index
int64
v_kmph
float64
ax_mpss
float64
ay_mpss
float64
yaw_rate_radps
float64
frame
image
d_lanecenter_m
float64
alias
string
steering_rack_pos_m
float64
steering_torque_N
float64
lane_curvature_radpm
float64
stationary
float64
segment
int64
split
string
road_type
string
driving_situation_rural
string
driving_situation_federal
string
driving_situation_highway
string
rep_id
int64
frame_nr
int64
0
20.25
0.185714
-0.294286
-0.94
7.996094
001
-0.66
-1.28
0.031235
1
3
val_val
misc
not valid
not valid
not valid
0
5,850
3
20.299999
-0.005714
0.045714
-0.337143
7.996094
001
-0.66
-1.126667
0.031235
1
3
val_val
misc
not valid
not valid
not valid
1
5,853
6
20.299999
-0.066667
-0.746667
-0.396667
7.996094
001
-0.7
-1.246667
0.031235
1
3
val_val
misc
not valid
not valid
not valid
2
5,857
9
20.49
0.026667
-0.41
-0.403333
7.996094
001
-0.48
-0.996667
0.031235
1
3
val_val
misc
not valid
not valid
not valid
3
5,860
12
20.41
0.182857
0.02
-0.56
7.996094
001
-0.175
-0.71
0.031235
1
3
val_val
misc
not valid
not valid
not valid
4
5,864
15
20.469999
0.211429
-0.174286
0.48
7.996094
001
-0.16
-1.0875
0.031235
1
3
val_val
misc
not valid
not valid
not valid
5
5,867
18
20.530001
0.062857
0.051429
-0.625714
7.996094
001
-0.16
-1.015
0.031235
1
3
val_val
misc
not valid
not valid
not valid
6
5,871
21
20.58
0.083333
-0.083333
-0.013333
7.996094
001
-0.16
-0.873333
0.031235
1
3
val_val
misc
not valid
not valid
not valid
7
5,875
24
20.58
0.02
-0.42
0.525714
7.996094
001
-0.16
-0.94
0.031235
1
3
val_val
misc
not valid
not valid
not valid
8
5,878
27
20.61
0.151429
-0.388571
-0.137143
7.996094
001
-0.073333
-1.01
0.031235
1
3
val_val
misc
not valid
not valid
not valid
9
5,882
30
20.585
0.168571
-0.262857
-0.114286
7.996094
001
-0.06
-1.043333
0.031235
1
3
val_val
misc
not valid
not valid
not valid
10
5,885
33
20.639999
0.12
-0.222857
0.054286
7.996094
001
-0.126667
-1.106667
0.031235
1
3
val_val
misc
not valid
not valid
not valid
11
5,889
36
20.639999
0.14
0.11
-0.656667
7.996094
001
-0.14
-1.11
0.031235
1
3
val_val
misc
not valid
not valid
not valid
12
5,892
39
20.826667
0.063333
-0.513333
-0.33
7.996094
001
-0.246667
-1.383333
0.031235
1
3
val_val
misc
not valid
not valid
not valid
13
5,896
42
20.826667
0.105714
-0.554286
0.428571
7.996094
001
-0.335
-1.195
0.031235
1
3
val_val
misc
not valid
not valid
not valid
14
5,900
45
20.79
0.102857
-0.208571
-0.474286
7.996094
001
-0.29
-1.055
0.031235
1
3
val_val
misc
not valid
not valid
not valid
15
5,903
48
20.75
0.137143
-0.128571
-0.354286
7.996094
001
-0.3
-1.095
0.031235
1
3
val_val
misc
not valid
not valid
not valid
16
5,907
51
20.826667
0.123333
-0.383333
0.216667
7.996094
001
-0.32
-0.913333
0.031235
1
3
val_val
misc
not valid
not valid
not valid
17
5,910
54
20.92
0.1
-0.302857
-0.228571
7.996094
001
-0.26
-0.993333
0.031235
1
3
val_val
misc
not valid
not valid
not valid
18
5,914
57
21.030001
0.177143
-0.305714
-0.177143
7.996094
001
-0.12
-0.946667
0.031235
1
3
val_val
misc
not valid
not valid
not valid
19
5,917
60
21.09
0.022857
-0.131429
-0.011429
7.996094
001
0
-0.626667
0.031235
1
3
val_val
misc
not valid
not valid
not valid
20
5,921
63
21.15
0.08
0.316667
0.386667
7.996094
001
-0.053333
-0.456667
0.031235
1
3
val_val
misc
not valid
not valid
not valid
21
5,924
66
21.26
0.286667
-0.433333
0.013333
7.996094
001
-0.04
-0.613333
0.031235
1
3
val_val
misc
not valid
not valid
not valid
22
5,928
69
21.370001
0.371429
-0.305714
0.291429
7.996094
001
0.006667
-0.516667
0.031235
1
3
val_val
misc
not valid
not valid
not valid
23
5,932
72
21.446667
0.365714
-0.4
0.38
7.996094
001
0.02
-0.17
0.031235
1
3
val_val
misc
not valid
not valid
not valid
24
5,935
75
21.560001
0.197143
-0.002857
-0
7.996094
001
0.02
-0.505
0.031235
1
3
val_val
misc
not valid
not valid
not valid
25
5,939
78
21.6
0.186667
0.113333
-0.743333
7.996094
001
0.005
-0.015
0.031235
1
3
val_val
misc
not valid
not valid
not valid
26
5,942
81
21.689999
0.25
-0.246667
0.48
7.996094
001
0
-0.173333
0.031235
1
3
val_val
misc
not valid
not valid
not valid
27
5,946
84
21.82
0.282857
-0.157143
0.225714
7.996094
001
0
-0.256667
0.031235
1
3
val_val
misc
not valid
not valid
not valid
28
5,949
87
21.99
0.24
-0.165714
0.071429
7.996094
001
0.006667
-0.72
0.031235
1
3
val_val
misc
not valid
not valid
not valid
29
5,953
90
22.075
0.154286
0.302857
0.265714
7.996094
001
-0.12
-0.406667
0.031235
1
3
val_val
misc
not valid
not valid
not valid
30
5,957
93
22.27
-0.086667
-1.43
0.146667
7.996094
001
-0.053333
-0.51
0.031235
1
3
val_val
misc
not valid
not valid
not valid
31
5,960
96
22.379999
0.166667
-0.29
0.15
7.996094
001
0.086667
-0.403333
0.031235
1
3
val_val
misc
not valid
not valid
not valid
32
5,964
99
22.57
0.748571
-0.182857
-0.077143
7.996094
001
0.08
0.213333
0.031235
1
3
val_val
misc
not valid
not valid
not valid
33
5,967
102
22.853333
0.805714
-0.237143
-0.114286
7.996094
001
0.07
0.2975
0.031235
1
4
val_val
misc
not valid
not valid
not valid
34
5,971
105
22.966667
1.188571
0.331429
-0.434286
7.996094
001
0.06
0.86
0.031235
1
4
val_val
misc
not valid
not valid
not valid
35
5,974
108
23.186667
0.906667
-0.95
1.51
7.996094
001
0.15
0.19
0.031235
1
4
val_val
misc
not valid
not valid
not valid
36
5,978
111
23.526667
0.733333
-0.51
0.586667
7.996094
001
0.28
-0.14
0.031235
1
4
val_val
misc
not valid
not valid
not valid
37
5,981
114
23.73
0.622857
-0.917143
0.257143
7.996094
001
0.273333
-0.29
0.031235
1
4
val_val
misc
not valid
not valid
not valid
38
5,985
117
23.745
0.188571
-0.468571
0.657143
7.996094
001
0.293333
-1.046667
0.031235
1
4
val_val
misc
not valid
not valid
not valid
39
5,989
120
23.9975
-0.191429
0.785714
-0.645714
7.996094
001
-0.046667
-0.75
0.031235
1
4
val_val
misc
not valid
not valid
not valid
40
5,992
123
24.01
0.013333
0.103333
-0.28
7.996094
001
-0.72
-0.13
0.031235
1
4
val_val
misc
not valid
not valid
not valid
41
5,996
126
23.773333
-0.08
-0.756667
0.383333
7.996094
001
-0.806667
-1.183333
0.031235
1
4
val_val
misc
not valid
not valid
not valid
42
5,999
129
23.64
-0.325714
-1.54
0.64
7.996094
001
-0.44
-1.95
0.031235
1
4
val_val
misc
not valid
not valid
not valid
43
6,003
132
23.486667
0.245714
-0.288571
0.454286
7.996094
001
0.05
-2.1575
0.031235
1
4
val_val
misc
not valid
not valid
not valid
44
6,006
135
23.85
0.414286
0.788571
-0.645714
7.996094
001
-0.29
-1.23
0.031235
1
4
val_val
misc
not valid
not valid
not valid
45
6,010
138
23.993333
0.286667
0.093333
-1.683333
7.996094
001
-1.115
-1.1375
0.031235
0
4
val_val
misc
not valid
not valid
not valid
46
6,014
141
24.066667
0.19
-0.686667
-1.78
7.996094
001
-1.66
-1.55
0.031235
0
4
val_val
misc
not valid
not valid
not valid
47
6,017
144
23.735001
-0.06
-1.868571
-0.211429
7.996094
001
-1.78
-2.323333
0.031235
0
4
val_val
misc
not valid
not valid
not valid
48
6,021
147
23.620001
0.217143
-1.271429
-1.942857
7.996094
001
-1.826667
-2.063333
0.031235
0
4
val_val
misc
not valid
not valid
not valid
49
6,024
150
23.9
0.12
0.977143
-3.508571
7.996094
001
-1.84
-1.45
0.031235
0
4
val_val
misc
not valid
not valid
not valid
50
6,028
153
24.01
-0.05
0.076667
-1.66
7.996094
001
-2.06
-0.653333
0.031235
0
4
val_val
misc
not valid
not valid
not valid
51
6,031
156
24.07
-0.003333
-0.81
-1.593333
7.996094
001
-1.953333
-0.726667
0.031235
0
4
val_val
misc
not valid
not valid
not valid
52
6,035
159
24.163333
-0.002857
-1.091429
-0.737143
7.996094
001
-1.24
-1.3
0.031235
0
4
val_val
misc
not valid
not valid
not valid
53
6,039
162
24.05
-0.028571
0.322857
-0.874286
7.996094
001
-0.82
-0.66
0.031235
0
4
val_val
misc
not valid
not valid
not valid
54
6,042
165
23.73
0.111429
0.457143
-1.871429
7.996094
001
-0.96
-0.4425
0.031235
0
4
val_val
misc
not valid
not valid
not valid
55
6,046
168
24.129999
0.083333
0.296667
-1.876667
7.996094
001
-0.935
0.225
0.031235
0
4
val_val
misc
not valid
not valid
not valid
56
6,049
171
24.129999
0.163333
-0.196667
0.286667
7.996094
001
-0.64
-0.033333
0.031235
0
4
val_val
misc
not valid
not valid
not valid
57
6,053
174
24.18
0.022857
-1.02
0.754286
7.996094
001
-0.146667
-0.246667
0.031235
0
4
val_val
misc
not valid
not valid
not valid
58
6,056
177
24.225
-0.108571
-0.462857
-0.34
7.996094
001
0.153333
-0.966667
0.031235
0
4
val_val
misc
not valid
not valid
not valid
59
6,060
180
24.255
-0.005714
0.022857
-0.108571
7.996094
001
0.02
-0.693333
0.031235
0
4
val_val
misc
not valid
not valid
not valid
60
6,063
183
24.163333
0.11
0.666667
-0.666667
7.996094
001
-0.653333
-0.363333
0.031235
0
4
val_val
misc
not valid
not valid
not valid
61
6,067
186
23.976666
0.023333
-0.33
-1.643333
7.996094
001
-0.76
-1.06
0.031235
0
4
val_val
misc
not valid
not valid
not valid
62
6,071
189
24.07
-0.111429
-0.911429
0.297143
7.996094
001
-0.72
-0.726667
0.031235
0
4
val_val
misc
not valid
not valid
not valid
63
6,074
192
24.24
0.002857
-0.897143
0.477143
7.996094
001
-0.62
-1.4275
0.031235
0
4
val_val
misc
not valid
not valid
not valid
64
6,078
195
24.336666
0.071429
0.625714
-1.751429
7.996094
001
-0.695
-0.7675
0.031235
0
4
val_val
misc
not valid
not valid
not valid
65
6,081
198
24.073332
0.043333
-0.396667
-0.726667
7.996094
001
-0.68
-0.5625
0.031235
0
4
val_val
misc
not valid
not valid
not valid
66
6,085
201
10.72
1.442857
0.985714
8.877143
7.996094
001
18.04
3.14
0.031235
0
11
val_val
misc
not valid
not valid
not valid
67
7,607
204
11.17
1.368571
1.1
10.422857
7.996094
001
20.58
3.19
0.031235
0
11
val_val
misc
not valid
not valid
not valid
68
7,610
207
11.62
1.38
1.271429
12.231429
7.996094
001
23.16
3.2875
0.031235
0
11
val_val
misc
not valid
not valid
not valid
69
7,614
210
12.07
1.31
1.37
14.28
7.996094
001
25.53
3.3075
0.031235
0
11
val_val
misc
not valid
not valid
not valid
70
7,617
213
12.4275
1.18
1.696667
15.973334
7.996094
001
27.453334
3.306667
0.031235
0
11
val_val
misc
not valid
not valid
not valid
71
7,621
216
12.8075
1.12
1.582857
17.622857
7.996094
001
28.933334
3.306667
0.031235
0
11
val_val
misc
not valid
not valid
not valid
72
7,624
219
13.24
1.228571
1.431429
18.914285
7.996094
001
29.440001
3.05
0.031235
0
11
val_val
misc
not valid
not valid
not valid
73
7,628
222
13.683333
1.38
1.282857
19.434286
7.996094
001
29.366667
2.666667
0.031235
0
11
val_val
misc
not valid
not valid
not valid
74
7,632
225
14.19
1.426667
1.453333
19.853333
7.996094
001
29.360001
2.62
0.031235
0
11
val_val
misc
not valid
not valid
not valid
75
7,635
228
14.66
1.29
1.65
20.45
7.996094
001
29.360001
2.693333
0.031235
0
11
val_val
misc
not valid
not valid
not valid
76
7,639
231
15.143333
1.402857
1.608571
21.354286
7.996094
001
29.360001
2.753333
0.031235
0
11
val_val
misc
not valid
not valid
not valid
77
7,642
234
15.67
1.491429
1.888571
21.837142
7.996094
001
29.360001
2.995
0.031235
0
11
val_val
misc
not valid
not valid
not valid
78
7,646
237
16.233334
1.508571
2.045714
22.205715
7.996094
001
29.47
3.22
0.031235
0
11
val_val
misc
not valid
not valid
not valid
79
7,649
240
16.723333
1.346667
2.12
23.48
7.996094
001
29.559999
3.23
0.031235
1
11
val_val
misc
not valid
not valid
not valid
80
7,653
243
17.235
1.216667
1.806667
24.013334
7.996094
001
29.559999
3.073333
0.031235
1
11
val_val
misc
not valid
not valid
not valid
81
7,657
246
17.684999
0.994286
2.248571
24.305714
7.996094
001
29.553333
2.943333
0.031235
1
11
val_val
misc
not valid
not valid
not valid
82
7,660
249
18.165
0.931429
2.528571
24.937143
7.996094
001
29.493333
3.01
0.031235
1
11
val_val
misc
not valid
not valid
not valid
83
7,664
252
18.426666
0.848571
2.597143
25.202858
7.996094
001
29.4
2.923333
0.031235
1
11
val_val
misc
not valid
not valid
not valid
84
7,667
255
18.936666
0.8
2.89
25.746666
7.996094
001
29.093334
2.93
0.031235
1
11
val_val
misc
not valid
not valid
not valid
85
7,671
258
19.456666
1.026667
2.623333
26.46
7.996094
001
28.606667
2.853333
0.031235
1
11
val_val
misc
not valid
not valid
not valid
86
7,674
261
19.796666
0.894286
2.582857
26.554286
7.996094
001
28.186666
2.906667
0.031235
1
11
val_val
misc
not valid
not valid
not valid
87
7,678
264
20.43
0.874286
2.72
26.537143
7.996094
001
27.985
2.9025
0.031235
1
11
val_val
misc
not valid
not valid
not valid
88
7,682
267
20.94
0.771429
3.048571
26.437143
7.996094
001
27.434999
2.7525
0.031235
1
11
val_val
misc
not valid
not valid
not valid
89
7,685
270
21.406667
0.806667
2.923333
26.34
7.996094
001
25.89
2.84
0.031235
1
11
val_val
misc
not valid
not valid
not valid
90
7,689
273
21.9325
0.886667
2.953333
24.693333
7.996094
001
24.24
2.893333
0.031235
1
11
val_val
misc
not valid
not valid
not valid
91
7,692
276
22.3675
1.008571
2.685714
23.577143
7.996094
001
23.053333
2.566667
0.031235
1
11
val_val
misc
not valid
not valid
not valid
92
7,696
279
22.9475
1.728571
2.405714
23.525714
7.996094
001
21.52
2.533333
0.031235
1
11
val_val
misc
not valid
not valid
not valid
93
7,699
282
23.563334
1.691429
2.422857
22.262857
7.996094
001
19.773333
2.64
0.031235
1
11
val_val
misc
not valid
not valid
not valid
94
7,703
285
24.203333
1.52
2.516667
20.613333
7.996094
001
18.786667
2.646667
0.031235
1
11
val_val
misc
not valid
not valid
not valid
95
7,706
288
24.84
1.18
2.89
20.17
7.996094
001
18.033334
2.61
0.031235
1
11
val_val
misc
not valid
not valid
not valid
96
7,710
291
25.343334
1.034286
2.711429
19.682857
7.996094
001
16.786667
2.786667
0.031235
1
11
val_val
misc
not valid
not valid
not valid
97
7,714
294
25.91
1.277143
2.405714
18.468571
7.996094
001
15.565
2.735
0.031235
1
11
val_val
misc
not valid
not valid
not valid
98
7,717
297
26.563334
1.542857
2.222857
17.371429
7.996094
001
14.41
2.4875
0.031235
1
11
val_val
misc
not valid
not valid
not valid
99
7,721

Dataset Card for Dataset SADC

There is evidence that the driving style of an autonomous vehicle is important to increase the acceptance and trust of the passengers. The driving situation has been found to have a significant influence on human driving behavior. However, current driving style models only partially incorporate driving environment information, limiting the alignment between an agent and the given situation.

Therefore, we propose a dataset for situation-aware driving style modeling.

Preprint - 2403.19595 Repository - GitHub

Dataset Details

Dataset Description

The dataset is composed as follows: the pretrain set DP is split into a training subset DP,T with 242 887 samples, and a validation subset DP,V with 61 400 samples. Similarly, the validation set DV is split into a training subset DV,T and a validation subset DV,V with 138 572 and 34 767 samples. Each subset consists of 1280 × 960 images, driving behavior indicators like the distance to the lane center, vehicle signals like velocity or accelerations, as well as traffic conditions and road type labels.

  • Curated by: Johann Haselberger
  • License: CC-BY-4.0

Dataset Sources

We collected over 16 hours of driving data from single test driver as pretrain data. For the driving style adaptation, we collected driving behavior data from five different subjects driving on the same route for one hour, denoted as validation data.

Usage

Download Script

For an easy usage of our dataset, we provide a download script with our repo: https://github.com/jHaselberger/SADC-Situation-Awareness-for-Driver-Centric-Driving-Style-Adaptation/blob/master/utils/download_dataset.py.

python download_dataset.py --target_dir ../data --split pretrain_train

List Available Split Names

from datasets import load_dataset, get_dataset_split_names

split_names = get_dataset_split_names("jHaselberger/SADC-Situation-Awareness-for-Driver-Centric-Driving-Style-Adaptation")
print(f"Available split names: {split_names}")

Inspect some Samples

from datasets import load_dataset, get_dataset_split_names
from matplotlib import pyplot as plt
import pandas as pd

dataset = load_dataset("jHaselberger/SADC-Situation-Awareness-for-Driver-Centric-Driving-Style-Adaptation", split="val_val", streaming=True)

samples = dataset.take(50)
df = pd.DataFrame.from_dict([s for s in samples])
print(df.head())

Visualize some Time-Series

fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(df["frame_nr"],df["v_kmph"],"ko-",label="velocity")
ax2.plot(df["frame_nr"],df["steering_torque_N"],"ro-",label="steering torque")

ax1.set_xlabel('Frame')
ax1.set_ylabel('Velocity in km/h', color='k')
ax2.set_ylabel('Steering Torque in N', color='r')
plt.show()

Visualize the Camera Image

plt.imshow(df["frame"].iloc[-1])
plt.axis('off')
plt.show()

Dataset Structure

Dataset Splits

Split Number of Samples Description
Used for the Experiments in the Paper
pretrain 304287 The full pretrain dataset.
pretrain_train 242887 Subset of pretrain used for training.
pretrain_val 61400 Subset of pretrain used for validation.
val_train 138572 Subset of validation used for training.
val_val 34767 Subset of validation used for validation.
Additional Data
pretrain_unfiltered 1180252 The full unfiltered pretrain dataset.
val_unfiltered 686328 The full unfiltered validation dataset.

Files

  • The folder driving_data contains the vehicle signals. Downloading these files is optional and is only required if you do not want to download the entire image data set.
  • The folder image_lists contains the image lists used for training of the featrue encoders and NN-based behavior predictors. Downloading these files is optional.

Personal and Sensitive Information

To blur vehicle license plates and human faces in the camera frames, we utilize EgoBlur https://github.com/facebookresearch/EgoBlur.
Furthermore, all subject-related data, including the socio-demographics, are anonymized.

Bias, Risks, and Limitations

Considering the limitations of our dataset, real-world tests should be conducted with care in a safe environment. To publish the data concerning privacy policies, we utilized a state-of-the-art anonymization framework to blur human faces and vehicle license plates to mitigate privacy concerns.

Citation [optional]

BibTeX:

@misc{haselberger2024situation,
      title={Situation Awareness for Driver-Centric Driving Style Adaptation}, 
      author={Johann Haselberger and Bonifaz Stuhr and Bernhard Schick and Steffen Müller},
      year={2024},
      eprint={2403.19595},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

APA:

Johann Haselberger, Bonifaz Stuhr, Bernhard Schick, & Steffen Müller. (2024). Situation Awareness for Driver-Centric Driving Style Adaptation.
Downloads last month
149