
+
elif self.config.addition_embed_type == "text_time":
|
882 |
+
# SDXL - style
|
883 |
+
if "text_embeds" not in added_cond_kwargs:
|
884 |
+
raise ValueError(
|
885 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
886 |
+
)
|
887 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
888 |
+
if "time_ids" not in added_cond_kwargs:
|
889 |
+
raise ValueError(
|
890 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
891 |
+
)
|
892 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
893 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
894 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
895 |
+
|
896 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
897 |
+
add_embeds = add_embeds.to(emb.dtype)
|
898 |
+
aug_emb = self.add_embedding(add_embeds)
|
899 |
+
elif self.config.addition_embed_type == "image":
|
900 |
+
# Kandinsky 2.2 - style
|
901 |
+
if "image_embeds" not in added_cond_kwargs:
|
902 |
+
raise ValueError(
|
903 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
904 |
+
)
|
905 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
906 |
+
aug_emb = self.add_embedding(image_embs)
|
907 |
+
elif self.config.addition_embed_type == "image_hint":
|
908 |
+
# Kandinsky 2.2 - style
|
909 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
910 |
+
raise ValueError(
|
911 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
912 |
+
)
|
913 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
914 |
+
hint = added_cond_kwargs.get("hint")
|
915 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
916 |
+
sample = torch.cat([sample, hint], dim=1)
|
917 |
+
|
918 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
919 |
+
|
920 |
+
if self.time_embed_act is not None:
|
921 |
+
emb = self.time_embed_act(emb)
|
922 |
+
|
923 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
924 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
925 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
926 |
+
# Kadinsky 2.1 - style
|
927 |
+
if "image_embeds" not in added_cond_kwargs:
|
928 |
+
raise ValueError(
|
929 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
930 |
+
)
|
931 |
+
|
932 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
933 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
934 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
935 |
+
# Kandinsky 2.2 - style
|
936 |
+
if "image_embeds" not in added_cond_kwargs:
|
937 |
+
raise ValueError(
|
938 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
939 |
+
)
|
940 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
941 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
942 |
+
# 2. pre-process
|
943 |
+
sample = self.conv_in(sample)
|
944 |
+
|
945 |
+
# 2.5 GLIGEN position net
|
946 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
947 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
948 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
949 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
950 |
+
|
951 |
+
# 3. down
|
952 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
953 |
+
|
954 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
955 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
956 |
+
|
957 |
+
down_block_res_samples = (sample,)
|
958 |
+
if quick_replicate and replicate_prv_feature is not None:
|
959 |
+
# Down
|
960 |
+
for i, downsample_block in enumerate(self.down_blocks):
|
961 |
+
if i > cache_layer_id:
|
962 |
+
break
|
963 |
+
|
964 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
965 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
966 |
+
additional_residuals = {}
|
967 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
968 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
969 |
+
|
970 |
+
sample, res_samples = downsample_block(
|
971 |
+
hidden_states=sample,
|
972 |
+
temb=emb,
|
973 |
+
encoder_hidden_states=encoder_hidden_states,
|
974 |
+
attention_mask=attention_mask,
|
975 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
976 |
+
encoder_attention_mask=encoder_attention_mask,
|
977 |
+
exist_block_number=cache_block_id if i == cache_layer_id else None,
|
978 |
+
**additional_residuals,
|
979 |
+
)
|
980 |
+
else:
|
981 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
|
982 |
+
|
983 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
984 |
+
sample += down_block_additional_residuals.pop(0)
|
985 |
+
|
986 |
+
down_block_res_samples += res_samples
|
987 |
+
|
988 |
+
# No Middle
|
989 |
+
# Up
|
990 |
+
#print("down_block_res_samples:", [res_sample.shape for res_sample in down_block_res_samples])
|
991 |
+
sample = replicate_prv_feature
|
992 |
+
#down_block_res_samples = down_block_res_samples[:-1]
|
993 |
+
if cache_block_id == len(self.down_blocks[cache_layer_id].attentions) :
|
994 |
+
cache_block_id = 0
|
995 |
+
cache_layer_id += 1
|
996 |
+
else:
|
997 |
+
cache_block_id += 1
|
998 |
+
|
999 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1000 |
+
if i < len(self.up_blocks) - 1 - cache_layer_id:
|
1001 |
+
continue
|
1002 |
+
|
1003 |
+
if i == len(self.up_blocks) - 1 - cache_layer_id:
|
1004 |
+
trunc_upsample_block = cache_block_id + 1
|
1005 |
+
else:
|
1006 |
+
trunc_upsample_block = len(upsample_block.resnets)
|
1007 |
+
|
1008 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1009 |
+
|
1010 |
+
res_samples = down_block_res_samples[-trunc_upsample_block:]
|
1011 |
+
down_block_res_samples = down_block_res_samples[: -trunc_upsample_block]
|
1012 |
+
|
1013 |
+
# if we have not reached the final block and need to forward the
|
1014 |
+
# upsample size, we do it here
|
1015 |
+
if not is_final_block and forward_upsample_size:
|
1016 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1017 |
+
|
1018 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1019 |
+
#print(sample.shape, [res_sample.shape for res_sample in res_samples])
|
1020 |
+
sample, _ = upsample_block(
|
1021 |
+
hidden_states=sample,
|
1022 |
+
temb=emb,
|
1023 |
+
res_hidden_states_tuple=res_samples,
|
1024 |
+
encoder_hidden_states=encoder_hidden_states,
|
1025 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1026 |
+
upsample_size=upsample_size,
|
1027 |
+
attention_mask=attention_mask,
|
1028 |
+
encoder_attention_mask=encoder_attention_mask,
|
1029 |
+
enter_block_number=cache_block_id if i == len(self.up_blocks) - 1 - cache_layer_id else None,
|
1030 |
+
)
|
1031 |
+
else:
|
1032 |
+
sample = upsample_block(
|
1033 |
+
hidden_states=sample,
|
1034 |
+
temb=emb,
|
1035 |
+
res_hidden_states_tuple=res_samples,
|
1036 |
+
upsample_size=upsample_size,
|
1037 |
+
scale=lora_scale,
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
prv_f = replicate_prv_feature
|
1041 |
+
else:
|
1042 |
+
for i, downsample_block in enumerate(self.down_blocks):
|
1043 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1044 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1045 |
+
additional_residuals = {}
|
1046 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1047 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
1048 |
+
|
1049 |
+
sample, res_samples = downsample_block(
|
1050 |
+
hidden_states=sample,
|
1051 |
+
temb=emb,
|
1052 |
+
encoder_hidden_states=encoder_hidden_states,
|
1053 |
+
attention_mask=attention_mask,
|
1054 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1055 |
+
encoder_attention_mask=encoder_attention_mask,
|
1056 |
+
**additional_residuals,
|
1057 |
+
)
|
1058 |
+
else:
|
1059 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
|
1060 |
+
|
1061 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1062 |
+
sample += down_block_additional_residuals.pop(0)
|
1063 |
+
|
1064 |
+
down_block_res_samples += res_samples
|
1065 |
+
|
1066 |
+
if is_controlnet:
|
1067 |
+
new_down_block_res_samples = ()
|
1068 |
+
|
1069 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1070 |
+
down_block_res_samples, down_block_additional_residuals
|
1071 |
+
):
|
1072 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1073 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1074 |
+
|
1075 |
+
down_block_res_samples = new_down_block_res_samples
|
1076 |
+
|
1077 |
+
# 4. mid
|
1078 |
+
if self.mid_block is not None:
|
1079 |
+
sample = self.mid_block(
|
1080 |
+
sample,
|
1081 |
+
emb,
|
1082 |
+
encoder_hidden_states=encoder_hidden_states,
|
1083 |
+
attention_mask=attention_mask,
|
1084 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1085 |
+
encoder_attention_mask=encoder_attention_mask,
|
1086 |
+
)
|
1087 |
+
# To support T2I-Adapter-XL
|
1088 |
+
if (
|
1089 |
+
is_adapter
|
1090 |
+
and len(down_block_additional_residuals) > 0
|
1091 |
+
and sample.shape == down_block_additional_residuals[0].shape
|
1092 |
+
):
|
1093 |
+
sample += down_block_additional_residuals.pop(0)
|
1094 |
+
|
1095 |
+
if is_controlnet:
|
1096 |
+
sample = sample + mid_block_additional_residual
|
1097 |
+
|
1098 |
+
# 5. up
|
1099 |
+
if cache_block_id is not None:
|
1100 |
+
if cache_block_id == len(self.down_blocks[cache_layer_id].attentions) :
|
1101 |
+
cache_block_id = 0
|
1102 |
+
cache_layer_id += 1
|
1103 |
+
else:
|
1104 |
+
cache_block_id += 1
|
1105 |
+
#print("down_block_res_samples:", [res_sample.shape for res_sample in down_block_res_samples])
|
1106 |
+
#print(cache_block_id, cache_layer_id)
|
1107 |
+
prv_f = None
|
1108 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1109 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1110 |
+
|
1111 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1112 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1113 |
+
#print(sample.shape, [res_sample.shape for res_sample in res_samples])
|
1114 |
+
# if we have not reached the final block and need to forward the
|
1115 |
+
# upsample size, we do it here
|
1116 |
+
if not is_final_block and forward_upsample_size:
|
1117 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1118 |
+
|
1119 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1120 |
+
sample, current_record_f = upsample_block(
|
1121 |
+
hidden_states=sample,
|
1122 |
+
temb=emb,
|
1123 |
+
res_hidden_states_tuple=res_samples,
|
1124 |
+
encoder_hidden_states=encoder_hidden_states,
|
1125 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1126 |
+
upsample_size=upsample_size,
|
1127 |
+
attention_mask=attention_mask,
|
1128 |
+
encoder_attention_mask=encoder_attention_mask,
|
1129 |
+
)
|
1130 |
+
else:
|
1131 |
+
sample = upsample_block(
|
1132 |
+
hidden_states=sample,
|
1133 |
+
temb=emb,
|
1134 |
+
res_hidden_states_tuple=res_samples,
|
1135 |
+
upsample_size=upsample_size,
|
1136 |
+
scale=lora_scale,
|
1137 |
+
)
|
1138 |
+
current_record_f = None
|
1139 |
+
|
1140 |
+
#print("Append prv_feature with shape:", sample.shape)
|
1141 |
+
if cache_layer_id is not None and current_record_f is not None and i == len(self.up_blocks) - cache_layer_id - 1:
|
1142 |
+
prv_f = current_record_f[-cache_block_id-1]
|
1143 |
+
|
1144 |
+
# 6. post-process
|
1145 |
+
if self.conv_norm_out:
|
1146 |
+
sample = self.conv_norm_out(sample)
|
1147 |
+
sample = self.conv_act(sample)
|
1148 |
+
sample = self.conv_out(sample)
|
1149 |
+
if not return_dict:
|
1150 |
+
return (sample, prv_f,)
|
1151 |
+
|
1152 |
+
return UNet2DConditionOutput(sample=sample)
|