Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
use dl_manager to get the ocrs files
#5
by
jpizarrom
- opened
- rvl_cdip_easyocr.py +14 -10
rvl_cdip_easyocr.py
CHANGED
@@ -52,6 +52,12 @@ _METADATA_URLS = {
|
|
52 |
"val": "https://huggingface.co/datasets/rvl_cdip/resolve/main/data/val.txt",
|
53 |
}
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
_CLASSES = [
|
56 |
"letter",
|
57 |
"form",
|
@@ -72,10 +78,6 @@ _CLASSES = [
|
|
72 |
]
|
73 |
|
74 |
_IMAGES_DIR = "images/"
|
75 |
-
# hardcoded to not get stuck in annoying IO and LFS problems in Hub
|
76 |
-
_OCR_DIR = "/cw/liir_data/NoCsBack/jordy/BDPC"
|
77 |
-
_OCR_DIR = _OCR_DIR if os.path.exists(_OCR_DIR) else "data/"
|
78 |
-
|
79 |
|
80 |
|
81 |
# class OCRConfig(datasets.BuilderConfig):
|
@@ -125,6 +127,7 @@ class RvlCdipEasyOcr(datasets.GeneratorBasedBuilder):
|
|
125 |
_URLS["rvl-cdip"]
|
126 |
) # only download images if need be
|
127 |
labels_path = dl_manager.download(_METADATA_URLS)
|
|
|
128 |
|
129 |
return [
|
130 |
datasets.SplitGenerator(
|
@@ -132,6 +135,7 @@ class RvlCdipEasyOcr(datasets.GeneratorBasedBuilder):
|
|
132 |
gen_kwargs={
|
133 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
134 |
"labels_filepath": labels_path["train"],
|
|
|
135 |
"split": "train",
|
136 |
},
|
137 |
),
|
@@ -140,6 +144,7 @@ class RvlCdipEasyOcr(datasets.GeneratorBasedBuilder):
|
|
140 |
gen_kwargs={
|
141 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
142 |
"labels_filepath": labels_path["test"],
|
|
|
143 |
"split": "test",
|
144 |
},
|
145 |
),
|
@@ -148,6 +153,7 @@ class RvlCdipEasyOcr(datasets.GeneratorBasedBuilder):
|
|
148 |
gen_kwargs={
|
149 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
150 |
"labels_filepath": labels_path["val"],
|
|
|
151 |
"split": "validation",
|
152 |
},
|
153 |
),
|
@@ -164,16 +170,14 @@ class RvlCdipEasyOcr(datasets.GeneratorBasedBuilder):
|
|
164 |
return image_to_class_id
|
165 |
|
166 |
@staticmethod
|
167 |
-
def _get_image_to_OCR(
|
168 |
def parse_easyOCR_box(box):
|
169 |
# {'x0': 39, 'y0': 39, 'x1': 498, 'y1': 82, 'width': 459, 'height': 43}
|
170 |
return (box["x0"], box["y0"], box["x1"], box["y1"])
|
171 |
|
172 |
-
if OCR_dir is None:
|
173 |
-
return {}
|
174 |
image_to_OCR = {}
|
175 |
data = np.load(
|
176 |
-
|
177 |
allow_pickle=True,
|
178 |
)
|
179 |
for ex in tqdm(data, desc="Loading OCR data"):
|
@@ -197,11 +201,11 @@ class RvlCdipEasyOcr(datasets.GeneratorBasedBuilder):
|
|
197 |
words, boxes = image_to_OCR[file_path]
|
198 |
return words, boxes
|
199 |
|
200 |
-
def _generate_examples(self, archive_iterator, labels_filepath, split):
|
201 |
with open(labels_filepath, encoding="utf-8") as f:
|
202 |
data = f.read().splitlines()
|
203 |
|
204 |
-
image_to_OCR = self._get_image_to_OCR(
|
205 |
image_to_class_id = self._get_image_to_class_map(data)
|
206 |
|
207 |
for file_path, file_obj in archive_iterator:
|
|
|
52 |
"val": "https://huggingface.co/datasets/rvl_cdip/resolve/main/data/val.txt",
|
53 |
}
|
54 |
|
55 |
+
_OCR_URLS = {
|
56 |
+
"train": "https://huggingface.co/datasets/jordyvl/rvl_cdip_easyocr/resolve/main/data/Easy_Train_Data.npy",
|
57 |
+
"test": "https://huggingface.co/datasets/jordyvl/rvl_cdip_easyocr/resolve/main/data/Easy_Test_Data.npy",
|
58 |
+
"val": "https://huggingface.co/datasets/jordyvl/rvl_cdip_easyocr/resolve/main/data/Easy_Valid_Data.npy",
|
59 |
+
}
|
60 |
+
|
61 |
_CLASSES = [
|
62 |
"letter",
|
63 |
"form",
|
|
|
78 |
]
|
79 |
|
80 |
_IMAGES_DIR = "images/"
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
# class OCRConfig(datasets.BuilderConfig):
|
|
|
127 |
_URLS["rvl-cdip"]
|
128 |
) # only download images if need be
|
129 |
labels_path = dl_manager.download(_METADATA_URLS)
|
130 |
+
ocrs_filepath = dl_manager.download(_OCR_URLS)
|
131 |
|
132 |
return [
|
133 |
datasets.SplitGenerator(
|
|
|
135 |
gen_kwargs={
|
136 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
137 |
"labels_filepath": labels_path["train"],
|
138 |
+
"ocrs_filepath": ocrs_filepath["train"],
|
139 |
"split": "train",
|
140 |
},
|
141 |
),
|
|
|
144 |
gen_kwargs={
|
145 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
146 |
"labels_filepath": labels_path["test"],
|
147 |
+
"ocrs_filepath": ocrs_filepath["test"],
|
148 |
"split": "test",
|
149 |
},
|
150 |
),
|
|
|
153 |
gen_kwargs={
|
154 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
155 |
"labels_filepath": labels_path["val"],
|
156 |
+
"ocrs_filepath": ocrs_filepath["val"],
|
157 |
"split": "validation",
|
158 |
},
|
159 |
),
|
|
|
170 |
return image_to_class_id
|
171 |
|
172 |
@staticmethod
|
173 |
+
def _get_image_to_OCR(ocrs_filepath, split):
|
174 |
def parse_easyOCR_box(box):
|
175 |
# {'x0': 39, 'y0': 39, 'x1': 498, 'y1': 82, 'width': 459, 'height': 43}
|
176 |
return (box["x0"], box["y0"], box["x1"], box["y1"])
|
177 |
|
|
|
|
|
178 |
image_to_OCR = {}
|
179 |
data = np.load(
|
180 |
+
ocrs_filepath,
|
181 |
allow_pickle=True,
|
182 |
)
|
183 |
for ex in tqdm(data, desc="Loading OCR data"):
|
|
|
201 |
words, boxes = image_to_OCR[file_path]
|
202 |
return words, boxes
|
203 |
|
204 |
+
def _generate_examples(self, archive_iterator, labels_filepath, ocrs_filepath, split):
|
205 |
with open(labels_filepath, encoding="utf-8") as f:
|
206 |
data = f.read().splitlines()
|
207 |
|
208 |
+
image_to_OCR = self._get_image_to_OCR(ocrs_filepath, split)
|
209 |
image_to_class_id = self._get_image_to_class_map(data)
|
210 |
|
211 |
for file_path, file_obj in archive_iterator:
|