Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-label-classification
Languages:
English
Size:
10K - 100K
License:
dataset_info: | |
features: | |
- name: text | |
dtype: string | |
- name: labels | |
sequence: int64 | |
splits: | |
- name: train | |
num_bytes: 5011317.077050539 | |
num_examples: 22208 | |
- name: test | |
num_bytes: 1253054.9229494615 | |
num_examples: 5553 | |
download_size: 2405205 | |
dataset_size: 6264372 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
- split: test | |
path: data/test-* | |
license: mit | |
task_categories: | |
- text-classification | |
task_ids: | |
- multi-label-classification | |
language: | |
- en | |
tags: | |
- mtg | |
- multilabel | |
- magic | |
pretty_name: Magic the Gathering Color Identity Multilabel Classification | |
size_categories: | |
- 10K<n<100K | |
This dataset was made specifically for multilabel classification using the following process: | |
1. Downloading https://mtgjson.com/api/v5/AtomicCards.json.bz2 on January 10, 2024 | |
2. Encoding color identity of each card into the `labels` feature | |
```python | |
colors = ['B', 'G', 'R', 'U', 'W'] | |
b = [1, 0, 0, 0, 0] | |
bw = [1, 0, 0, 0, 1] | |
gru = [0, 1, 1, 1, 0] | |
# and so on | |
``` | |
3. Concatenating card name and card text into the `text` feature | |
4. `split = ds['train'].train_test_split(test_size=0.2)` | |
5. `split.push_to_hub("mtg-coloridentity-multilabel-classification")` |