code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _snake_case = sys.version_info >= (3, 10) def snake_case ( _a: Optional[Any]=None , _a: Tuple=None )-> Any: '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class _a : a_ : List[Any] = 42 a_ : Tuple = 42 a_ : Dict = 42 a_ : List[Any] = 42 @dataclass class _a : a_ : Any = 42 a_ : Any = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class _a : a_ : Dict = False a_ : Union[str, Any] = True a_ : Any = None class _a ( __snake_case ): a_ : str = 'titi' a_ : Tuple = 'toto' class _a ( __snake_case ): a_ : Optional[int] = 'titi' a_ : Optional[Any] = 'toto' a_ : Optional[int] = 42 @dataclass class _a : a_ : Optional[Any] = 'toto' def _UpperCamelCase ( self : str ): lowerCamelCase__ = BasicEnum(self.foo ) @dataclass class _a : a_ : Any = 'toto' def _UpperCamelCase ( self : int ): lowerCamelCase__ = MixedTypeEnum(self.foo ) @dataclass class _a : a_ : List[Any] = None a_ : Tuple = field(default=__snake_case , metadata={'help': 'help message'} ) a_ : Any = None a_ : List[str] = list_field(default=[] ) a_ : Any = list_field(default=[] ) @dataclass class _a : a_ : Any = list_field(default=[] ) a_ : int = list_field(default=[1, 2, 3] ) a_ : Union[str, Any] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) a_ : str = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _a : a_ : Optional[int] = field() a_ : Tuple = field() a_ : Any = field() def _UpperCamelCase ( self : str ): lowerCamelCase__ = BasicEnum(self.required_enum ) @dataclass class _a : a_ : List[str] = 42 a_ : str = field() a_ : Any = None a_ : Optional[int] = field(default='toto' , metadata={'help': 'help message'} ) a_ : Union[str, Any] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class _a : a_ : Dict = False a_ : Dict = True a_ : List[Any] = None @dataclass class _a : a_ : str = None a_ : int = field(default=__snake_case , metadata={'help': 'help message'} ) a_ : Optional[int] = None a_ : Union[str, Any] = list_field(default=[] ) a_ : List[str] = list_field(default=[] ) class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCamelCase__ = {k: v for k, v in vars(SCREAMING_SNAKE_CASE__ ).items() if k != 'container'} lowerCamelCase__ = {k: v for k, v in vars(SCREAMING_SNAKE_CASE__ ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , SCREAMING_SNAKE_CASE__ ) and yy.get('choices' , SCREAMING_SNAKE_CASE__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](SCREAMING_SNAKE_CASE__ ) , yy['type'](SCREAMING_SNAKE_CASE__ ) ) del xx["type"], yy["type"] self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = argparse.ArgumentParser() expected.add_argument('--foo' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--bar' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--baz' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--flag' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , const=SCREAMING_SNAKE_CASE__ , nargs='?' ) self.argparsersEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((lowerCamelCase__ ) , ) = parser.parse_args_into_dataclasses(SCREAMING_SNAKE_CASE__ , look_for_args_file=SCREAMING_SNAKE_CASE__ ) self.assertFalse(example.flag ) def _UpperCamelCase ( self : Any ): lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--baz' , default='toto' , type=SCREAMING_SNAKE_CASE__ , help='help message' ) self.argparsersEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = argparse.ArgumentParser() expected.add_argument('--foo' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , const=SCREAMING_SNAKE_CASE__ , nargs='?' ) expected.add_argument('--baz' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , const=SCREAMING_SNAKE_CASE__ , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=SCREAMING_SNAKE_CASE__ , dest='baz' ) expected.add_argument('--opt' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(SCREAMING_SNAKE_CASE__ ) for dataclass_type in dataclass_types: lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) self.argparsersEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = parser.parse_args([] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , Namespace(foo=SCREAMING_SNAKE_CASE__ , baz=SCREAMING_SNAKE_CASE__ , opt=SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , Namespace(foo=SCREAMING_SNAKE_CASE__ , baz=SCREAMING_SNAKE_CASE__ , opt=SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , Namespace(foo=SCREAMING_SNAKE_CASE__ , baz=SCREAMING_SNAKE_CASE__ , opt=SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , Namespace(foo=SCREAMING_SNAKE_CASE__ , baz=SCREAMING_SNAKE_CASE__ , opt=SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , Namespace(foo=SCREAMING_SNAKE_CASE__ , baz=SCREAMING_SNAKE_CASE__ , opt=SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCamelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCamelCase__ = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCamelCase__ = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCamelCase__ = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) lowerCamelCase__ = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _UpperCamelCase ( self : Any ): @dataclass class _a : a_ : Union[str, Any] = 'toto' lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCamelCase__ = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCamelCase__ = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=SCREAMING_SNAKE_CASE__ ) self.argparsersEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = parser.parse_args([] ) self.assertEqual( SCREAMING_SNAKE_CASE__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCamelCase__ = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(SCREAMING_SNAKE_CASE__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = argparse.ArgumentParser() expected.add_argument('--foo' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--bar' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='help message' ) expected.add_argument('--baz' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--ces' , nargs='+' , default=[] , type=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--des' , nargs='+' , default=[] , type=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(SCREAMING_SNAKE_CASE__ ) for dataclass_type in dataclass_types: lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) self.argparsersEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = parser.parse_args([] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , Namespace(foo=SCREAMING_SNAKE_CASE__ , bar=SCREAMING_SNAKE_CASE__ , baz=SCREAMING_SNAKE_CASE__ , ces=[] , des=[] ) ) lowerCamelCase__ = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(SCREAMING_SNAKE_CASE__ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--required_str' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=SCREAMING_SNAKE_CASE__ , ) self.argparsersEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = argparse.ArgumentParser() expected.add_argument('--foo' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=SCREAMING_SNAKE_CASE__ , ) expected.add_argument('--opt' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ ) expected.add_argument('--baz' , default='toto' , type=SCREAMING_SNAKE_CASE__ , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=SCREAMING_SNAKE_CASE__ ) self.argparsersEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } lowerCamelCase__ = parser.parse_dict(SCREAMING_SNAKE_CASE__ )[0] lowerCamelCase__ = BasicExample(**SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(SCREAMING_SNAKE_CASE__ , parser.parse_dict , SCREAMING_SNAKE_CASE__ , allow_extra_keys=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'temp_json' ) os.mkdir(SCREAMING_SNAKE_CASE__ ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] lowerCamelCase__ = BasicExample(**SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'temp_yaml' ) os.mkdir(SCREAMING_SNAKE_CASE__ ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] lowerCamelCase__ = BasicExample(**SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
510
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
0
from __future__ import annotations def snake_case_ ( __lowercase , __lowercase ): print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(__lowercase ): print(F'''{i}\t\t{d}''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): for j in range(__lowercase ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = [float('''inf''' )] * vertex_count UpperCAmelCase_ : Optional[Any] = 0.0 for _ in range(vertex_count - 1 ): for j in range(__lowercase ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: UpperCAmelCase_ : Tuple = distance[u] + w UpperCAmelCase_ : Dict = check_negative_cycle(__lowercase , __lowercase , __lowercase ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Optional[int] = int(input('Enter number of vertices: ').strip()) __UpperCamelCase : Optional[int] = int(input('Enter number of edges: ').strip()) __UpperCamelCase : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) __UpperCamelCase : Optional[Any] = {'src': src, 'dst': dest, 'weight': weight} __UpperCamelCase : Union[str, Any] = int(input('\nEnter shortest path source:').strip()) __UpperCamelCase : Union[str, Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _snake_case : def __init__( self : str ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[int]=13 ,SCREAMING_SNAKE_CASE__ : Tuple=7 ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Optional[int]=True ,SCREAMING_SNAKE_CASE__ : int=99 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=64 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5 ,SCREAMING_SNAKE_CASE__ : Optional[int]=4 ,SCREAMING_SNAKE_CASE__ : List[Any]=37 ,SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : str=512 ,SCREAMING_SNAKE_CASE__ : Any=16 ,SCREAMING_SNAKE_CASE__ : int=2 ,SCREAMING_SNAKE_CASE__ : Dict=0.02 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 ,SCREAMING_SNAKE_CASE__ : int=None ,): SCREAMING_SNAKE_CASE:Optional[Any] = parent SCREAMING_SNAKE_CASE:List[Any] = batch_size SCREAMING_SNAKE_CASE:str = seq_length SCREAMING_SNAKE_CASE:str = is_training SCREAMING_SNAKE_CASE:Optional[Any] = use_input_mask SCREAMING_SNAKE_CASE:Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE:Optional[Any] = use_labels SCREAMING_SNAKE_CASE:Dict = vocab_size SCREAMING_SNAKE_CASE:int = hidden_size SCREAMING_SNAKE_CASE:List[Any] = embedding_size SCREAMING_SNAKE_CASE:Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE:Any = num_attention_heads SCREAMING_SNAKE_CASE:Any = intermediate_size SCREAMING_SNAKE_CASE:List[Any] = hidden_act SCREAMING_SNAKE_CASE:Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE:Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:List[str] = max_position_embeddings SCREAMING_SNAKE_CASE:Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE:int = type_sequence_label_size SCREAMING_SNAKE_CASE:Optional[Any] = initializer_range SCREAMING_SNAKE_CASE:Union[str, Any] = num_labels SCREAMING_SNAKE_CASE:Any = num_choices SCREAMING_SNAKE_CASE:str = scope def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE:Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE:List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE:List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE:List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE:Tuple = None SCREAMING_SNAKE_CASE:Optional[int] = None SCREAMING_SNAKE_CASE:int = None if self.use_labels: SCREAMING_SNAKE_CASE:Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE:Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE:Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE:Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Union[str, Any] ): return MegatronBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=SCREAMING_SNAKE_CASE__ ,initializer_range=self.initializer_range ,) def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : int ): SCREAMING_SNAKE_CASE:Tuple = MegatronBertModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Tuple = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = model(SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE:Optional[Any] = MegatronBertForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Any = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ): SCREAMING_SNAKE_CASE:List[Any] = MegatronBertForCausalLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Tuple = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : List[Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = MegatronBertForNextSentencePrediction(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Dict = model( SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Dict ): SCREAMING_SNAKE_CASE:Optional[int] = MegatronBertForPreTraining(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Tuple = model( SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ,next_sentence_label=SCREAMING_SNAKE_CASE__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:Optional[Any] = MegatronBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:int = model( SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,start_positions=SCREAMING_SNAKE_CASE__ ,end_positions=SCREAMING_SNAKE_CASE__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE:Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE:Tuple = MegatronBertForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Any = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[str] ): SCREAMING_SNAKE_CASE:Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE:Optional[int] = MegatronBertForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Optional[int] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Dict ): SCREAMING_SNAKE_CASE:List[str] = self.num_choices SCREAMING_SNAKE_CASE:Dict = MegatronBertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:List[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE:Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE:Optional[int] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE:List[str] = model( SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ):Any = config_and_inputs SCREAMING_SNAKE_CASE:Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( _a , _a , unittest.TestCase ): _A : Any = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _A : List[str] = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _A : str = True # test_resize_embeddings = False _A : List[Any] = False def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Tuple=False ): SCREAMING_SNAKE_CASE:Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:Optional[int] = MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE:Dict = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,hidden_size=37 ) def __UpperCamelCase ( self : Tuple ): self.config_tester.run_common_tests() def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def A_ ( snake_case ): return torch.tensor( snake_case , dtype=torch.long , device=snake_case , ) A_ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow @unittest.skip("Model is not available." ) def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:List[str] = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE:List[Any] = os.path.join(os.environ["MYDIR"] ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[Any] = MegatronBertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.half() SCREAMING_SNAKE_CASE:str = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ )[0] SCREAMING_SNAKE_CASE:Optional[Any] = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE:Dict = output[0, ii, jj] SCREAMING_SNAKE_CASE:int = expected[3 * ii + jj] SCREAMING_SNAKE_CASE:Tuple = "ii={} jj={} a={} b={}".format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.assertTrue(math.isclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,rel_tol=SCREAMING_SNAKE_CASE__ ,abs_tol=SCREAMING_SNAKE_CASE__ ) ,msg=SCREAMING_SNAKE_CASE__ )
143
'''simple docstring''' A_ = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) A_ = frozenset(["prompt", "negative_prompt"]) A_ = frozenset([]) A_ = frozenset(["image"]) A_ = frozenset( [ "image", "height", "width", "guidance_scale", ] ) A_ = frozenset(["image"]) A_ = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) A_ = frozenset(["prompt", "image", "negative_prompt"]) A_ = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) A_ = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) A_ = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) A_ = frozenset(["image", "mask_image"]) A_ = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) A_ = frozenset(["example_image", "image", "mask_image"]) A_ = frozenset(["class_labels"]) A_ = frozenset(["class_labels"]) A_ = frozenset(["batch_size"]) A_ = frozenset([]) A_ = frozenset(["batch_size"]) A_ = frozenset([]) A_ = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) A_ = frozenset(["prompt", "negative_prompt"]) A_ = frozenset(["input_tokens"]) A_ = frozenset(["input_tokens"])
143
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _snake_case : Any = logging.get_logger(__name__) class lowerCAmelCase ( _UpperCAmelCase ): def __init__( self , *UpperCamelCase , **UpperCamelCase ): warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
719
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _snake_case : Optional[Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _a ( _SCREAMING_SNAKE_CASE : Tuple ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): from transformers.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_SCREAMING_SNAKE_CASE , id=_SCREAMING_SNAKE_CASE )
493
0
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCamelCase_ : int = get_logger(__name__) class __lowerCAmelCase : """simple docstring""" snake_case = "dummy_data" snake_case = "datasets" snake_case = False def __init__( self : Optional[Any] , _snake_case : str , _snake_case : str , _snake_case : Union[Version, str] , _snake_case : Optional[str] = None , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[List[Callable]] = None , ) -> List[str]: """simple docstring""" A_ = 0 A_ = dataset_name A_ = cache_dir A_ = use_local_dummy_data A_ = config # download_callbacks take a single url as input A_ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root A_ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general A_ = str(_snake_case ) # to be downloaded A_ = None A_ = None @property def lowerCamelCase__ ( self : Any ) -> List[Any]: """simple docstring""" if self._dummy_file is None: A_ = self.download_dummy_data() return self._dummy_file @property def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def lowerCamelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def lowerCamelCase__ ( self : str ) -> Optional[int]: """simple docstring""" A_ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) A_ = cached_path( _snake_case , cache_dir=self.cache_dir , extract_compressed_file=_snake_case , force_extract=_snake_case ) return os.path.join(_snake_case , self.dummy_file_name ) @property def lowerCamelCase__ ( self : Any ) -> Any: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCamelCase__ ( self : Tuple ) -> str: """simple docstring""" if self._bucket_url is None: A_ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def lowerCamelCase__ ( self : List[Any] ) -> str: """simple docstring""" # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def lowerCamelCase__ ( self : Any , _snake_case : Optional[int] , *_snake_case : int ) -> Tuple: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested A_ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned A_ = self.dummy_file_name # special case when data_url is a dict if isinstance(_snake_case , _snake_case ): return self.create_dummy_data_dict(_snake_case , _snake_case ) elif isinstance(_snake_case , (list, tuple) ): return self.create_dummy_data_list(_snake_case , _snake_case ) else: return self.create_dummy_data_single(_snake_case , _snake_case ) def lowerCamelCase__ ( self : Optional[Any] , _snake_case : str , *_snake_case : List[str] ) -> str: """simple docstring""" return self.download_and_extract(_snake_case ) def lowerCamelCase__ ( self : str , _snake_case : Dict , _snake_case : List[Any] ) -> int: """simple docstring""" return self.download_and_extract(_snake_case ) def lowerCamelCase__ ( self : Optional[int] , _snake_case : Dict , *_snake_case : List[str] , **_snake_case : Optional[Any] ) -> List[Any]: """simple docstring""" return path def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return {} def lowerCamelCase__ ( self : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ) -> Any: """simple docstring""" A_ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_snake_case , _snake_case ): for single_url in single_urls: download_callback(_snake_case ) else: A_ = single_urls download_callback(_snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_snake_case , _snake_case ): A_ = [os.path.join(_snake_case , urllib.parse.quote_plus(Path(_snake_case ).name ) ) for x in single_urls] else: A_ = single_urls A_ = os.path.join(_snake_case , urllib.parse.quote_plus(Path(_snake_case ).name ) ) A_ = value # make sure that values are unique if all(isinstance(_snake_case , _snake_case ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique A_ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCamelCase__ ( self : Dict , _snake_case : List[str] , _snake_case : Optional[int] ) -> List[Any]: """simple docstring""" A_ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one A_ = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , _snake_case ) ) for url in data_url ) A_ = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): A_ = [data_url[0]] * len(_snake_case ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A_ = os.path.join(_snake_case , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(_snake_case ) return dummy_data_list def lowerCamelCase__ ( self : int , _snake_case : Dict , _snake_case : Optional[Any] ) -> int: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A_ = os.path.join(_snake_case , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(_snake_case ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCamelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def lowerCamelCase__ ( self : List[str] , _snake_case : Dict ) -> str: """simple docstring""" def _iter_archive_members(_snake_case : Optional[int] ): # this preserves the order of the members inside the ZIP archive A_ = Path(self.dummy_file ).parent A_ = path.relative_to(_snake_case ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: A_ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_snake_case ) A_ = Path(_snake_case ) A_ = _iter_archive_members(_snake_case ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(_snake_case ).as_posix(), file_path.open("rb" ) def lowerCamelCase__ ( self : Optional[Any] , _snake_case : Union[str, Any] ) -> int: """simple docstring""" if not isinstance(_snake_case , _snake_case ): A_ = [paths] for path in paths: if os.path.isfile(_snake_case ): if os.path.basename(_snake_case ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(_snake_case ): if os.path.basename(_snake_case ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(_snake_case ): if filename.startswith((".", "__") ): continue yield os.path.join(_snake_case , _snake_case )
115
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _snake_case : Any , _snake_case : Union[str, Any]=99 , _snake_case : List[Any]=13 , _snake_case : Optional[Any]=7 , _snake_case : Union[str, Any]=9 , _snake_case : List[Any]=True , _snake_case : Optional[int]=True , _snake_case : Any=False , _snake_case : str=32 , _snake_case : Any=5 , _snake_case : List[str]=4 , _snake_case : Dict=37 , _snake_case : List[Any]=8 , _snake_case : int=0.1 , _snake_case : List[str]=0.0_0_2 , _snake_case : Optional[Any]=1 , _snake_case : Union[str, Any]=0 , _snake_case : Any=0 , _snake_case : List[str]=None , _snake_case : List[Any]=None , ) -> int: """simple docstring""" A_ = parent A_ = batch_size A_ = encoder_seq_length A_ = decoder_seq_length # For common tests A_ = self.decoder_seq_length A_ = is_training A_ = use_attention_mask A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = d_ff A_ = relative_attention_num_buckets A_ = dropout_rate A_ = initializer_factor A_ = eos_token_id A_ = pad_token_id A_ = decoder_start_token_id A_ = None A_ = decoder_layers def lowerCamelCase__ ( self : Any ) -> Any: """simple docstring""" return TaConfig.from_pretrained("google/umt5-base" ) def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : int , _snake_case : Dict=None , _snake_case : Dict=None , _snake_case : str=None , _snake_case : Any=None , _snake_case : Union[str, Any]=None , ) -> List[Any]: """simple docstring""" if attention_mask is None: A_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: A_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: A_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_snake_case ) if decoder_head_mask is None: A_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_snake_case ) if cross_attn_head_mask is None: A_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowerCamelCase__ ( self : int ) -> Tuple: """simple docstring""" A_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input A_ = input_ids.clamp(self.pad_token_id + 1 ) A_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) A_ = self.get_config() A_ = config.num_attention_heads A_ = self.prepare_inputs_dict(_snake_case , _snake_case , _snake_case ) return config, input_dict def lowerCamelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" A_ , A_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCamelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCamelCase__ ( self : Optional[int] , _snake_case : List[str] , _snake_case : Any , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Optional[Any] , ) -> List[Any]: """simple docstring""" A_ = UMTaModel(config=_snake_case ) model.to(_snake_case ) model.eval() A_ = model( input_ids=_snake_case , decoder_input_ids=_snake_case , attention_mask=_snake_case , decoder_attention_mask=_snake_case , ) A_ = model(input_ids=_snake_case , decoder_input_ids=_snake_case ) A_ = result.last_hidden_state A_ = result.past_key_values A_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_snake_case ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowerCamelCase__ ( self : Optional[Any] , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : List[str] , _snake_case : str , _snake_case : Optional[Any] , _snake_case : int , ) -> List[str]: """simple docstring""" A_ = UMTaModel(config=_snake_case ).get_decoder().to(_snake_case ).eval() # first forward pass A_ = model(_snake_case , use_cache=_snake_case ) A_ = model(_snake_case ) A_ = model(_snake_case , use_cache=_snake_case ) self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) ) self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) + 1 ) A_ , A_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and A_ = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ = model(_snake_case )["last_hidden_state"] A_ = model(_snake_case , past_key_values=_snake_case )["last_hidden_state"] # select random slice A_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ = output_from_no_past[:, -1, random_slice_idx].detach() A_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-3 ) ) def lowerCamelCase__ ( self : str , _snake_case : Any , _snake_case : str , ) -> List[Any]: """simple docstring""" A_ = UMTaModel(config=_snake_case ).to(_snake_case ).half().eval() A_ = model(**_snake_case )["last_hidden_state"] self.parent.assertFalse(torch.isnan(_snake_case ).any().item() ) @require_torch class __lowerCAmelCase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" snake_case = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) snake_case = (UMTaForConditionalGeneration,) if is_torch_available() else () snake_case = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) snake_case = True snake_case = False snake_case = False snake_case = True snake_case = True # The small UMT5 model needs higher percentages for CPU/MP tests snake_case = [0.8, 0.9] def lowerCamelCase__ ( self : str ) -> Tuple: """simple docstring""" A_ = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() A_ = UMTaModel(config_and_inputs[0] ).to(_snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=_snake_case , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_snake_case ) def lowerCamelCase__ ( self : Dict ) -> Dict: """simple docstring""" A_ = ["encoder_attentions", "decoder_attentions", "cross_attentions"] A_ = self.model_tester.prepare_config_and_inputs() A_ = config_and_inputs[0] A_ = UMTaForConditionalGeneration(_snake_case ).eval() model.to(_snake_case ) A_ = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=_snake_case ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=_snake_case ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=_snake_case ), } for attn_name, (name, mask) in zip(_snake_case , head_masking.items() ): A_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": A_ = torch.ones( config.num_decoder_layers , config.num_heads , device=_snake_case ) A_ = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=_snake_case , return_dict_in_generate=_snake_case , **_snake_case , ) # We check the state of decoder_attentions and cross_attentions just from the last step A_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def lowerCamelCase__ ( self : Dict ) -> int: """simple docstring""" A_ = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=_snake_case ).to(_snake_case ) A_ = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=_snake_case , legacy=_snake_case ) A_ = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] A_ = tokenizer(_snake_case , return_tensors="pt" , padding=_snake_case ).input_ids # fmt: off A_ = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_snake_case , _snake_case ) A_ = model.generate(input_ids.to(_snake_case ) ) A_ = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] A_ = tokenizer.batch_decode(_snake_case ) self.assertEqual(_snake_case , _snake_case )
115
1
from __future__ import annotations from math import gcd def _A (UpperCamelCase : int , UpperCamelCase : int = 2 , UpperCamelCase : int = 1 , UpperCamelCase : int = 3 , ): '''simple docstring''' if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int ) -> int: return (pow(UpperCamelCase , 2 ) + step) % modulus for _ in range(UpperCamelCase ): # These track the position within the cycle detection logic. lowerCamelCase__ : int = seed lowerCamelCase__ : str = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCamelCase__ : List[Any] = rand_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : str = rand_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : str = rand_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCamelCase__ : Any = gcd(hare - tortoise , UpperCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCamelCase__ : List[Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _lowercase = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) _lowercase = parser.parse_args() _lowercase = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: _lowercase = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
714
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowercase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __A ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=18 , __magic_name__=30 , __magic_name__=400 , __magic_name__=None , __magic_name__=True , __magic_name__=True , __magic_name__=None , ): lowerCamelCase__ : Optional[Any] = size if size is not None else {"""height""": 20, """width""": 20} lowerCamelCase__ : List[str] = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : Union[str, Any] = min_resolution lowerCamelCase__ : List[Any] = max_resolution lowerCamelCase__ : Optional[int] = size lowerCamelCase__ : List[str] = do_normalize lowerCamelCase__ : str = do_convert_rgb lowerCamelCase__ : str = [512, 1024, 2048, 4096] lowerCamelCase__ : Any = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def _snake_case (self ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _snake_case (self ): lowerCamelCase__ : List[str] = """https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" lowerCamelCase__ : int = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class __A ( A_ , unittest.TestCase ): UpperCamelCase :Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None def _snake_case (self ): lowerCamelCase__ : List[str] = PixaStructImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): lowerCamelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_convert_rgb""" ) ) def _snake_case (self ): lowerCamelCase__ : Tuple = self.image_processor_tester.prepare_dummy_image() lowerCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) lowerCamelCase__ : List[str] = 2048 lowerCamelCase__ : Any = image_processor(__magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1E-3 , rtol=1E-3 ) ) def _snake_case (self ): # Initialize image_processor lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input lowerCamelCase__ : Optional[Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase__ : Optional[Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase__ : Optional[Any] = image_processor( __magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _snake_case (self ): # Initialize image_processor lowerCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input lowerCamelCase__ : List[Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 lowerCamelCase__ : List[str] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__magic_name__ ): lowerCamelCase__ : Tuple = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches lowerCamelCase__ : Optional[Any] = """Hello""" lowerCamelCase__ : Dict = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ , header_text=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase__ : Tuple = image_processor( __magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ , header_text=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _snake_case (self ): # Initialize image_processor lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) lowerCamelCase__ : Optional[int] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase__ : List[str] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase__ : List[str] = image_processor( __magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _snake_case (self ): # Initialize image_processor lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input lowerCamelCase__ : List[str] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase__ : Tuple = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase__ : Optional[Any] = image_processor( __magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class __A ( A_ , unittest.TestCase ): UpperCamelCase :Optional[int] = PixaStructImageProcessor if is_vision_available() else None def _snake_case (self ): lowerCamelCase__ : Optional[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) lowerCamelCase__ : Optional[int] = 3 @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): lowerCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_convert_rgb""" ) ) def _snake_case (self ): # Initialize image_processor lowerCamelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input lowerCamelCase__ : List[str] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase__ : Optional[Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase__ : str = image_processor( __magic_name__ , return_tensors="""pt""" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
96
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class a__ ( enum.Enum ): a : Any = 0 a : Dict = 1 a : List[Any] = 2 @add_end_docstrings(UpperCamelCase__ ) class a__ ( UpperCamelCase__ ): a : Tuple = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self , *A , **A ) -> str: '''simple docstring''' super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. a = None if self.model.config.prefix is not None: a = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. a = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. a , a , a = self._sanitize_parameters(prefix=A , **self._forward_params ) a = {**self._preprocess_params, **preprocess_params} a = {**self._forward_params, **forward_params} def lowerCAmelCase_ ( self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> List[Any]: '''simple docstring''' a = {} if prefix is not None: a = prefix if prefix: a = self.tokenizer( A , padding=A , add_special_tokens=A , return_tensors=self.framework ) a = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, 'hole']" ) a = handle_long_generation preprocess_params.update(A ) a = generate_kwargs a = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) a = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) a = ReturnType.TENSORS if return_type is not None: a = return_type if clean_up_tokenization_spaces is not None: a = clean_up_tokenization_spaces if stop_sequence is not None: a = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) a = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase_ ( self , *A , **A ) -> Optional[Any]: '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*A , **A ) def __call__( self , A , **A ) -> List[str]: '''simple docstring''' return super().__call__(A , **A ) def lowerCAmelCase_ ( self , A , A="" , A=None , **A ) -> Optional[int]: '''simple docstring''' a = self.tokenizer( prefix + prompt_text , padding=A , add_special_tokens=A , return_tensors=self.framework ) a = prompt_text if handle_long_generation == "hole": a = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: a = generate_kwargs["max_new_tokens"] else: a = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: a = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) a = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: a = inputs["attention_mask"][:, -keep_length:] return inputs def lowerCAmelCase_ ( self , A , **A ) -> List[str]: '''simple docstring''' a = model_inputs["input_ids"] a = model_inputs.get("attention_mask" , A ) # Allow empty prompts if input_ids.shape[1] == 0: a = None a = None a = 1 else: a = input_ids.shape[0] a = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. a = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: a = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: a = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length a = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL a = self.model.generate(input_ids=A , attention_mask=A , **A ) a = generated_sequence.shape[0] if self.framework == "pt": a = generated_sequence.reshape(A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": a = tf.reshape(A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCAmelCase_ ( self , A , A=ReturnType.FULL_TEXT , A=True ) -> Union[str, Any]: '''simple docstring''' a = model_outputs["generated_sequence"][0] a = model_outputs["input_ids"] a = model_outputs["prompt_text"] a = generated_sequence.numpy().tolist() a = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: a = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text a = self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: a = 0 else: a = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) ) if return_type == ReturnType.FULL_TEXT: a = prompt_text + text[prompt_length:] else: a = text[prompt_length:] a = {"generated_text": all_text} records.append(A ) return records
515
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowercase__ : Optional[Any] = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , ) -> List[str]: a = bnb_quantization_config.load_in_abit a = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") a = [] # custom device map if isinstance(__UpperCamelCase , __UpperCamelCase) and len(device_map.keys()) > 1: a = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: a = get_keys_to_not_convert(__UpperCamelCase) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__UpperCamelCase) a = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: a = [] a = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__UpperCamelCase) # compatibility with peft a = load_in_abit a = load_in_abit a = get_parameter_device(__UpperCamelCase) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") a = replace_with_bnb_layers(__UpperCamelCase , __UpperCamelCase , modules_to_not_convert=__UpperCamelCase) # convert param to the right dtype a = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: a = name.replace(".weight" , "").replace(".bias" , "") a = getattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(__UpperCamelCase): param.to(__UpperCamelCase) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): a = replace_with_bnb_layers( __UpperCamelCase , __UpperCamelCase , modules_to_not_convert=__UpperCamelCase) a = get_quantized_model_device_map( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , max_memory=__UpperCamelCase , no_split_module_classes=__UpperCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): a = True a = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__UpperCamelCase , offload_state_dict=__UpperCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__UpperCamelCase , device_map=__UpperCamelCase , offload_dir=__UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None) -> Any: if device_map is None: if torch.cuda.is_available(): a = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(__UpperCamelCase , __UpperCamelCase): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") a = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) a = {} a = special_dtypes a = no_split_module_classes a = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": a = get_balanced_memory( __UpperCamelCase , low_zero=(device_map == "balanced_low_0") , max_memory=__UpperCamelCase , **__UpperCamelCase , ) a = max_memory a = infer_auto_device_map(__UpperCamelCase , **__UpperCamelCase) if isinstance(__UpperCamelCase , __UpperCamelCase): # check if don't have any quantized module on the cpu a = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules a = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co./docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None) -> List[Any]: if modules_to_not_convert is None: a = [] a , a = _replace_with_bnb_layers( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , ) -> List[str]: a = False for name, module in model.named_children(): if current_key_name is None: a = [] current_key_name.append(__UpperCamelCase) if isinstance(__UpperCamelCase , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` a = ".".join(__UpperCamelCase) a = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: a = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: a = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__UpperCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: a = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") a = module.weight.data if module.bias is not None: a = module.bias.data bnb_module.requires_grad_(__UpperCamelCase) setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) a = True if len(list(module.children())) > 0: a , a = _replace_with_bnb_layers( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) a = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> List[str]: # Create a copy of the model with init_empty_weights(): a = deepcopy(__UpperCamelCase) # this has 0 cost since it is done inside `init_empty_weights` context manager` a = find_tied_parameters(__UpperCamelCase) # For compatibility with Accelerate < 0.18 if isinstance(__UpperCamelCase , __UpperCamelCase): a = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: a = sum(__UpperCamelCase , []) a = len(__UpperCamelCase) > 0 # Check if it is a base model a = False if hasattr(__UpperCamelCase , "base_model_prefix"): a = not hasattr(__UpperCamelCase , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head a = list(model.named_children()) a = [list_modules[-1][0]] # add last module together with tied weights a = set(__UpperCamelCase) - set(__UpperCamelCase) a = list(set(__UpperCamelCase)) + list(__UpperCamelCase) # remove ".weight" from the keys a = [".weight", ".bias"] a = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: a = name.replace(__UpperCamelCase , "") filtered_module_names.append(__UpperCamelCase) return filtered_module_names def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Union[str, Any]: for m in model.modules(): if isinstance(__UpperCamelCase , bnb.nn.Linearabit): return True return False def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> List[Any]: return next(parameter.parameters()).device def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Optional[Any]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__UpperCamelCase , __UpperCamelCase , 0 , dtype=__UpperCamelCase , value=__UpperCamelCase) a = param_name a = model if "." in tensor_name: a = tensor_name.split(".") for split in splits[:-1]: a = getattr(__UpperCamelCase , __UpperCamelCase) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''') a = new_module a = splits[-1] # offload weights a = False offload_weight(module._parameters[tensor_name] , __UpperCamelCase , __UpperCamelCase , index=__UpperCamelCase) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , __UpperCamelCase , index=__UpperCamelCase , ) else: offload_weight(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , index=__UpperCamelCase) offload_weight(__UpperCamelCase , param_name.replace("weight" , "SCB") , __UpperCamelCase , index=__UpperCamelCase) set_module_tensor_to_device(__UpperCamelCase , __UpperCamelCase , "meta" , dtype=__UpperCamelCase , value=torch.empty(*param.size()))
515
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ :str = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Optional[int] = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Optional[Any] = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys lowercase__ :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
721
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : torch.FloatTensor class snake_case ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' @register_to_config def __init__( self : Union[str, Any] , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Optional[int]=77 , __lowercase : Union[str, Any]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ): '''simple docstring''' super().__init__() __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : List[Any] = attention_head_dim __UpperCAmelCase : int = num_attention_heads * attention_head_dim __UpperCAmelCase : List[str] = additional_embeddings __UpperCAmelCase : Optional[int] = time_embed_dim or inner_dim __UpperCAmelCase : Tuple = embedding_proj_dim or embedding_dim __UpperCAmelCase : Dict = clip_embed_dim or embedding_dim __UpperCAmelCase : Dict = Timesteps(__lowercase , __lowercase , 0 ) __UpperCAmelCase : List[str] = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase ) __UpperCAmelCase : Any = nn.Linear(__lowercase , __lowercase ) if embedding_proj_norm_type is None: __UpperCAmelCase : Dict = None elif embedding_proj_norm_type == "layer": __UpperCAmelCase : Any = nn.LayerNorm(__lowercase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) __UpperCAmelCase : List[Any] = nn.Linear(__lowercase , __lowercase ) if encoder_hid_proj_type is None: __UpperCAmelCase : int = None elif encoder_hid_proj_type == "linear": __UpperCAmelCase : int = nn.Linear(__lowercase , __lowercase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) __UpperCAmelCase : str = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) ) if added_emb_type == "prd": __UpperCAmelCase : Optional[int] = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) ) elif added_emb_type is None: __UpperCAmelCase : str = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) __UpperCAmelCase : Union[str, Any] = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn='''gelu''' , attention_bias=__lowercase , ) for d in range(__lowercase ) ] ) if norm_in_type == "layer": __UpperCAmelCase : Optional[Any] = nn.LayerNorm(__lowercase ) elif norm_in_type is None: __UpperCAmelCase : List[Any] = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) __UpperCAmelCase : str = nn.LayerNorm(__lowercase ) __UpperCAmelCase : List[Any] = nn.Linear(__lowercase , __lowercase ) __UpperCAmelCase : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) __UpperCAmelCase : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , __lowercase , persistent=__lowercase ) __UpperCAmelCase : Any = nn.Parameter(torch.zeros(1 , __lowercase ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.zeros(1 , __lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A_ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = {} def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ): if hasattr(__lowercase , '''set_processor''' ): __UpperCAmelCase : Optional[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def A_ ( self : Any , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __UpperCAmelCase : Tuple = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : int ): if hasattr(__lowercase , '''set_processor''' ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def A_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def A_ ( self : Optional[int] , __lowercase : Dict , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ): '''simple docstring''' __UpperCAmelCase : List[Any] = hidden_states.shape[0] __UpperCAmelCase : Any = timestep if not torch.is_tensor(__lowercase ): __UpperCAmelCase : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0: __UpperCAmelCase : Union[str, Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : List[str] = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase : List[str] = self.time_proj(__lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) __UpperCAmelCase : List[str] = self.time_embedding(__lowercase ) if self.embedding_proj_norm is not None: __UpperCAmelCase : Dict = self.embedding_proj_norm(__lowercase ) __UpperCAmelCase : Optional[int] = self.embedding_proj(__lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCAmelCase : Dict = self.encoder_hidden_states_proj(__lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) __UpperCAmelCase : int = self.proj_in(__lowercase ) __UpperCAmelCase : Tuple = self.positional_embedding.to(hidden_states.dtype ) __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : str = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCAmelCase : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCAmelCase : Optional[int] = hidden_states[:, None, :] __UpperCAmelCase : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCAmelCase : Dict = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 ) additional_embeds.append(__lowercase ) __UpperCAmelCase : Optional[Any] = torch.cat( __lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCAmelCase : Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCAmelCase : List[str] = F.pad( __lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCAmelCase : Dict = hidden_states + positional_embeddings if attention_mask is not None: __UpperCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 __UpperCAmelCase : Optional[Any] = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 ) __UpperCAmelCase : Dict = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCAmelCase : Tuple = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCAmelCase : str = self.norm_in(__lowercase ) for block in self.transformer_blocks: __UpperCAmelCase : Dict = block(__lowercase , attention_mask=__lowercase ) __UpperCAmelCase : Any = self.norm_out(__lowercase ) if self.prd_embedding is not None: __UpperCAmelCase : List[Any] = hidden_states[:, -1] else: __UpperCAmelCase : List[str] = hidden_states[:, additional_embeddings_len:] __UpperCAmelCase : Optional[int] = self.proj_to_clip_embeddings(__lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowercase ) def A_ ( self : List[Any] , __lowercase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[str] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
374
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig __magic_name__ = logging.get_logger(__name__) # General docstring __magic_name__ = """RegNetConfig""" # Base docstring __magic_name__ = """facebook/regnet-y-040""" __magic_name__ = [1, 10_88, 7, 7] # Image classification docstring __magic_name__ = """facebook/regnet-y-040""" __magic_name__ = """tabby, tabby cat""" __magic_name__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co./models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : Optional[str] = "relu" , ): super().__init__() lowerCamelCase__ = nn.Convad( UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=UpperCAmelCase__ , stride=UpperCAmelCase__ , padding=kernel_size // 2 , groups=UpperCAmelCase__ , bias=UpperCAmelCase__ , ) lowerCamelCase__ = nn.BatchNormad(UpperCAmelCase__ ) lowerCamelCase__ = ACTaFN[activation] if activation is not None else nn.Identity() def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ): lowerCamelCase__ = self.convolution(UpperCAmelCase__ ) lowerCamelCase__ = self.normalization(UpperCAmelCase__ ) lowerCamelCase__ = self.activation(UpperCAmelCase__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : RegNetConfig ): super().__init__() lowerCamelCase__ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) lowerCamelCase__ = config.num_channels def __UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCamelCase__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) lowerCamelCase__ = self.embedder(UpperCAmelCase__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 ): super().__init__() lowerCamelCase__ = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , stride=UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowerCamelCase__ = nn.BatchNormad(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Tensor ): lowerCamelCase__ = self.convolution(UpperCAmelCase__ ) lowerCamelCase__ = self.normalization(UpperCAmelCase__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): super().__init__() lowerCamelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) lowerCamelCase__ = nn.Sequential( nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 ) , nn.Sigmoid() , ) def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCamelCase__ = self.pooler(UpperCAmelCase__ ) lowerCamelCase__ = self.attention(UpperCAmelCase__ ) lowerCamelCase__ = hidden_state * attention return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 ): super().__init__() lowerCamelCase__ = in_channels != out_channels or stride != 1 lowerCamelCase__ = max(1 , out_channels // config.groups_width ) lowerCamelCase__ = ( RegNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) lowerCamelCase__ = nn.Sequential( RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , groups=UpperCAmelCase__ , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=UpperCAmelCase__ ) , ) lowerCamelCase__ = ACTaFN[config.hidden_act] def __UpperCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCamelCase__ = hidden_state lowerCamelCase__ = self.layer(UpperCAmelCase__ ) lowerCamelCase__ = self.shortcut(UpperCAmelCase__ ) hidden_state += residual lowerCamelCase__ = self.activation(UpperCAmelCase__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 ): super().__init__() lowerCamelCase__ = in_channels != out_channels or stride != 1 lowerCamelCase__ = max(1 , out_channels // config.groups_width ) lowerCamelCase__ = ( RegNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) lowerCamelCase__ = nn.Sequential( RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , groups=UpperCAmelCase__ , activation=config.hidden_act ) , RegNetSELayer(UpperCAmelCase__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=UpperCAmelCase__ ) , ) lowerCamelCase__ = ACTaFN[config.hidden_act] def __UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCamelCase__ = hidden_state lowerCamelCase__ = self.layer(UpperCAmelCase__ ) lowerCamelCase__ = self.shortcut(UpperCAmelCase__ ) hidden_state += residual lowerCamelCase__ = self.activation(UpperCAmelCase__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , ): super().__init__() lowerCamelCase__ = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowerCamelCase__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , ) , *[layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) for _ in range(depth - 1 )] , ) def __UpperCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): lowerCamelCase__ = self.layers(UpperCAmelCase__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE_ : RegNetConfig ): super().__init__() lowerCamelCase__ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( UpperCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowerCamelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase__ , config.depths[1:] ): self.stages.append(RegNetStage(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , depth=UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = True ): lowerCamelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCamelCase__ = hidden_states + (hidden_state,) lowerCamelCase__ = stage_module(UpperCAmelCase__ ) if output_hidden_states: lowerCamelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=UpperCAmelCase__ , hidden_states=UpperCAmelCase__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case = RegNetConfig snake_case = "regnet" snake_case = "pixel_values" snake_case = True def __UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ): if isinstance(UpperCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int]=False ): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase__ = value __magic_name__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ __magic_name__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowercase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] ): super().__init__(UpperCAmelCase__ ) lowerCamelCase__ = config lowerCamelCase__ = RegNetEmbeddings(UpperCAmelCase__ ) lowerCamelCase__ = RegNetEncoder(UpperCAmelCase__ ) lowerCamelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None ): lowerCamelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ = self.embedder(UpperCAmelCase__ ) lowerCamelCase__ = self.encoder( UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) lowerCamelCase__ = encoder_outputs[0] lowerCamelCase__ = self.pooler(UpperCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase__ , pooler_output=UpperCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowercase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : Any ): super().__init__(UpperCAmelCase__ ) lowerCamelCase__ = config.num_labels lowerCamelCase__ = RegNetModel(UpperCAmelCase__ ) # classification head lowerCamelCase__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCAmelCase ( self : str , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ): lowerCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ = self.regnet(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) lowerCamelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase__ = self.classifier(UpperCAmelCase__ ) lowerCamelCase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase__ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase__ = '''single_label_classification''' else: lowerCamelCase__ = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCamelCase__ = MSELoss() if self.num_labels == 1: lowerCamelCase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase__ = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config.problem_type == "single_label_classification": lowerCamelCase__ = CrossEntropyLoss() lowerCamelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase__ = BCEWithLogitsLoss() lowerCamelCase__ = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) if not return_dict: lowerCamelCase__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase__ , logits=UpperCAmelCase__ , hidden_states=outputs.hidden_states )
129
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) lowercase : Union[str, Any] =img lowercase : Union[str, Any] =img.shape[1] lowercase : str =img.shape[0] lowercase : Union[str, Any] =dst_width lowercase : str =dst_height lowercase : str =self.src_w / self.dst_w lowercase : Optional[Any] =self.src_h / self.dst_h lowercase : int =( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): lowercase : List[Any] =self.img[self.get_y(UpperCAmelCase__ )][self.get_x(UpperCAmelCase__ )] def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : int ): '''simple docstring''' return int(self.ratio_x * x ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : int ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": UpperCamelCase_ , UpperCamelCase_ = 800, 600 UpperCamelCase_ = imread("""image_data/lena.jpg""", 1) UpperCamelCase_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
92
0
"""simple docstring""" __magic_name__ = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4E-1_9, "britishthermalunit_it": 1055.0_5585, "footpound": 1.35_5818, } def _A ( __lowercase , __lowercase , __lowercase ): """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCamelCase__ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(_lowerCAmelCase )}""" ) raise ValueError(_lowerCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" from itertools import count def _A ( __lowercase = 50 ): """simple docstring""" lowerCamelCase__ = [1] * min_block_length for n in count(__lowercase ): fill_count_functions.append(1 ) for block_length in range(__lowercase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F'{solution() = }')
258
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
592
from math import isqrt, loga def lowerCAmelCase__ ( a__ ) ->list[int]: '''simple docstring''' _UpperCamelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , a__ , a__ ): _UpperCamelCase = False return [i for i in range(2 , a__ ) if is_prime[i]] def lowerCAmelCase__ ( a__ = 800_800 , a__ = 800_800 ) ->int: '''simple docstring''' _UpperCamelCase = degree * loga(a__ ) _UpperCamelCase = int(a__ ) _UpperCamelCase = calculate_prime_numbers(a__ ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = len(a__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
547
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = PriorTransformer snake_case = "hidden_states" @property def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : str = 4 A_ : List[str] = 8 A_ : Any = 7 A_ : Optional[Any] = floats_tensor((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = floats_tensor((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) A_ : List[str] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _snake_case ( self , _SCREAMING_SNAKE_CASE=0 )->List[Any]: '''simple docstring''' torch.manual_seed(_SCREAMING_SNAKE_CASE ) A_ : Dict = 4 A_ : int = 8 A_ : Optional[Any] = 7 A_ : str = torch.randn((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) A_ : List[str] = torch.randn((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _snake_case ( self )->List[Any]: '''simple docstring''' return (4, 8) @property def _snake_case ( self )->Tuple: '''simple docstring''' return (4, 8) def _snake_case ( self )->str: '''simple docstring''' A_ : Any = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } A_ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _snake_case ( self )->int: '''simple docstring''' A_ , A_ : Any = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ , A_ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() A_ : List[Any] = self.model_class(**_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Dict = [*signature.parameters.keys()] A_ : str = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : List[str] = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) A_ : int = model.to(_SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '''set_default_attn_processor''' ): model.set_default_attn_processor() A_ : Dict = self.get_dummy_seed_input() with torch.no_grad(): A_ : str = model(**_SCREAMING_SNAKE_CASE )[0] A_ : List[str] = output[0, :5].flatten().cpu() print(_SCREAMING_SNAKE_CASE ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. A_ : Dict = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9] ) self.assertTrue(torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1e-2 ) ) @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=77 , _SCREAMING_SNAKE_CASE=0 )->int: '''simple docstring''' torch.manual_seed(_SCREAMING_SNAKE_CASE ) A_ : int = batch_size A_ : List[str] = embedding_dim A_ : Dict = num_embeddings A_ : Any = torch.randn((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _snake_case ( self )->List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [37, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ] ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' A_ : Dict = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''' ) model.to(_SCREAMING_SNAKE_CASE ) A_ : str = self.get_dummy_seed_input(seed=_SCREAMING_SNAKE_CASE ) with torch.no_grad(): A_ : int = model(**_SCREAMING_SNAKE_CASE )[0] assert list(sample.shape ) == [1, 768] A_ : Optional[Any] = sample[0, :8].flatten().cpu() print(_SCREAMING_SNAKE_CASE ) A_ : Any = torch.tensor(_SCREAMING_SNAKE_CASE ) assert torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 )
152
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
152
1
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __lowercase ( __lowercase , __lowercase , __lowercase ) -> List[str]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(lowerCAmelCase__ , 2 ) - pow(lowerCAmelCase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowerCAmelCase__ , 2 ) - pow(lowerCAmelCase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowerCAmelCase__ , 2 ) + pow(lowerCAmelCase__ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
330
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
0
'''simple docstring''' def _A ( __snake_case :Union[str, Any] , __snake_case :Any , __snake_case :List[str] , __snake_case :Optional[Any] ) -> str: """simple docstring""" if height >= 1: move_tower(height - 1 , __snake_case , __snake_case , __snake_case ) move_disk(__snake_case , __snake_case ) move_tower(height - 1 , __snake_case , __snake_case , __snake_case ) def _A ( __snake_case :Optional[Any] , __snake_case :List[str] ) -> int: """simple docstring""" print("moving disk from" , __snake_case , "to" , __snake_case ) def _A ( ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = int(input("Height of hanoi: " ).strip() ) move_tower(__snake_case , "A" , "B" , "C" ) if __name__ == "__main__": main()
704
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Any = logging.get_logger(__name__) _snake_case : Optional[Any] = {'vocab_file': 'vocab.json'} _snake_case : Any = { 'vocab_file': { 'mgp-str': 'https://huggingface.co./alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _snake_case : Optional[int] = {'mgp-str': 27} class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, _a, _a="[GO]", _a="[GO]", _a="[s]", _a="[GO]", **_a ) -> Dict: super().__init__( unk_token=_a, bos_token=_a, eos_token=_a, pad_token=_a, **_a, ) with open(_a, encoding="utf-8" ) as vocab_handle: __SCREAMING_SNAKE_CASE = json.load(_a ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) -> List[str]: return len(self.vocab ) def __lowerCAmelCase ( self ) -> Tuple: return dict(self.vocab, **self.added_tokens_encoder ) def __lowerCAmelCase ( self, _a ) -> int: __SCREAMING_SNAKE_CASE = [] for s in text: char_tokens.extend(_a ) return char_tokens def __lowerCAmelCase ( self, _a ) -> List[Any]: return self.vocab.get(_a, self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self, _a ) -> Tuple: return self.decoder.get(_a ) def __lowerCAmelCase ( self, _a, _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error("Vocabulary path ({}) should be a directory".format(_a ) ) return __SCREAMING_SNAKE_CASE = os.path.join( _a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(_a, "w", encoding="utf-8" ) as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=_a, ensure_ascii=_a ) + "\n" ) return (vocab_file,)
214
0
import os import sys import unittest UpperCamelCase__ : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) UpperCamelCase__ : Dict = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') UpperCamelCase__ : str = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = get_test_to_tester_mapping(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = get_test_to_tester_mapping(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''BertModelTest''': '''BertModelTester'''} SCREAMING_SNAKE_CASE_ : List[str] = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = get_model_to_test_mapping(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = get_model_to_test_mapping(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } SCREAMING_SNAKE_CASE_ : Dict = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = get_model_to_tester_mapping(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = get_model_to_tester_mapping(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } SCREAMING_SNAKE_CASE_ : Tuple = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase )
105
'''simple docstring''' from collections.abc import Sequence def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = False ): if not arr: return 0 lowercase__ : Tuple = 0 if allow_empty_subarrays else float('''-inf''' ) lowercase__ : int = 0.0 for num in arr: lowercase__ : Tuple = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase__ : int = max(UpperCAmelCase , UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __a: List[str] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
152
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def _lowerCAmelCase ( UpperCamelCase__: List[str] ) -> Optional[Any]: """simple docstring""" monkeypatch.setattr("""datasets.utils.deprecation_utils._emitted_deprecation_warnings""" , set() ) @pytest.fixture def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] ) -> List[Any]: """simple docstring""" class _UpperCamelCase : """simple docstring""" def __init__( self , a__ ) -> int: A = metric_id class _UpperCamelCase : """simple docstring""" lowerCAmelCase = [MetricMock(__snake_case ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def _UpperCAmelCase ( self ) -> List[str]: return self._metrics monkeypatch.setattr("""datasets.inspect.huggingface_hub""" , HfhMock() ) @pytest.mark.parametrize( """func, args""" , [(load_metric, ("""metrics/mse""",)), (list_metrics, ()), (inspect_metric, ("""metrics/mse""", """tmp_path"""))] ) def _lowerCAmelCase ( UpperCamelCase__: Any , UpperCamelCase__: Tuple , UpperCamelCase__: Dict , UpperCamelCase__: Any , UpperCamelCase__: List[Any] ) -> List[str]: """simple docstring""" if "tmp_path" in args: A = tuple(arg if arg != """tmp_path""" else tmp_path for arg in args ) with pytest.warns(UpperCamelCase__ , match="""https://huggingface.co./docs/evaluate""" ): func(*UpperCamelCase__ )
546
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Any=5 ) -> Optional[Any]: """simple docstring""" assert masked_input.count("""<mask>""" ) == 1 A = torch.tensor(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ).unsqueeze(0 ) # Batch size 1 A = model(UpperCamelCase__ )[0] # The last hidden-state is the first element of the output tuple A = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() A = logits[0, masked_index, :] A = logits.softmax(dim=0 ) A , A = prob.topk(k=UpperCamelCase__ , dim=0 ) A = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(UpperCamelCase__ ) )] ) A = tokenizer.mask_token A = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): A = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(UpperCamelCase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(UpperCamelCase__ ) , UpperCamelCase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(UpperCamelCase__ , UpperCamelCase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _lowercase : Optional[int] = CamembertTokenizer.from_pretrained("camembert-base") _lowercase : int = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() _lowercase : Optional[int] = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
546
1
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" def get_masked_lm_array(UpperCamelCase__ : str ): __UpperCAmelCase = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __UpperCAmelCase = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) if "kernel" in name: __UpperCAmelCase = array.transpose() return torch.from_numpy(UpperCamelCase__ ) def get_encoder_array(UpperCamelCase__ : str ): __UpperCAmelCase = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __UpperCAmelCase = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) if "kernel" in name: __UpperCAmelCase = array.transpose() return torch.from_numpy(UpperCamelCase__ ) def get_encoder_layer_array(UpperCamelCase__ : int , UpperCamelCase__ : str ): __UpperCAmelCase = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __UpperCAmelCase = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) if "kernel" in name: __UpperCAmelCase = array.transpose() return torch.from_numpy(UpperCamelCase__ ) def get_encoder_attention_layer_array(UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): __UpperCAmelCase = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __UpperCAmelCase = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = array.reshape(UpperCamelCase__ ) if "kernel" in name: __UpperCAmelCase = array.transpose() return torch.from_numpy(UpperCamelCase__ ) print(f"""Loading model based on config from {config_path}...""" ) __UpperCAmelCase = BertConfig.from_json_file(UpperCamelCase__ ) __UpperCAmelCase = BertForMaskedLM(UpperCamelCase__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __UpperCAmelCase = model.bert.encoder.layer[layer_index] # Self-attention __UpperCAmelCase = layer.attention.self __UpperCAmelCase = get_encoder_attention_layer_array( UpperCamelCase__ , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __UpperCAmelCase = get_encoder_attention_layer_array( UpperCamelCase__ , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __UpperCAmelCase = get_encoder_attention_layer_array( UpperCamelCase__ , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __UpperCAmelCase = get_encoder_attention_layer_array( UpperCamelCase__ , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __UpperCAmelCase = get_encoder_attention_layer_array( UpperCamelCase__ , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __UpperCAmelCase = get_encoder_attention_layer_array( UpperCamelCase__ , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __UpperCAmelCase = layer.attention.output __UpperCAmelCase = get_encoder_attention_layer_array( UpperCamelCase__ , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __UpperCAmelCase = get_encoder_attention_layer_array( UpperCamelCase__ , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __UpperCAmelCase = get_encoder_layer_array(UpperCamelCase__ , '''_attention_layer_norm/gamma''' ) __UpperCAmelCase = get_encoder_layer_array(UpperCamelCase__ , '''_attention_layer_norm/beta''' ) # Intermediate __UpperCAmelCase = layer.intermediate __UpperCAmelCase = get_encoder_layer_array(UpperCamelCase__ , '''_intermediate_dense/kernel''' ) __UpperCAmelCase = get_encoder_layer_array(UpperCamelCase__ , '''_intermediate_dense/bias''' ) # Output __UpperCAmelCase = layer.output __UpperCAmelCase = get_encoder_layer_array(UpperCamelCase__ , '''_output_dense/kernel''' ) __UpperCAmelCase = get_encoder_layer_array(UpperCamelCase__ , '''_output_dense/bias''' ) __UpperCAmelCase = get_encoder_layer_array(UpperCamelCase__ , '''_output_layer_norm/gamma''' ) __UpperCAmelCase = get_encoder_layer_array(UpperCamelCase__ , '''_output_layer_norm/beta''' ) # Embeddings __UpperCAmelCase = get_encoder_array('''_position_embedding_layer/embeddings''' ) __UpperCAmelCase = get_encoder_array('''_type_embedding_layer/embeddings''' ) __UpperCAmelCase = get_encoder_array('''_embedding_norm_layer/gamma''' ) __UpperCAmelCase = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __UpperCAmelCase = model.cls.predictions.transform __UpperCAmelCase = get_masked_lm_array('''dense/kernel''' ) __UpperCAmelCase = get_masked_lm_array('''dense/bias''' ) __UpperCAmelCase = get_masked_lm_array('''layer_norm/gamma''' ) __UpperCAmelCase = get_masked_lm_array('''layer_norm/beta''' ) __UpperCAmelCase = get_masked_lm_array('''embedding_table''' ) # Pooling __UpperCAmelCase = BertPooler(config=UpperCamelCase__ ) __UpperCAmelCase = get_encoder_array('''_pooler_layer/kernel''' ) __UpperCAmelCase = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(UpperCamelCase__ ) # Integration test - should load without any errors ;) __UpperCAmelCase = BertForMaskedLM.from_pretrained(UpperCamelCase__ ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __lowerCAmelCase : List[Any] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
262
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A ( pl.LightningModule ): def __init__( self : Dict , __a : List[str] ) -> Tuple: super().__init__() __UpperCAmelCase = model __UpperCAmelCase = 2 __UpperCAmelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def snake_case__ ( self : int ) -> int: pass def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" # load longformer model from model identifier __UpperCAmelCase = LongformerModel.from_pretrained(UpperCamelCase__ ) __UpperCAmelCase = LightningModel(UpperCamelCase__ ) __UpperCAmelCase = torch.load(UpperCamelCase__ , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model __UpperCAmelCase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase__ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
262
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
import sys def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = [[0 for x in range(UpperCamelCase_ )] for x in range(UpperCamelCase_ )] UpperCamelCase_ = [[0 for x in range(UpperCamelCase_ )] for x in range(UpperCamelCase_ )] for chain_length in range(2 , UpperCamelCase_ ): for a in range(1 , n - chain_length + 1 ): UpperCamelCase_ = a + chain_length - 1 UpperCamelCase_ = sys.maxsize for c in range(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCamelCase_ = cost UpperCamelCase_ = c return matrix, sol def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if i == j: print("A" + str(UpperCamelCase_ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(UpperCamelCase_ , UpperCamelCase_ , optimal_solution[i][j] ) print_optiomal_solution(UpperCamelCase_ , optimal_solution[i][j] + 1 , UpperCamelCase_ ) print(")" , end=" " ) def lowerCAmelCase_ ( ) -> Any: UpperCamelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCamelCase_ = len(UpperCamelCase_ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCamelCase_ , UpperCamelCase_ = matrix_chain_order(UpperCamelCase_ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(UpperCamelCase_ , 1 , n - 1 ) if __name__ == "__main__": main()
371
1
'''simple docstring''' __magic_name__ = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } __magic_name__ = {value: key for key, value in encode_dict.items()} def lowerCamelCase ( lowerCamelCase : str): A_ : int = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""") return encoded def lowerCamelCase ( lowerCamelCase : str): if set(SCREAMING_SNAKE_CASE__) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""") A_ : Optional[int] = "" for word in coded.split(): while len(SCREAMING_SNAKE_CASE__) != 0: decoded += decode_dict[word[:5]] A_ : Optional[int] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
665
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowerCamelCase : """simple docstring""" UpperCAmelCase_ = PegasusConfig UpperCAmelCase_ = {} UpperCAmelCase_ = "gelu" def __init__( self : Union[str, Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Tuple=1_3, _UpperCAmelCase : int=7, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : int=False, _UpperCAmelCase : Union[str, Any]=9_9, _UpperCAmelCase : Optional[Any]=3_2, _UpperCAmelCase : Optional[Any]=2, _UpperCAmelCase : Tuple=4, _UpperCAmelCase : str=3_7, _UpperCAmelCase : List[str]=0.1, _UpperCAmelCase : List[str]=0.1, _UpperCAmelCase : Dict=4_0, _UpperCAmelCase : Any=2, _UpperCAmelCase : int=1, _UpperCAmelCase : str=0, ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = seq_length SCREAMING_SNAKE_CASE__ : int = is_training SCREAMING_SNAKE_CASE__ : int = use_labels SCREAMING_SNAKE_CASE__ : Tuple = vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : Dict = pad_token_id SCREAMING_SNAKE_CASE__ : Tuple = bos_token_id def A_ ( self : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.concat([input_ids, eos_tensor], axis=1 ) SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) SCREAMING_SNAKE_CASE__ : List[Any] = prepare_pegasus_inputs_dict(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) return config, inputs_dict def A_ ( self : Union[str, Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFPegasusModel(config=_UpperCAmelCase ).get_decoder() SCREAMING_SNAKE_CASE__ : Optional[int] = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE__ : str = input_ids[:1, :] SCREAMING_SNAKE_CASE__ : Optional[int] = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs_dict["head_mask"] SCREAMING_SNAKE_CASE__ : int = 1 # first forward pass SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, head_mask=_UpperCAmelCase, use_cache=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : int = ids_tensor((self.batch_size, 3), config.vocab_size ) SCREAMING_SNAKE_CASE__ : str = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.concat([input_ids, next_tokens], axis=-1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.concat([attention_mask, next_attn_mask], axis=-1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ : Optional[Any] = int(ids_tensor((1,), output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-3 ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[str]=None , ) -> Any: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCAmelCase_ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase_ = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = TFPegasusModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self, config_class=_UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] UpperCAmelCase_ = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCAmelCase_ = "google/pegasus-xsum" @cached_property def A_ ( self : Union[str, Any] ) -> int: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A_ ( self : str, **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.translate_src_text(**_UpperCAmelCase ) assert self.expected_text == generated_words def A_ ( self : Any, **_UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenizer(self.src_text, **_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors="tf" ) SCREAMING_SNAKE_CASE__ : List[str] = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def A_ ( self : List[Any] ) -> Any: """simple docstring""" self._assert_generated_batch_equal_expected()
663
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def A ( lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase = [] for part_id in partition_order: UpperCamelCase = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(lowercase ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> List[Any]: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(100 ).repartition(1 ) UpperCamelCase = Spark(lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> Dict: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(10 ).repartition(2 ) UpperCamelCase = [1, 0] UpperCamelCase = _generate_iterable_examples(lowercase , lowercase ) # Reverse the partitions. UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> List[Any]: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(10 ).repartition(1 ) UpperCamelCase = SparkExamplesIterable(lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowercase ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> str: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: UpperCamelCase = lambda lowercase : x.reverse() UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [2, 1, 0] ) UpperCamelCase = SparkExamplesIterable(lowercase ).shuffle_data_sources(lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowercase ): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> str: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCamelCase = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowercase ): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCamelCase = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowercase ): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> List[Any]: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(100 ).repartition(1 ) UpperCamelCase = Spark(lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
711
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _UpperCAmelCase : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co./facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co./facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co./facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _UpperCAmelCase : List[str] = {"facebook/blenderbot_small-90M": 512} def A ( lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char UpperCamelCase = set(lowercase ) return pairs class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Any = ["input_ids", "attention_mask"] def __init__( self , A_ , A_ , A_="__start__" , A_="__end__" , A_="__unk__" , A_="__null__" , **A_ , ) -> List[Any]: """simple docstring""" super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ ) with open(A_ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(A_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: UpperCamelCase = merges_handle.read().split('\n' )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in merges] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = {} @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = re.sub('([.,!?()])' , r' \1' , A_ ) UpperCamelCase = re.sub('(\')' , r' \1 ' , A_ ) UpperCamelCase = re.sub(r'\s{2,}' , ' ' , A_ ) if "\n" in token: UpperCamelCase = token.replace('\n' , ' __newln__' ) UpperCamelCase = token.split(' ' ) UpperCamelCase = [] for token in tokens: if not len(A_ ): continue UpperCamelCase = token.lower() UpperCamelCase = tuple(A_ ) UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCamelCase = get_pairs(A_ ) if not pairs: words.append(A_ ) continue while True: UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(A_ ): try: UpperCamelCase = word.index(A_ , A_ ) new_word.extend(word[i:j] ) UpperCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(A_ ) UpperCamelCase = new_word if len(A_ ) == 1: break else: UpperCamelCase = get_pairs(A_ ) UpperCamelCase = '@@ '.join(A_ ) UpperCamelCase = word[:-4] UpperCamelCase = word words.append(A_ ) return " ".join(A_ ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = re.findall(r'\S+\n?' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" UpperCamelCase = token.lower() return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" return self.decoder.get(A_ , self.unk_token ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" UpperCamelCase = ' '.join(A_ ).replace('@@ ' , '' ).strip() return out_string def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) UpperCamelCase = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file
3
0
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def snake_case_ ( ) -> str: lowerCAmelCase_ = torch.nn.Linear(2 , 4) lowerCAmelCase_ = torch.optim.AdamW(model.parameters() , lr=1.0) lowerCAmelCase_ = torch.optim.lr_scheduler.OneCycleLR(__snake_case , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1) lowerCAmelCase_ = DataLoader(TensorDataset(torch.tensor([1, 2, 3]))) lowerCAmelCase_ = DataLoader(TensorDataset(torch.tensor([4, 5, 6]))) return model, optimizer, scheduler, train_dl, valid_dl def snake_case_ ( __snake_case : Any) -> List[Any]: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def snake_case_ ( __snake_case : Optional[int]) -> Any: lowerCAmelCase_ = torch.nn.Linear(*tuple(model.weight.T.shape)).state_dict() model.load_state_dict(__snake_case) class __UpperCAmelCase ( __a ): @require_cuda def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_lowerCamelCase ): lowerCAmelCase_ = Accelerator(cpu=_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ = GradientState() assert state.num_steps == 1 lowerCAmelCase_ = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowerCAmelCase_ = False assert state.sync_gradients is False GradientState._reset_state() def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() ( ( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) , ) = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def UpperCAmelCase_ ( self ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_lowerCamelCase , **_lowerCamelCase ): pass with patch('''torch.cuda.set_device''' , _lowerCamelCase ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): lowerCAmelCase_ = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = get_signature(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCamelCase ) # make sure random weights don't match load_random_weights(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) < 1E-3 ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = get_signature(_lowerCamelCase ) # saving hook def save_config(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(_lowerCamelCase , '''data.json''' ) , '''w''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) # loading hook def load_config(_lowerCamelCase , _lowerCamelCase ): with open(os.path.join(_lowerCamelCase , '''data.json''' ) , '''r''' ) as f: lowerCAmelCase_ = json.load(_lowerCamelCase ) lowerCAmelCase_ = config['''class_name'''] lowerCAmelCase_ = accelerator.register_save_state_pre_hook(_lowerCamelCase ) lowerCAmelCase_ = accelerator.register_load_state_pre_hook(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCamelCase ) # make sure random weights don't match with hooks load_random_weights(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded lowerCAmelCase_ = '''random''' # make sure loaded weights match with hooks accelerator.load_state(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCamelCase ) # make sure random weights don't match with hooks removed load_random_weights(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded lowerCAmelCase_ = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() lowerCAmelCase_ = None # This should work lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.assertTrue(dummy_obj is None ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() lowerCAmelCase_ = [1, 2, 3] # This should work lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def UpperCAmelCase_ ( self ): from transformers import AutoModelForCausalLM lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=_lowerCamelCase , device_map={'''''': 0} , ) lowerCAmelCase_ = Accelerator() # This should work lowerCAmelCase_ = accelerator.prepare(_lowerCamelCase ) @slow @require_bnb def UpperCAmelCase_ ( self ): from transformers import AutoModelForCausalLM lowerCAmelCase_ = Accelerator() with init_empty_weights(): lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() lowerCAmelCase_ = infer_auto_device_map(_lowerCamelCase ) lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=_lowerCamelCase , load_in_abit=_lowerCamelCase , llm_inta_enable_fpaa_cpu_offload=_lowerCamelCase ) # This should not work and get value error with self.assertRaises(_lowerCamelCase ): lowerCAmelCase_ = accelerator.prepare(_lowerCamelCase ) @slow @require_bnb @require_multi_gpu def UpperCAmelCase_ ( self ): from transformers import AutoModelForCausalLM lowerCAmelCase_ = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() lowerCAmelCase_ = infer_auto_device_map(_lowerCamelCase ) lowerCAmelCase_ = 1 lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=_lowerCamelCase , device_map=_lowerCamelCase , ) lowerCAmelCase_ = Accelerator() # This should not work and get value error with self.assertRaises(_lowerCamelCase ): lowerCAmelCase_ = accelerator.prepare(_lowerCamelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCAmelCase_ ( self ): from transformers import AutoModelForCausalLM with init_empty_weights(): lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) lowerCAmelCase_ = infer_auto_device_map(_lowerCamelCase ) lowerCAmelCase_ = 1 lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=_lowerCamelCase , device_map=_lowerCamelCase , ) lowerCAmelCase_ = Accelerator() # This should work lowerCAmelCase_ = accelerator.prepare(_lowerCamelCase ) @require_cuda def UpperCAmelCase_ ( self ): lowerCAmelCase_ = torch.nn.Linear(10 , 10 ) lowerCAmelCase_ = torch.optim.SGD(model.parameters() , lr=0.01 ) lowerCAmelCase_ = Accelerator(cpu=_lowerCamelCase ) lowerCAmelCase_ = accelerator.prepare(_lowerCamelCase )
274
'''simple docstring''' from __future__ import annotations def snake_case_ ( __snake_case : list[int | str]) -> None: create_state_space_tree(__snake_case , [] , 0 , [0 for i in range(len(__snake_case))]) def snake_case_ ( __snake_case : list[int | str] , __snake_case : list[int | str] , __snake_case : int , __snake_case : list[int] , ) -> None: if index == len(__snake_case): print(__snake_case) return for i in range(len(__snake_case)): if not index_used[i]: current_sequence.append(sequence[i]) lowerCAmelCase_ = True create_state_space_tree(__snake_case , __snake_case , index + 1 , __snake_case) current_sequence.pop() lowerCAmelCase_ = False A_ : list[int | str] =[3, 1, 2, 4] generate_all_permutations(sequence) A_ : list[int | str] =["A", "B", "C"] generate_all_permutations(sequence_a)
274
1
'''simple docstring''' def __a ( A__ = 100_0000 ) -> int: lowerCAmelCase = limit + 1 lowerCAmelCase = [0] * limit for first_term in range(1 , A__ ): for n in range(A__ , A__ , A__ ): lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
159
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : List[str] = { 'transfo-xl-wt103': 'https://huggingface.co./transfo-xl-wt103/resolve/main/config.json', } class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 'transfo-xl' lowerCAmelCase = ['mems'] lowerCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=2_6_7_7_3_5 , SCREAMING_SNAKE_CASE : Dict=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , SCREAMING_SNAKE_CASE : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE : Any=1_6 , SCREAMING_SNAKE_CASE : List[str]=6_4 , SCREAMING_SNAKE_CASE : int=4_0_9_6 , SCREAMING_SNAKE_CASE : Union[str, Any]=4 , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : int=1_8 , SCREAMING_SNAKE_CASE : Dict=1_6_0_0 , SCREAMING_SNAKE_CASE : Any=1_0_0_0 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Optional[Any]=0 , SCREAMING_SNAKE_CASE : Optional[Any]=-1 , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Tuple=0.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : int="normal" , SCREAMING_SNAKE_CASE : Optional[int]=0.0_1 , SCREAMING_SNAKE_CASE : List[str]=0.0_1 , SCREAMING_SNAKE_CASE : List[str]=0.0_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=1E-5 , SCREAMING_SNAKE_CASE : List[str]=0 , **SCREAMING_SNAKE_CASE : Tuple , ) -> Tuple: """simple docstring""" lowerCAmelCase = vocab_size lowerCAmelCase = [] self.cutoffs.extend(SCREAMING_SNAKE_CASE ) if proj_share_all_but_first: lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase = [False] + [False] * len(self.cutoffs ) lowerCAmelCase = d_model lowerCAmelCase = d_embed lowerCAmelCase = d_head lowerCAmelCase = d_inner lowerCAmelCase = div_val lowerCAmelCase = pre_lnorm lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = mem_len lowerCAmelCase = same_length lowerCAmelCase = attn_type lowerCAmelCase = clamp_len lowerCAmelCase = sample_softmax lowerCAmelCase = adaptive lowerCAmelCase = dropout lowerCAmelCase = dropatt lowerCAmelCase = untie_r lowerCAmelCase = init lowerCAmelCase = init_range lowerCAmelCase = proj_init_std lowerCAmelCase = init_std lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def __A ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def __A ( self : Any , SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
159
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase__ ( __UpperCamelCase )-> Dict: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Optional[Any]: UpperCamelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue UpperCamelCase = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) UpperCamelCase = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) UpperCamelCase = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) UpperCamelCase = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) UpperCamelCase = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) UpperCamelCase = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) UpperCamelCase = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) UpperCamelCase = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) UpperCamelCase = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) UpperCamelCase = key.replace("""image_encoder.module""" , """flava.image_model""" ) UpperCamelCase = key.replace("""text_encoder.module""" , """flava.text_model""" ) UpperCamelCase = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) UpperCamelCase = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) UpperCamelCase = key.replace("""text_projection""" , """flava.text_projection""" ) UpperCamelCase = key.replace("""image_projection""" , """flava.image_projection""" ) UpperCamelCase = value.float() for key, value in codebook_state_dict.items(): UpperCamelCase = value return upgrade @torch.no_grad() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None )-> List[str]: if config_path is not None: UpperCamelCase = FlavaConfig.from_pretrained(__UpperCamelCase ) else: UpperCamelCase = FlavaConfig() UpperCamelCase = FlavaForPreTraining(__UpperCamelCase ).eval() UpperCamelCase = convert_dalle_checkpoint(__UpperCamelCase , __UpperCamelCase , save_checkpoint=__UpperCamelCase ) if os.path.exists(__UpperCamelCase ): UpperCamelCase = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: UpperCamelCase = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location="""cpu""" ) UpperCamelCase = upgrade_state_dict(__UpperCamelCase , __UpperCamelCase ) hf_model.load_state_dict(__UpperCamelCase ) UpperCamelCase = hf_model.state_dict() UpperCamelCase = count_parameters(__UpperCamelCase ) UpperCamelCase = count_parameters(__UpperCamelCase ) + count_parameters(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
301
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline SCREAMING_SNAKE_CASE__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , )-> Optional[int]: output_path.parent.mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __UpperCamelCase , __UpperCamelCase , f=output_path.as_posix() , input_names=__UpperCamelCase , output_names=__UpperCamelCase , dynamic_axes=__UpperCamelCase , do_constant_folding=__UpperCamelCase , use_external_data_format=__UpperCamelCase , enable_onnx_checker=__UpperCamelCase , opset_version=__UpperCamelCase , ) else: export( __UpperCamelCase , __UpperCamelCase , f=output_path.as_posix() , input_names=__UpperCamelCase , output_names=__UpperCamelCase , dynamic_axes=__UpperCamelCase , do_constant_folding=__UpperCamelCase , opset_version=__UpperCamelCase , ) @torch.no_grad() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False )-> Optional[Any]: UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCamelCase = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: UpperCamelCase = """cpu""" UpperCamelCase = StableDiffusionPipeline.from_pretrained(__UpperCamelCase , torch_dtype=__UpperCamelCase ).to(__UpperCamelCase ) UpperCamelCase = Path(__UpperCamelCase ) # TEXT ENCODER UpperCamelCase = pipeline.text_encoder.config.max_position_embeddings UpperCamelCase = pipeline.text_encoder.config.hidden_size UpperCamelCase = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__UpperCamelCase , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=__UpperCamelCase , ) del pipeline.text_encoder # UNET UpperCamelCase = pipeline.unet.config.in_channels UpperCamelCase = pipeline.unet.config.sample_size UpperCamelCase = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ), torch.randn(2 ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ), torch.randn(2 , __UpperCamelCase , __UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ), False, ) , output_path=__UpperCamelCase , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=__UpperCamelCase , use_external_data_format=__UpperCamelCase , ) UpperCamelCase = str(unet_path.absolute().as_posix() ) UpperCamelCase = os.path.dirname(__UpperCamelCase ) UpperCamelCase = onnx.load(__UpperCamelCase ) # clean up existing tensor files shutil.rmtree(__UpperCamelCase ) os.mkdir(__UpperCamelCase ) # collate external tensor files into one onnx.save_model( __UpperCamelCase , __UpperCamelCase , save_as_external_data=__UpperCamelCase , all_tensors_to_one_file=__UpperCamelCase , location="""weights.pb""" , convert_attribute=__UpperCamelCase , ) del pipeline.unet # VAE ENCODER UpperCamelCase = pipeline.vae UpperCamelCase = vae_encoder.config.in_channels UpperCamelCase = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder UpperCamelCase = lambda __UpperCamelCase , __UpperCamelCase : vae_encoder.encode(__UpperCamelCase , __UpperCamelCase )[0].sample() onnx_export( __UpperCamelCase , model_args=( torch.randn(1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__UpperCamelCase , ) # VAE DECODER UpperCamelCase = pipeline.vae UpperCamelCase = vae_decoder.config.latent_channels UpperCamelCase = vae_decoder.config.out_channels # forward only through the decoder part UpperCamelCase = vae_encoder.decode onnx_export( __UpperCamelCase , model_args=( torch.randn(1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__UpperCamelCase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: UpperCamelCase = pipeline.safety_checker UpperCamelCase = safety_checker.config.vision_config.num_channels UpperCamelCase = safety_checker.config.vision_config.image_size UpperCamelCase = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ), torch.randn(1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=__UpperCamelCase , ) del pipeline.safety_checker UpperCamelCase = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) UpperCamelCase = pipeline.feature_extractor else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__UpperCamelCase ) print("""ONNX pipeline saved to""" , __UpperCamelCase ) del pipeline del onnx_pipeline UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(__UpperCamelCase , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=1_4, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
301
1
from typing import TYPE_CHECKING from ....utils import _LazyModule snake_case_ : Optional[Any] = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
710
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging snake_case_ : Any = logging.get_logger(__name__) class __lowerCamelCase ( lowercase ): lowerCamelCase__: Optional[int] = ['''input_values''', '''padding_mask'''] def __init__( self , __snake_case = 1 , __snake_case = 2_4_0_0_0 , __snake_case = 0.0 , __snake_case = None , __snake_case = None , **__snake_case , ) -> Dict: """simple docstring""" super().__init__(feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case ) UpperCAmelCase: Any = chunk_length_s UpperCAmelCase: Optional[int] = overlap @property def A__ ( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A__ ( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , __snake_case , __snake_case = None , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = None , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs UpperCAmelCase: Optional[Any] = True UpperCAmelCase: List[str] = bool( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase: int = [np.asarray(__snake_case , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__snake_case , np.ndarray ): UpperCAmelCase: Dict = np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCAmelCase: Optional[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase: Any = [np.asarray(__snake_case ).T] # verify inputs are valid for idx, example in enumerate(__snake_case ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) UpperCAmelCase: Tuple = None UpperCAmelCase: str = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCAmelCase: Any = min(array.shape[0] for array in raw_audio ) UpperCAmelCase: List[Any] = int(np.floor(max_length / self.chunk_stride ) ) UpperCAmelCase: List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCAmelCase: Optional[Any] = max(array.shape[0] for array in raw_audio ) UpperCAmelCase: Union[str, Any] = int(np.ceil(max_length / self.chunk_stride ) ) UpperCAmelCase: List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length UpperCAmelCase: int = "max_length" else: UpperCAmelCase: Optional[Any] = input_values # normal padding on batch if padded_inputs is None: UpperCAmelCase: Union[str, Any] = self.pad( __snake_case , max_length=__snake_case , truncation=__snake_case , padding=__snake_case , return_attention_mask=__snake_case , ) if padding: UpperCAmelCase: str = padded_inputs.pop("attention_mask" ) UpperCAmelCase: Tuple = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: UpperCAmelCase: Optional[int] = example[..., None] input_values.append(example.T ) UpperCAmelCase: str = input_values if return_tensors is not None: UpperCAmelCase: Optional[int] = padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs
166
0
def a ( a ) ->Union[str, Any]: '''simple docstring''' if n_term == "": return [] SCREAMING_SNAKE_CASE = [] for temp in range(int(lowerCAmelCase__ ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": __lowerCAmelCase = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
201
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase__ =logging.get_logger(__name__) class UpperCamelCase__ ( enum.Enum ): _SCREAMING_SNAKE_CASE : List[str] = 0 _SCREAMING_SNAKE_CASE : Optional[int] = 1 @add_end_docstrings(__lowercase ) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "generated" def __init__(self : Dict , *snake_case_ : Optional[Any] , **snake_case_ : List[Any] ): super().__init__(*snake_case_ , **snake_case_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowerCAmelCase (self : Any , snake_case_ : Optional[Any]=None , snake_case_ : Dict=None , snake_case_ : List[Any]=None , snake_case_ : Dict=None , snake_case_ : Any=None , snake_case_ : int=None , **snake_case_ : List[str] , ): __a : Dict = {} if truncation is not None: __a : str = truncation __a : Tuple = generate_kwargs __a : Optional[int] = {} if return_tensors is not None and return_type is None: __a : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __a : str = return_type if clean_up_tokenization_spaces is not None: __a : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: __a : Dict = self.tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) if len(snake_case_ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __a : Tuple = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase (self : List[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): return True def lowerCAmelCase (self : List[Any] , *snake_case_ : str , snake_case_ : Dict ): __a : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , snake_case_ ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) __a : List[str] = ([prefix + arg for arg in args[0]],) __a : List[Any] = True elif isinstance(args[0] , snake_case_ ): __a : str = (prefix + args[0],) __a : int = False else: raise ValueError( f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" ) __a : Any = self.tokenizer(*snake_case_ , padding=snake_case_ , truncation=snake_case_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__(self : int , *snake_case_ : Optional[int] , **snake_case_ : List[str] ): __a : str = super().__call__(*snake_case_ , **snake_case_ ) if ( isinstance(args[0] , snake_case_ ) and all(isinstance(snake_case_ , snake_case_ ) for el in args[0] ) and all(len(snake_case_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowerCAmelCase (self : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , **snake_case_ : int ): __a : Optional[int] = self._parse_and_tokenize(snake_case_ , truncation=snake_case_ , **snake_case_ ) return inputs def lowerCAmelCase (self : Any , snake_case_ : List[str] , **snake_case_ : Union[str, Any] ): if self.framework == "pt": __a , __a : List[str] = model_inputs['''input_ids'''].shape elif self.framework == "tf": __a , __a : List[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() __a : Optional[Any] = generate_kwargs.get('''min_length''' , self.model.config.min_length ) __a : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(snake_case_ , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) __a : str = self.model.generate(**snake_case_ , **snake_case_ ) __a : Union[str, Any] = output_ids.shape[0] if self.framework == "pt": __a : Optional[Any] = output_ids.reshape(snake_case_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __a : int = tf.reshape(snake_case_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowerCAmelCase (self : Dict , snake_case_ : Dict , snake_case_ : List[str]=ReturnType.TEXT , snake_case_ : str=False ): __a : Optional[int] = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __a : Optional[Any] = {f"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: __a : str = { f"{self.return_name}_text": self.tokenizer.decode( snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ , ) } records.append(snake_case_ ) return records @add_end_docstrings(__lowercase ) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Tuple = "summary" def __call__(self : Optional[Any] , *snake_case_ : Optional[int] , **snake_case_ : List[str] ): return super().__call__(*snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): if max_length < min_length: logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}." ) if input_length < max_length: logger.warning( f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})" ) @add_end_docstrings(__lowercase ) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Dict = "translation" def lowerCAmelCase (self : Union[str, Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): if input_length > 0.9 * max_length: logger.warning( f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def lowerCAmelCase (self : Any , *snake_case_ : int , snake_case_ : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , snake_case_ : Any=None , snake_case_ : Tuple=None ): if getattr(self.tokenizer , '''_build_translation_inputs''' , snake_case_ ): return self.tokenizer._build_translation_inputs( *snake_case_ , return_tensors=self.framework , truncation=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ ) else: return super()._parse_and_tokenize(*snake_case_ , truncation=snake_case_ ) def lowerCAmelCase (self : Optional[int] , snake_case_ : int=None , snake_case_ : str=None , **snake_case_ : Optional[Any] ): __a , __a , __a : str = super()._sanitize_parameters(**snake_case_ ) if src_lang is not None: __a : Optional[int] = src_lang if tgt_lang is not None: __a : Tuple = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __a : int = kwargs.get('''task''' , self.task ) __a : Union[str, Any] = task.split('''_''' ) if task and len(snake_case_ ) == 4: # translation, XX, to YY __a : str = items[1] __a : str = items[3] return preprocess_params, forward_params, postprocess_params def __call__(self : Optional[int] , *snake_case_ : Optional[Any] , **snake_case_ : Any ): return super().__call__(*snake_case_ , **snake_case_ )
521
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable _UpperCamelCase = list[list[float | int]] def _lowerCAmelCase( UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix ) -> Matrix: lowerCAmelCase__ = len(UpperCAmelCase_ ) lowerCAmelCase__ = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase_ )] lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for row in range(UpperCAmelCase_ ): for col in range(UpperCAmelCase_ ): lowerCAmelCase__ = matrix[row][col] lowerCAmelCase__ = vector[row][0] lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 while row < size and col < size: # pivoting lowerCAmelCase__ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase_ , UpperCAmelCase_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCAmelCase__ ,lowerCAmelCase__ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCAmelCase_ ): lowerCAmelCase__ = augmented[rowa][col] / augmented[row][col] lowerCAmelCase__ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCAmelCase_ ): for row in range(UpperCAmelCase_ ): lowerCAmelCase__ = augmented[row][col] / augmented[col][col] for cola in range(UpperCAmelCase_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase_ ) ] def _lowerCAmelCase( UpperCAmelCase_ : list[int] ) -> Callable[[int], int]: lowerCAmelCase__ = len(UpperCAmelCase_ ) lowerCAmelCase__ = [[0 for _ in range(UpperCAmelCase_ )] for _ in range(UpperCAmelCase_ )] lowerCAmelCase__ = [[0] for _ in range(UpperCAmelCase_ )] lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for x_val, y_val in enumerate(UpperCAmelCase_ ): for col in range(UpperCAmelCase_ ): lowerCAmelCase__ = (x_val + 1) ** (size - col - 1) lowerCAmelCase__ = y_val lowerCAmelCase__ = solve(UpperCAmelCase_ , UpperCAmelCase_ ) def interpolated_func(UpperCAmelCase_ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCAmelCase_ ) ) return interpolated_func def _lowerCAmelCase( UpperCAmelCase_ : int ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _lowerCAmelCase( UpperCAmelCase_ : Callable[[int], int] = question_function , UpperCAmelCase_ : int = 10 ) -> int: lowerCAmelCase__ = [func(UpperCAmelCase_ ) for x_val in range(1 , order + 1 )] lowerCAmelCase__ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowerCAmelCase__ = 0 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for poly in polynomials: lowerCAmelCase__ = 1 while func(UpperCAmelCase_ ) == poly(UpperCAmelCase_ ): x_val += 1 ret += poly(UpperCAmelCase_ ) return ret if __name__ == "__main__": print(f'{solution() = }')
211
'''simple docstring''' def _lowerCAmelCase( UpperCAmelCase_ : str ) -> int: assert column_title.isupper() lowerCAmelCase__ = 0 lowerCAmelCase__ = len(UpperCAmelCase_ ) - 1 lowerCAmelCase__ = 0 while index >= 0: lowerCAmelCase__ = (ord(column_title[index] ) - 64) * pow(26 , UpperCAmelCase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
211
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def a__ ( __SCREAMING_SNAKE_CASE ) -> Optional[int]: __lowerCAmelCase: Optional[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class snake_case ( lowercase__, lowercase__, lowercase__, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = StableDiffusionLatentUpscalePipeline SCREAMING_SNAKE_CASE_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } SCREAMING_SNAKE_CASE_ : Dict = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} SCREAMING_SNAKE_CASE_ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ : List[str] = frozenset([] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = True @property def lowercase_ ( self : Optional[Any])-> Any: '''simple docstring''' __lowerCAmelCase: Dict = 1 __lowerCAmelCase: Optional[Any] = 4 __lowerCAmelCase: Optional[Any] = (1_6, 1_6) __lowerCAmelCase: Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase__) return image def lowercase_ ( self : Optional[int])-> Any: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: int = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCAmelCase__ , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCAmelCase__ , only_cross_attention=UpperCAmelCase__ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __lowerCAmelCase: int = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __lowerCAmelCase: Tuple = EulerDiscreteScheduler(prediction_type="sample") __lowerCAmelCase: Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="quick_gelu" , projection_dim=5_1_2 , ) __lowerCAmelCase: Any = CLIPTextModel(UpperCAmelCase__) __lowerCAmelCase: Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: Tuple = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowercase_ ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=0)-> Optional[Any]: '''simple docstring''' if str(UpperCAmelCase__).startswith("mps"): __lowerCAmelCase: int = torch.manual_seed(UpperCAmelCase__) else: __lowerCAmelCase: Any = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) __lowerCAmelCase: Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : str)-> List[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = '''cpu''' __lowerCAmelCase: Union[str, Any] = self.get_dummy_components() __lowerCAmelCase: Tuple = self.pipeline_class(**UpperCAmelCase__) pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) __lowerCAmelCase: List[str] = self.get_dummy_inputs(UpperCAmelCase__) __lowerCAmelCase: int = pipe(**UpperCAmelCase__).images __lowerCAmelCase: str = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3)) __lowerCAmelCase: Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055]) __lowerCAmelCase: List[str] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(UpperCAmelCase__ , 1e-3) def lowercase_ ( self : Optional[Any])-> Tuple: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3) def lowercase_ ( self : List[str])-> Optional[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3) def lowercase_ ( self : Optional[Any])-> Optional[Any]: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def lowercase_ ( self : Optional[Any])-> List[str]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3) def lowercase_ ( self : int)-> str: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3) def lowercase_ ( self : Union[str, Any])-> List[Any]: '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3) def lowercase_ ( self : str)-> List[Any]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3) def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] __lowerCAmelCase: Optional[int] = self.get_dummy_components() __lowerCAmelCase: Any = self.pipeline_class(**UpperCAmelCase__) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCAmelCase__) pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) __lowerCAmelCase: Optional[int] = self.get_dummy_inputs(UpperCAmelCase__) __lowerCAmelCase: Any = 2 __lowerCAmelCase: Any = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __lowerCAmelCase: Optional[int] = getattr(UpperCAmelCase__ , scheduler_enum.name) __lowerCAmelCase: Tuple = scheduler_cls.from_config(pipe.scheduler.config) __lowerCAmelCase: Any = pipe(**UpperCAmelCase__)[0] outputs.append(UpperCAmelCase__) assert check_same_shape(UpperCAmelCase__) @require_torch_gpu @slow class snake_case ( unittest.TestCase ): def lowercase_ ( self : Tuple)-> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Dict)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = torch.manual_seed(3_3) __lowerCAmelCase: Tuple = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa) pipe.to("cuda") __lowerCAmelCase: List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa) upscaler.to("cuda") __lowerCAmelCase: Tuple = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' __lowerCAmelCase: List[Any] = pipe(UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type="latent").images __lowerCAmelCase: str = upscaler( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , num_inference_steps=2_0 , guidance_scale=0 , generator=UpperCAmelCase__ , output_type="np" , ).images[0] __lowerCAmelCase: Any = load_numpy( "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy") assert np.abs((expected_image - image).mean()) < 5e-2 def lowercase_ ( self : List[str])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: int = torch.manual_seed(3_3) __lowerCAmelCase: Any = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa) upscaler.to("cuda") __lowerCAmelCase: Tuple = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' __lowerCAmelCase: int = load_image( "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png") __lowerCAmelCase: str = upscaler( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , num_inference_steps=2_0 , guidance_scale=0 , generator=UpperCAmelCase__ , output_type="np" , ).images[0] __lowerCAmelCase: Optional[Any] = load_numpy( "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy") assert np.abs((expected_image - image).max()) < 5e-2
346
'''simple docstring''' from collections import defaultdict def _lowerCAmelCase ( __magic_name__ : int ) -> int: lowercase : Optional[Any] =1 lowercase : Union[str, Any] =True for v in tree[start]: if v not in visited: ret += dfs(__magic_name__ ) if ret % 2 == 0: cuts.append(__magic_name__ ) return ret def _lowerCAmelCase ( ) -> int: dfs(1 ) if __name__ == "__main__": UpperCamelCase_ , UpperCamelCase_ = 10, 9 UpperCamelCase_ = defaultdict(list) UpperCamelCase_ = {} UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
92
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co./t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co./t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co./t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co./t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co./t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co./t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co./t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co./t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co./t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co./t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase__ = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[str] =VOCAB_FILES_NAMES a : Optional[int] =PRETRAINED_VOCAB_FILES_MAP a : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : str =["input_ids", "attention_mask"] a : int =TaTokenizer a : List[int] =[] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="</s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__=100 , snake_case__=None , **snake_case__ , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase : Any = [f"""<extra_id_{i}>""" for i in range(snake_case__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCAmelCase : List[str] = len(set(filter(lambda snake_case__ : bool("extra_id_" in str(snake_case__ ) ) , snake_case__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( snake_case__ , tokenizer_file=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , extra_ids=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) lowerCAmelCase : int = vocab_file lowerCAmelCase : int = False if not self.vocab_file else True lowerCAmelCase : Union[str, Any] = extra_ids @staticmethod def lowercase__ ( snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCAmelCase : List[Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , snake_case__ , ) return max_model_length def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : Optional[int] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Tuple = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCAmelCase : Dict = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase__ ( self ): """simple docstring""" return list( set(filter(lambda snake_case__ : bool(re.search(r"<extra_id_\d+>" , snake_case__ ) ) is not None , self.additional_special_tokens ) ) ) def lowercase__ ( self ): """simple docstring""" return [self.convert_tokens_to_ids(snake_case__ ) for token in self.get_sentinel_tokens()]
681
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
1
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _UpperCAmelCase : """simple docstring""" def __init__( self , lowerCAmelCase_ , ): '''simple docstring''' a_ : Tuple = parent a_ : List[str] = 13 a_ : Dict = 7 a_ : Optional[int] = 30 a_ : str = self.seq_length + self.mem_len a_ : List[str] = 15 a_ : Optional[int] = True a_ : Any = True a_ : str = 99 a_ : Any = [10, 50, 80] a_ : Dict = 32 a_ : Union[str, Any] = 32 a_ : List[Any] = 4 a_ : Optional[int] = 8 a_ : Optional[Any] = 1_28 a_ : Tuple = 2 a_ : List[str] = 2 a_ : List[Any] = None a_ : List[Any] = 1 a_ : List[Any] = 0 a_ : Optional[Any] = 3 a_ : Optional[Any] = self.vocab_size - 1 a_ : int = 0.01 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Any = None if self.use_labels: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Optional[int] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _lowerCAmelCase ( self ): '''simple docstring''' random.seed(self.seed ) tf.random.set_seed(self.seed ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Optional[int] = TFTransfoXLModel(lowerCAmelCase_ ) a_ , a_ : List[str] = model(lowerCAmelCase_ ).to_tuple() a_ : int = {"""input_ids""": input_ids_a, """mems""": mems_a} a_ , a_ : List[str] = model(lowerCAmelCase_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Tuple = TFTransfoXLLMHeadModel(lowerCAmelCase_ ) a_ , a_ : Dict = model(lowerCAmelCase_ ).to_tuple() a_ : Any = {"""input_ids""": input_ids_a, """labels""": lm_labels} a_ , a_ : Optional[Any] = model(lowerCAmelCase_ ).to_tuple() a_ , a_ : str = model([input_ids_a, mems_a] ).to_tuple() a_ : List[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} a_ , a_ : str = model(lowerCAmelCase_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Tuple = TFTransfoXLForSequenceClassification(lowerCAmelCase_ ) a_ : int = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = self.prepare_config_and_inputs() ((a_) , (a_) , (a_) , (a_)) : Optional[Any] = config_and_inputs a_ : str = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): """simple docstring""" a_ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) a_ = () if is_tf_available() else () a_ = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented a_ = False a_ = False a_ = False a_ = False def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = TFTransfoXLModelTester(self ) a_ : List[str] = ConfigTester(self , config_class=lowerCAmelCase_ , d_embed=37 ) def _lowerCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): '''simple docstring''' self.model_tester.set_seed() a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' self.model_tester.set_seed() a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Any = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: a_ : Any = model_class(lowerCAmelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: a_ : List[str] = model.get_output_embeddings() assert isinstance(lowerCAmelCase_ , tf.keras.layers.Layer ) a_ : List[Any] = model.get_bias() assert name is None else: a_ : Optional[int] = model.get_output_embeddings() assert x is None a_ : List[Any] = model.get_bias() assert name is None def _lowerCAmelCase ( self ): '''simple docstring''' pass @slow def _lowerCAmelCase ( self ): '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[str] = TFTransfoXLModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def _lowerCAmelCase ( self ): '''simple docstring''' pass @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off a_ : Dict = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off a_ : Any = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> a_ : Optional[int] = model.generate(lowerCAmelCase_ , max_length=2_00 , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase_ )
577
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self , lowerCAmelCase_ = 16 , lowerCAmelCase_ = 88 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = "geglu" , lowerCAmelCase_ = True , lowerCAmelCase_ = True , ): '''simple docstring''' super().__init__() a_ : List[Any] = num_attention_heads a_ : Optional[int] = attention_head_dim a_ : Union[str, Any] = num_attention_heads * attention_head_dim a_ : Any = in_channels a_ : List[str] = torch.nn.GroupNorm(num_groups=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , eps=1E-6 , affine=lowerCAmelCase_ ) a_ : List[Any] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. Define transformers blocks a_ : Any = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dropout=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , double_self_attention=lowerCAmelCase_ , norm_elementwise_affine=lowerCAmelCase_ , ) for d in range(lowerCAmelCase_ ) ] ) a_ : List[str] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=1 , lowerCAmelCase_=None , lowerCAmelCase_ = True , ): '''simple docstring''' a_ , a_ , a_ , a_ : Optional[Any] = hidden_states.shape a_ : List[Any] = batch_frames // num_frames a_ : Tuple = hidden_states a_ : str = hidden_states[None, :].reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Union[str, Any] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) a_ : Optional[Any] = self.norm(lowerCAmelCase_ ) a_ : str = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Union[str, Any] = self.proj_in(lowerCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: a_ : List[str] = block( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , class_labels=lowerCAmelCase_ , ) # 3. Output a_ : Tuple = self.proj_out(lowerCAmelCase_ ) a_ : int = ( hidden_states[None, None, :] .reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) a_ : Tuple = hidden_states.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Optional[Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCAmelCase_ )
577
1
'''simple docstring''' def lowercase_ ( _lowercase , _lowercase ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'{price_plus_tax(100, 0.25) = }') print(f'{price_plus_tax(1_25.50, 0.05) = }')
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowercase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __lowercase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def lowercase ( a__ : Callable[[int | float], int | float] , a__ : int | float , a__ : int | float , a__ : int = 100 , ) -> float: _UpperCamelCase = x_start _UpperCamelCase = fnc(a__ ) _UpperCamelCase = 0.0 for _ in range(a__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCamelCase = (x_end - x_start) / steps + xa _UpperCamelCase = fnc(a__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCamelCase = xa _UpperCamelCase = fxa return area if __name__ == "__main__": def lowercase ( a__ : str ) -> Any: return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") UpperCAmelCase = 10 while i <= 100_000: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
420
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
420
1
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : Any = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def _A (__a ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE_ : Any = k.replace(__a , __a ) if k.startswith('''encoder''' ): SCREAMING_SNAKE_CASE_ : Optional[int] = k.replace('''.attn''' , '''.self_attn''' ) SCREAMING_SNAKE_CASE_ : List[Any] = k.replace('''norm1''' , '''self_attn_layer_norm''' ) SCREAMING_SNAKE_CASE_ : Dict = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): SCREAMING_SNAKE_CASE_ : int = k.replace('''norm1''' , '''self_attn_layer_norm''' ) SCREAMING_SNAKE_CASE_ : Tuple = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) SCREAMING_SNAKE_CASE_ : List[str] = k.replace('''norm3''' , '''final_layer_norm''' ) return k def _A (__a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: SCREAMING_SNAKE_CASE_ : List[Any] = sd.pop(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd SCREAMING_SNAKE_CASE_ : Dict = v UpperCAmelCase_ : str = ["""START"""] @torch.no_grad() def _A (__a , __a , __a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = torch.load(__a , map_location='''cpu''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model['''model'''] SCREAMING_SNAKE_CASE_ : Tuple = BlenderbotConfig.from_json_file(__a ) SCREAMING_SNAKE_CASE_ : int = BlenderbotForConditionalGeneration(__a ) SCREAMING_SNAKE_CASE_ : Dict = m.model.state_dict().keys() SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Any = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue SCREAMING_SNAKE_CASE_ : Tuple = rename_state_dict_key(__a ) if new_k not in valid_keys: failures.append([k, new_k] ) else: SCREAMING_SNAKE_CASE_ : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__a ) m.model.load_state_dict(__a , strict=__a ) m.half() m.save_pretrained(__a ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
710
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { """facebook/data2vec-text-base""": """https://huggingface.co./data2vec/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "data2vec-text" def __init__( self : Any , lowercase_ : Any=30522 , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=12 , lowercase_ : Dict=12 , lowercase_ : List[Any]=3072 , lowercase_ : str="gelu" , lowercase_ : int=0.1 , lowercase_ : Dict=0.1 , lowercase_ : str=512 , lowercase_ : Optional[int]=2 , lowercase_ : int=0.02 , lowercase_ : int=1e-12 , lowercase_ : Any=1 , lowercase_ : Any=0 , lowercase_ : List[Any]=2 , lowercase_ : Tuple="absolute" , lowercase_ : Optional[int]=True , lowercase_ : int=None , **lowercase_ : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : str = position_embedding_type SCREAMING_SNAKE_CASE_ : Optional[int] = use_cache SCREAMING_SNAKE_CASE_ : str = classifier_dropout class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE_ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
176
0
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __lowercase : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' super().__init__(*snake_case__ , **snake_case__ ) requires_backends(self , '''decord''' ) self.check_model_type(snake_case__ ) def _lowerCAmelCase ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ) -> Any: '''simple docstring''' lowerCamelCase_ = {} if frame_sampling_rate is not None: lowerCamelCase_ = frame_sampling_rate if num_frames is not None: lowerCamelCase_ = num_frames lowerCamelCase_ = {} if top_k is not None: lowerCamelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' return super().__call__(snake_case__ , **snake_case__ ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=1 ) -> int: '''simple docstring''' if num_frames is None: lowerCamelCase_ = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): lowerCamelCase_ = BytesIO(requests.get(snake_case__ ).content ) lowerCamelCase_ = VideoReader(snake_case__ ) videoreader.seek(0 ) lowerCamelCase_ = 0 lowerCamelCase_ = num_frames * frame_sampling_rate - 1 lowerCamelCase_ = np.linspace(snake_case__ , snake_case__ , num=snake_case__ , dtype=np.intaa ) lowerCamelCase_ = videoreader.get_batch(snake_case__ ).asnumpy() lowerCamelCase_ = list(snake_case__ ) lowerCamelCase_ = self.image_processor(snake_case__ , return_tensors=self.framework ) return model_inputs def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.model(**snake_case__ ) return model_outputs def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__=5 ) -> str: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCamelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCamelCase_ = model_outputs.logits.softmax(-1 )[0] lowerCamelCase_ , lowerCamelCase_ = probs.topk(snake_case__ ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) lowerCamelCase_ = scores.tolist() lowerCamelCase_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case__ , snake_case__ )]
142
def lowerCamelCase ( UpperCamelCase : int ) -> bool: _lowerCamelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCamelCase ( UpperCamelCase : int = 50_00 ) -> int: _lowerCamelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , UpperCamelCase )] for i, pentagonal_i in enumerate(UpperCamelCase ): for j in range(UpperCamelCase , len(UpperCamelCase ) ): _lowerCamelCase = pentagonal_nums[j] _lowerCamelCase = pentagonal_i + pentagonal_j _lowerCamelCase = pentagonal_j - pentagonal_i if is_pentagonal(UpperCamelCase ) and is_pentagonal(UpperCamelCase ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
544
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __a ( unittest.TestCase ): def UpperCamelCase ( self : str)-> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self : Optional[Any])-> str: __lowerCAmelCase =1 __lowerCAmelCase =3 __lowerCAmelCase =(32, 32) __lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(lowerCamelCase_) return image @property def UpperCamelCase ( self : Union[str, Any])-> Dict: torch.manual_seed(0) __lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def UpperCamelCase ( self : Tuple)-> Union[str, Any]: torch.manual_seed(0) __lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCamelCase ( self : Any)-> Union[str, Any]: torch.manual_seed(0) __lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_) @property def UpperCamelCase ( self : Optional[Any])-> str: def extract(*snake_case_ : Union[str, Any] , **snake_case_ : List[str]): class __a : def __init__( self : Any)-> Union[str, Any]: __lowerCAmelCase =torch.ones([0]) def UpperCamelCase ( self : Any , snake_case_ : Tuple)-> int: self.pixel_values.to(lowerCamelCase_) return self return Out() return extract def UpperCamelCase ( self : Union[str, Any])-> int: __lowerCAmelCase ='''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase =self.dummy_cond_unet __lowerCAmelCase =DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) __lowerCAmelCase =self.dummy_vae __lowerCAmelCase =self.dummy_text_encoder __lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") # make sure here that pndm scheduler skips prk __lowerCAmelCase =StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) __lowerCAmelCase =sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) __lowerCAmelCase ='''A painting of a squirrel eating a burger''' __lowerCAmelCase =torch.Generator(device=lowerCamelCase_).manual_seed(0) __lowerCAmelCase =sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""") __lowerCAmelCase =output.images __lowerCAmelCase =torch.Generator(device=lowerCamelCase_).manual_seed(0) __lowerCAmelCase =sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCamelCase_ , )[0] __lowerCAmelCase =image[0, -3:, -3:, -1] __lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase =np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def UpperCamelCase ( self : int)-> Any: __lowerCAmelCase ='''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase =self.dummy_cond_unet __lowerCAmelCase =PNDMScheduler(skip_prk_steps=lowerCamelCase_) __lowerCAmelCase =self.dummy_vae __lowerCAmelCase =self.dummy_text_encoder __lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") # make sure here that pndm scheduler skips prk __lowerCAmelCase =StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) __lowerCAmelCase =sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) __lowerCAmelCase ='''A painting of a squirrel eating a burger''' __lowerCAmelCase =torch.Generator(device=lowerCamelCase_).manual_seed(0) __lowerCAmelCase =sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""") __lowerCAmelCase =output.images __lowerCAmelCase =torch.Generator(device=lowerCamelCase_).manual_seed(0) __lowerCAmelCase =sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCamelCase_ , )[0] __lowerCAmelCase =image[0, -3:, -3:, -1] __lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase =np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def UpperCamelCase ( self : str)-> List[Any]: __lowerCAmelCase =StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowerCamelCase_) assert isinstance(lowerCamelCase_ , lowerCamelCase_) assert isinstance(pipe.scheduler , lowerCamelCase_) assert pipe.safety_checker is None __lowerCAmelCase =pipe("""example prompt""" , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_) __lowerCAmelCase =StableDiffusionPipeline.from_pretrained(lowerCamelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowerCAmelCase =pipe("""example prompt""" , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""") def UpperCamelCase ( self : Tuple)-> int: __lowerCAmelCase =self.dummy_cond_unet __lowerCAmelCase =PNDMScheduler(skip_prk_steps=lowerCamelCase_) __lowerCAmelCase =self.dummy_vae __lowerCAmelCase =self.dummy_text_encoder __lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") # put models in fp16 __lowerCAmelCase =unet.half() __lowerCAmelCase =vae.half() __lowerCAmelCase =bert.half() # make sure here that pndm scheduler skips prk __lowerCAmelCase =StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) __lowerCAmelCase =sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) __lowerCAmelCase ='''A painting of a squirrel eating a burger''' __lowerCAmelCase =sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""").images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __a ( unittest.TestCase ): def UpperCamelCase ( self : int)-> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : List[str])-> str: __lowerCAmelCase =StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCamelCase_) __lowerCAmelCase =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __lowerCAmelCase =sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) __lowerCAmelCase =( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) __lowerCAmelCase =40_03_66_03_46 __lowerCAmelCase =7 # without safety guidance (sld_guidance_scale = 0) __lowerCAmelCase =torch.manual_seed(lowerCamelCase_) __lowerCAmelCase =sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) __lowerCAmelCase =output.images __lowerCAmelCase =image[0, -3:, -3:, -1] __lowerCAmelCase =[0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) __lowerCAmelCase =torch.manual_seed(lowerCamelCase_) __lowerCAmelCase =sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCAmelCase =output.images __lowerCAmelCase =image[0, -3:, -3:, -1] __lowerCAmelCase =[0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCamelCase ( self : List[Any])-> Tuple: __lowerCAmelCase =StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCamelCase_) __lowerCAmelCase =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __lowerCAmelCase =sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) __lowerCAmelCase ='''padme amidala taking a bath artwork, safe for work, no nudity''' __lowerCAmelCase =27_34_97_17_55 __lowerCAmelCase =7 __lowerCAmelCase =torch.manual_seed(lowerCamelCase_) __lowerCAmelCase =sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) __lowerCAmelCase =output.images __lowerCAmelCase =image[0, -3:, -3:, -1] __lowerCAmelCase =[0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 __lowerCAmelCase =torch.manual_seed(lowerCamelCase_) __lowerCAmelCase =sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCAmelCase =output.images __lowerCAmelCase =image[0, -3:, -3:, -1] __lowerCAmelCase =[0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCamelCase ( self : Any)-> Any: __lowerCAmelCase =StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""") __lowerCAmelCase =sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) __lowerCAmelCase =( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) __lowerCAmelCase =10_44_35_52_34 __lowerCAmelCase =12 __lowerCAmelCase =torch.manual_seed(lowerCamelCase_) __lowerCAmelCase =sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) __lowerCAmelCase =output.images __lowerCAmelCase =image[0, -3:, -3:, -1] __lowerCAmelCase =np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 __lowerCAmelCase =torch.manual_seed(lowerCamelCase_) __lowerCAmelCase =sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCAmelCase =output.images __lowerCAmelCase =image[0, -3:, -3:, -1] __lowerCAmelCase =np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1]) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
718
def __lowerCAmelCase ( __lowerCamelCase : list ) -> list: __lowerCAmelCase =False while is_sorted is False: # Until all the indices are traversed keep looping __lowerCAmelCase =True for i in range(0 , len(__lowerCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase =input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase =False for i in range(1 , len(__lowerCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase =input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase =False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowercase_ = [int(x) for x in input().split()] # inputing elements of the list in one line lowercase_ = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
456
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule A_ : str = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
265
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class a__ : lowercase_ = 4_2 # setable values lowercase_ = 4_2 lowercase_ = 4_2 lowercase_ = None @classmethod def a_ ( cls : Optional[int] , UpperCamelCase_ : CommonSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray): """simple docstring""" return cls(common=__A , init_noise_sigma=__A , timesteps=__A) @dataclass class a__ ( UpperCamelCase_ ): lowercase_ = 4_2 class a__ ( UpperCamelCase_ , UpperCamelCase_ ): lowercase_ = [e.name for e in FlaxKarrasDiffusionSchedulers] lowercase_ = 4_2 @property def a_ ( self : Dict): """simple docstring""" return True @register_to_config def __init__( self : Dict , UpperCamelCase_ : int = 1000 , UpperCamelCase_ : float = 0.0001 , UpperCamelCase_ : float = 0.02 , UpperCamelCase_ : str = "linear" , UpperCamelCase_ : Optional[jnp.ndarray] = None , UpperCamelCase_ : str = "fixed_small" , UpperCamelCase_ : bool = True , UpperCamelCase_ : str = "epsilon" , UpperCamelCase_ : jnp.dtype = jnp.floataa , ): """simple docstring""" __UpperCAmelCase : Any = dtype def a_ ( self : str , UpperCamelCase_ : Optional[CommonSchedulerState] = None): """simple docstring""" if common is None: __UpperCAmelCase : str = CommonSchedulerState.create(self) # standard deviation of the initial noise distribution __UpperCAmelCase : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype) __UpperCAmelCase : Tuple = jnp.arange(0 , self.config.num_train_timesteps).round()[::-1] return DDPMSchedulerState.create( common=__A , init_noise_sigma=__A , timesteps=__A , ) def a_ ( self : List[Any] , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : Optional[int] = None): """simple docstring""" return sample def a_ ( self : List[str] , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : int , UpperCamelCase_ : Tuple = ()): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __UpperCAmelCase : int = (jnp.arange(0 , __A) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__A , timesteps=__A , ) def a_ ( self : Dict , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None): """simple docstring""" __UpperCAmelCase : Union[str, Any] = state.common.alphas_cumprod[t] __UpperCAmelCase : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCAmelCase : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __UpperCAmelCase : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __UpperCAmelCase : Union[str, Any] = jnp.clip(__A , a_min=1e-20) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __UpperCAmelCase : Optional[int] = jnp.log(jnp.clip(__A , a_min=1e-20)) elif variance_type == "fixed_large": __UpperCAmelCase : Any = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __UpperCAmelCase : int = jnp.log(state.common.betas[t]) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __UpperCAmelCase : int = variance __UpperCAmelCase : Dict = state.common.betas[t] __UpperCAmelCase : int = (predicted_variance + 1) / 2 __UpperCAmelCase : str = frac * max_log + (1 - frac) * min_log return variance def a_ ( self : Optional[int] , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : Optional[jax.random.KeyArray] = None , UpperCamelCase_ : bool = True , ): """simple docstring""" __UpperCAmelCase : int = timestep if key is None: __UpperCAmelCase : str = jax.random.PRNGKey(0) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __UpperCAmelCase : Tuple = jnp.split(__A , sample.shape[1] , axis=1) else: __UpperCAmelCase : Any = None # 1. compute alphas, betas __UpperCAmelCase : Optional[int] = state.common.alphas_cumprod[t] __UpperCAmelCase : List[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) __UpperCAmelCase : Optional[int] = 1 - alpha_prod_t __UpperCAmelCase : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCAmelCase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCAmelCase : str = model_output elif self.config.prediction_type == "v_prediction": __UpperCAmelCase : Optional[int] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler.") # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCAmelCase : Optional[Any] = jnp.clip(__A , -1 , 1) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCAmelCase : Optional[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __UpperCAmelCase : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCAmelCase : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __UpperCAmelCase : Optional[int] = jax.random.split(__A , num=1) __UpperCAmelCase : Union[str, Any] = jax.random.normal(__A , shape=model_output.shape , dtype=self.dtype) return (self._get_variance(__A , __A , predicted_variance=__A) ** 0.5) * noise __UpperCAmelCase : List[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype)) __UpperCAmelCase : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__A , state=__A) def a_ ( self : str , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray , ): """simple docstring""" return add_noise_common(state.common , __A , __A , __A) def a_ ( self : List[Any] , UpperCamelCase_ : DDPMSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray , ): """simple docstring""" return get_velocity_common(state.common , __A , __A , __A) def __len__( self : Dict): """simple docstring""" return self.config.num_train_timesteps
703
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: __UpperCAmelCase : Union[str, Any] = _modexpt(UpperCamelCase , exponent // 2 , UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(UpperCamelCase , exponent - 1 , UpperCamelCase )) % modulo_value def _UpperCamelCase ( UpperCamelCase = 1777 , UpperCamelCase = 1855 , UpperCamelCase = 8 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[int] = base for _ in range(1 , UpperCamelCase ): __UpperCAmelCase : str = _modexpt(UpperCamelCase , UpperCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
487
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False, False, False @dataclass class snake_case_ : """simple docstring""" snake_case__ = None snake_case__ = True snake_case__ = True snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) snake_case__ = field(default="""Audio""" , init=__UpperCamelCase , repr=__UpperCamelCase ) def __call__(self: Optional[int] ) -> Tuple: '''simple docstring''' return self.pa_type def UpperCAmelCase__ (self: List[Any] , __UpperCAmelCase: Union[str, bytes, dict] ) -> dict: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __a : int = BytesIO() sf.write(__UpperCAmelCase , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __a : Optional[Any] = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: __a : Dict = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 32767 __a : str = BytesIO(bytes() ) sf.write(__UpperCAmelCase , __UpperCAmelCase , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: dict , __UpperCAmelCase: Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: '''simple docstring''' if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) __a , __a : List[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err __a : Union[str, Any] = xsplitext(__UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: __a : Union[str, Any] = token_per_repo_id or {} __a : str = path.split("::" )[-1] try: __a : str = string_to_dict(__UpperCAmelCase , config.HUB_DATASETS_URL )["repo_id"] __a : int = token_per_repo_id[repo_id] except (ValueError, KeyError): __a : Union[str, Any] = None with xopen(__UpperCAmelCase , "rb" , use_auth_token=__UpperCAmelCase ) as f: __a , __a : List[Any] = sf.read(__UpperCAmelCase ) else: __a , __a : Union[str, Any] = sf.read(__UpperCAmelCase ) __a : Tuple = array.T if self.mono: __a : List[Any] = librosa.to_mono(__UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: __a : Optional[int] = librosa.resample(__UpperCAmelCase , orig_sr=__UpperCAmelCase , target_sr=self.sampling_rate ) __a : str = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase__ (self: Tuple ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def UpperCAmelCase__ (self: Optional[int] , __UpperCAmelCase: Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): __a : List[str] = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) __a : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __a : List[Any] = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) __a : Any = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): __a : int = pa.array([Audio().encode_example(__UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: __a : Tuple = storage.field("bytes" ) else: __a : str = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: __a : Optional[Any] = storage.field("path" ) else: __a : Optional[Any] = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) __a : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type ) def UpperCAmelCase__ (self: Tuple , __UpperCAmelCase: pa.StructArray ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__UpperCAmelCase: List[Any] ): with xopen(__UpperCAmelCase , "rb" ) as f: __a : Any = f.read() return bytes_ __a : str = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __a : Union[str, Any] = pa.array( [os.path.basename(__UpperCAmelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) __a : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type )
351
from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case_ ( __UpperCamelCase ): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase__ (__UpperCAmelCase: ArgumentParser ) -> Tuple: '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCAmelCase__ (self: List[str] ) -> List[str]: '''simple docstring''' raise NotImplementedError()
351
1
from collections import namedtuple import requests from lxml import html # type: ignore a_ :str = namedtuple('covid_data', 'cases deaths recovered') def a ( A__ = "https://www.worldometers.info/coronavirus/" ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__snake_case ).content ).xpath(__snake_case ) ) a_ :List[str] = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
705
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ :Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp a_ :Union[str, Any] = 5 a_ :int = 10 @require_sentencepiece @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = SpeechaTextTokenizer lowerCamelCase : Union[str, Any] = False lowerCamelCase : List[str] = True def lowercase__ ( self : int ): super().setUp() SCREAMING_SNAKE_CASE__ : Any = sp.SentencePieceProcessor() spm_model.Load(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_lowercase ) )] SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(self.tmpdirname ) save_json(_lowercase , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowercase , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) SCREAMING_SNAKE_CASE__ : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : str = '''<pad>''' SCREAMING_SNAKE_CASE__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowercase ) , 10_01 ) def lowercase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [2_89, 50, 14, 1_74, 3_86] , ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE__ : int = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def lowercase__ ( self : List[str] ): # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] = {'''input_ids''': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''facebook/s2t-small-mustc-en-de-st''' , revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): lowerCamelCase : Union[str, Any] = '''valhalla/s2t_mustc_multilinguial_medium''' lowerCamelCase : List[Any] = '''C\'est trop cool''' lowerCamelCase : Any = '''Esto es genial''' @classmethod def lowercase__ ( cls : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase__ ( self : str ): self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''] , 11 ) def lowercase__ ( self : Tuple ): self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def lowercase__ ( self : Optional[int] ): self.assertIn(_lowercase , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ : Tuple = [ES_CODE, 4, 16_01, 47, 76_47, 2] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''fr''' SCREAMING_SNAKE_CASE__ : int = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _lowercase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[Any] = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE__ : int = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
250
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = (EulerDiscreteScheduler,) SCREAMING_SNAKE_CASE_ : Dict = 1_0 def __UpperCAmelCase ( self : Tuple ,**__A : Tuple ) -> List[str]: _lowercase = { 'num_train_timesteps': 1100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**__A ) return config def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] ,[0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__A ,beta_end=__A ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__A ) def __UpperCAmelCase ( self : Dict ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def __UpperCAmelCase ( self : str ) -> int: _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowercase = torch.manual_seed(0 ) _lowercase = self.dummy_model() _lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma _lowercase = sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowercase = scheduler.scale_model_input(__A ,__A ) _lowercase = model(__A ,__A ) _lowercase = scheduler.step(__A ,__A ,__A ,generator=__A ) _lowercase = output.prev_sample _lowercase = torch.sum(torch.abs(__A ) ) _lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __UpperCAmelCase ( self : List[str] ) -> List[Any]: _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config(prediction_type='v_prediction' ) _lowercase = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowercase = torch.manual_seed(0 ) _lowercase = self.dummy_model() _lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma _lowercase = sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowercase = scheduler.scale_model_input(__A ,__A ) _lowercase = model(__A ,__A ) _lowercase = scheduler.step(__A ,__A ,__A ,generator=__A ) _lowercase = output.prev_sample _lowercase = torch.sum(torch.abs(__A ) ) _lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def __UpperCAmelCase ( self : int ) -> Union[str, Any]: _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ,device=__A ) _lowercase = torch.manual_seed(0 ) _lowercase = self.dummy_model() _lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowercase = sample.to(__A ) for t in scheduler.timesteps: _lowercase = scheduler.scale_model_input(__A ,__A ) _lowercase = model(__A ,__A ) _lowercase = scheduler.step(__A ,__A ,__A ,generator=__A ) _lowercase = output.prev_sample _lowercase = torch.sum(torch.abs(__A ) ) _lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__A ,use_karras_sigmas=__A ) scheduler.set_timesteps(self.num_inference_steps ,device=__A ) _lowercase = torch.manual_seed(0 ) _lowercase = self.dummy_model() _lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowercase = sample.to(__A ) for t in scheduler.timesteps: _lowercase = scheduler.scale_model_input(__A ,__A ) _lowercase = model(__A ,__A ) _lowercase = scheduler.step(__A ,__A ,__A ,generator=__A ) _lowercase = output.prev_sample _lowercase = torch.sum(torch.abs(__A ) ) _lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
67
"""simple docstring""" def _lowerCAmelCase ( ) -> int: return [ a * b * (1_0_0_0 - a - b) for a in range(1, 9_9_9 ) for b in range(lowerCamelCase__, 9_9_9 ) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
572
0
from string import ascii_lowercase, ascii_uppercase def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" if not sentence: return "" A__ = dict(zip(_lowerCamelCase , _lowerCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
716
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Tuple = { """tiiuae/falcon-40b""": """https://huggingface.co./tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co./tiiuae/falcon-7b/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''falcon''' UpperCAmelCase__ = ['''past_key_values'''] def __init__( self : Optional[Any] , UpperCAmelCase__ : str=65_024 , UpperCAmelCase__ : List[Any]=4_544 , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : Dict=71 , UpperCAmelCase__ : Any=1e-5 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Dict=11 , UpperCAmelCase__ : str=11 , **UpperCAmelCase__ : Dict , ) ->Any: '''simple docstring''' A__ = vocab_size # Backward compatibility with n_embed kwarg A__ = kwargs.pop('''n_embed''' , UpperCAmelCase__) A__ = hidden_size if n_embed is None else n_embed A__ = num_hidden_layers A__ = num_attention_heads A__ = layer_norm_epsilon A__ = initializer_range A__ = use_cache A__ = hidden_dropout A__ = attention_dropout A__ = bos_token_id A__ = eos_token_id A__ = num_attention_heads if num_kv_heads is None else num_kv_heads A__ = alibi A__ = new_decoder_architecture A__ = multi_query # Ignored when new_decoder_architecture is True A__ = parallel_attn A__ = bias super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' return not self.alibi
177
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __a: Dict = logging.get_logger(__name__) # pylint: disable=invalid-name __a: Dict = 256 class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = ['''melgan'''] def __init__( self : List[str] , lowerCamelCase : SpectrogramNotesEncoder , lowerCamelCase : SpectrogramContEncoder , lowerCamelCase : TaFilmDecoder , lowerCamelCase : DDPMScheduler , lowerCamelCase : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: """simple docstring""" super().__init__() # From MELGAN _UpperCAmelCase = math.log(1E-5 ) # Matches MelGAN training. _UpperCAmelCase = 4.0 # Largest value for most examples _UpperCAmelCase = 128 self.register_modules( notes_encoder=lowerCamelCase , continuous_encoder=lowerCamelCase , decoder=lowerCamelCase , scheduler=lowerCamelCase , melgan=lowerCamelCase , ) def lowerCamelCase ( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : int=(-1.0, 1.0) , lowerCamelCase : List[str]=False ) -> List[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = output_range if clip: _UpperCAmelCase = torch.clip(lowerCamelCase , self.min_value , self.max_value ) # Scale to [0, 1]. _UpperCAmelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Any=(-1.0, 1.0) , lowerCamelCase : Tuple=False ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = input_range _UpperCAmelCase = torch.clip(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if clip else outputs # Scale to [0, 1]. _UpperCAmelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCamelCase ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase = input_tokens > 0 _UpperCAmelCase , _UpperCAmelCase = self.notes_encoder( encoder_input_tokens=lowerCamelCase , encoder_inputs_mask=lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase = self.continuous_encoder( encoder_inputs=lowerCamelCase , encoder_inputs_mask=lowerCamelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCamelCase ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : Tuple ) -> str: """simple docstring""" _UpperCAmelCase = noise_time if not torch.is_tensor(lowerCamelCase ): _UpperCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: _UpperCAmelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCAmelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _UpperCAmelCase = self.decoder( encodings_and_masks=lowerCamelCase , decoder_input_tokens=lowerCamelCase , decoder_noise_time=lowerCamelCase ) return logits @torch.no_grad() def __call__( self : Optional[int] , lowerCamelCase : List[List[int]] , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : int = 100 , lowerCamelCase : bool = True , lowerCamelCase : str = "numpy" , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase , lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(lowerCamelCase )}.""" ) _UpperCAmelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _UpperCAmelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) _UpperCAmelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=lowerCamelCase , device=self.device ) for i, encoder_input_tokens in enumerate(lowerCamelCase ): if i == 0: _UpperCAmelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _UpperCAmelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=lowerCamelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _UpperCAmelCase = ones _UpperCAmelCase = self.scale_features( lowerCamelCase , output_range=[-1.0, 1.0] , clip=lowerCamelCase ) _UpperCAmelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=lowerCamelCase , continuous_mask=lowerCamelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _UpperCAmelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=lowerCamelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(lowerCamelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _UpperCAmelCase = self.decode( encodings_and_masks=lowerCamelCase , input_tokens=lowerCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample _UpperCAmelCase = self.scale_to_features(lowerCamelCase , input_range=[-1.0, 1.0] ) _UpperCAmelCase = mel[:1] _UpperCAmelCase = mel.cpu().float().numpy() _UpperCAmelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase , lowerCamelCase ) logger.info("""Generated segment""" , lowerCamelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": _UpperCAmelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _UpperCAmelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowerCamelCase )
108
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __lowerCAmelCase ( A ): UpperCamelCase = 42 UpperCamelCase = 42 class __lowerCAmelCase ( A , A ): UpperCamelCase = 1 @register_to_config def __init__( self : List[str] , A : int = 20_00 , A : float = 0.1_5 , A : float = 0.0_1 , A : float = 1_3_4_8.0 , A : float = 1E-5 , A : int = 1 , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = sigma_max # setable values _UpperCAmelCase = None self.set_sigmas(A , A , A , A) def _lowerCamelCase ( self : int , A : torch.FloatTensor , A : Optional[int] = None) -> torch.FloatTensor: """simple docstring""" return sample def _lowerCamelCase ( self : Union[str, Any] , A : int , A : float = None , A : Union[str, torch.device] = None) -> Any: """simple docstring""" _UpperCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps _UpperCAmelCase = torch.linspace(1 , A , A , device=A) def _lowerCamelCase ( self : List[Any] , A : int , A : float = None , A : float = None , A : float = None) -> str: """simple docstring""" _UpperCAmelCase = sigma_min if sigma_min is not None else self.config.sigma_min _UpperCAmelCase = sigma_max if sigma_max is not None else self.config.sigma_max _UpperCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(A , A) _UpperCAmelCase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _UpperCAmelCase = torch.exp(torch.linspace(math.log(A) , math.log(A) , A)) _UpperCAmelCase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def _lowerCamelCase ( self : Dict , A : Optional[Any] , A : Union[str, Any]) -> str: """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device)) , self.discrete_sigmas[timesteps - 1].to(timesteps.device) , ) def _lowerCamelCase ( self : int , A : torch.FloatTensor , A : int , A : torch.FloatTensor , A : Optional[torch.Generator] = None , A : bool = True , ) -> Union[SdeVeOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') _UpperCAmelCase = timestep * torch.ones( sample.shape[0] , device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _UpperCAmelCase = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _UpperCAmelCase = timesteps.to(self.discrete_sigmas.device) _UpperCAmelCase = self.discrete_sigmas[timesteps].to(sample.device) _UpperCAmelCase = self.get_adjacent_sigma(A , A).to(sample.device) _UpperCAmelCase = torch.zeros_like(A) _UpperCAmelCase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _UpperCAmelCase = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _UpperCAmelCase = diffusion.unsqueeze(-1) _UpperCAmelCase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _UpperCAmelCase = randn_tensor( sample.shape , layout=sample.layout , generator=A , device=sample.device , dtype=sample.dtype) _UpperCAmelCase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _UpperCAmelCase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=A , prev_sample_mean=A) def _lowerCamelCase ( self : Dict , A : torch.FloatTensor , A : torch.FloatTensor , A : Optional[torch.Generator] = None , A : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _UpperCAmelCase = randn_tensor(sample.shape , layout=sample.layout , generator=A).to(sample.device) # compute step size from the model_output, the noise, and the snr _UpperCAmelCase = torch.norm(model_output.reshape(model_output.shape[0] , -1) , dim=-1).mean() _UpperCAmelCase = torch.norm(noise.reshape(noise.shape[0] , -1) , dim=-1).mean() _UpperCAmelCase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _UpperCAmelCase = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _UpperCAmelCase = step_size.flatten() while len(step_size.shape) < len(sample.shape): _UpperCAmelCase = step_size.unsqueeze(-1) _UpperCAmelCase = sample + step_size * model_output _UpperCAmelCase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A) def _lowerCamelCase ( self : List[str] , A : torch.FloatTensor , A : torch.FloatTensor , A : torch.FloatTensor , ) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = timesteps.to(original_samples.device) _UpperCAmelCase = self.discrete_sigmas.to(original_samples.device)[timesteps] _UpperCAmelCase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(A) * sigmas[:, None, None, None] ) _UpperCAmelCase = noise + original_samples return noisy_samples def __len__( self : List[Any]) -> str: """simple docstring""" return self.config.num_train_timesteps
639
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , lowercase__ : Any , lowercase__ : Tuple=7 , lowercase__ : List[Any]=3 , lowercase__ : Any=3_0 , lowercase__ : List[Any]=4_0_0 , lowercase__ : Dict=True , lowercase__ : Dict=None , lowercase__ : Any=True , lowercase__ : List[Any]=[0.5, 0.5, 0.5] , lowercase__ : Tuple=[0.5, 0.5, 0.5] , lowercase__ : Optional[Any]=True , lowercase__ : Union[str, Any]=1 / 2_5_5 , lowercase__ : Any=True , ): __lowercase : Optional[int] = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} __lowercase : str = parent __lowercase : Optional[int] = batch_size __lowercase : int = num_channels __lowercase : Any = min_resolution __lowercase : Dict = max_resolution __lowercase : Optional[int] = do_resize __lowercase : str = size __lowercase : Optional[int] = do_normalize __lowercase : Optional[Any] = image_mean __lowercase : Optional[Any] = image_std __lowercase : Optional[Any] = do_rescale __lowercase : Optional[Any] = rescale_factor __lowercase : Any = do_pad def snake_case ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case ( self : int , lowercase__ : Tuple , lowercase__ : Dict=False ): if not batched: __lowercase : List[str] = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): __lowercase : Tuple = image.size else: __lowercase : Any = image.shape[1], image.shape[2] if w < h: __lowercase : Any = int(self.size["shortest_edge"] * h / w ) __lowercase : str = self.size['shortest_edge'] elif w > h: __lowercase : Optional[Any] = self.size['shortest_edge'] __lowercase : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: __lowercase : int = self.size['shortest_edge'] __lowercase : Any = self.size['shortest_edge'] else: __lowercase : Dict = [] for image in image_inputs: __lowercase : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase : Optional[Any] = max(__UpperCamelCase , key=lambda lowercase__ : item[0] )[0] __lowercase : Any = max(__UpperCamelCase , key=lambda lowercase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = YolosImageProcessor if is_vision_available() else None def snake_case ( self : Dict ): __lowercase : str = YolosImageProcessingTester(self ) @property def snake_case ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : List[str] ): __lowercase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "size" ) ) def snake_case ( self : List[str] ): __lowercase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) __lowercase : List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def snake_case ( self : List[str] ): pass def snake_case ( self : List[str] ): __lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input __lowercase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowercase : int = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) __lowercase : Any = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self : Dict ): __lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input __lowercase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowercase : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase : int = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values __lowercase : int = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self : Tuple ): __lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input __lowercase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowercase : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase : Any = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values __lowercase : int = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self : Any ): __lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) __lowercase : Union[str, Any] = self.image_processing_class(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase , do_rescale=__UpperCamelCase ) # create random PyTorch tensors __lowercase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __lowercase : List[Any] = image_processing_a.pad(__UpperCamelCase , return_tensors="pt" ) __lowercase : Tuple = image_processing_a(__UpperCamelCase , return_tensors="pt" ) self.assertTrue( torch.allclose(encoded_images_with_method["pixel_values"] , encoded_images["pixel_values"] , atol=1e-4 ) ) @slow def snake_case ( self : Tuple ): __lowercase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __lowercase : Tuple = json.loads(f.read() ) __lowercase : Tuple = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them __lowercase : Optional[Any] = YolosImageProcessor.from_pretrained("hustvl/yolos-small" ) __lowercase : int = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="pt" ) # verify pixel values __lowercase : Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __UpperCamelCase ) __lowercase : Dict = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area __lowercase : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __UpperCamelCase ) ) # verify boxes __lowercase : int = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __UpperCamelCase ) __lowercase : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id __lowercase : Tuple = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __UpperCamelCase ) ) # verify is_crowd __lowercase : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __UpperCamelCase ) ) # verify class_labels __lowercase : Union[str, Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __UpperCamelCase ) ) # verify orig_size __lowercase : Tuple = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __UpperCamelCase ) ) # verify size __lowercase : Any = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __UpperCamelCase ) ) @slow def snake_case ( self : Dict ): __lowercase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __lowercase : Any = json.loads(f.read() ) __lowercase : List[str] = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} __lowercase : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __lowercase : Dict = YolosImageProcessor(format="coco_panoptic" ) __lowercase : Optional[int] = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="pt" ) # verify pixel values __lowercase : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __UpperCamelCase ) __lowercase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area __lowercase : Optional[Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __UpperCamelCase ) ) # verify boxes __lowercase : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __UpperCamelCase ) __lowercase : Tuple = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id __lowercase : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __UpperCamelCase ) ) # verify is_crowd __lowercase : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __UpperCamelCase ) ) # verify class_labels __lowercase : int = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __UpperCamelCase ) ) # verify masks __lowercase : Dict = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __UpperCamelCase ) # verify orig_size __lowercase : Tuple = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __UpperCamelCase ) ) # verify size __lowercase : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __UpperCamelCase ) )
575
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __SCREAMING_SNAKE_CASE =False class UpperCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : str = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' ,torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : Tuple = load_image( 'https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase_ : int = torch.manual_seed(0 ) lowercase_ : Optional[int] = pipe.dual_guided( prompt='first prompt' ,image=__UpperCamelCase ,text_to_image_strength=0.75 ,generator=__UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ,).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCamelCase ) lowercase_ : str = VersatileDiffusionPipeline.from_pretrained(__UpperCamelCase ,torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : List[Any] = generator.manual_seed(0 ) lowercase_ : Union[str, Any] = pipe.dual_guided( prompt='first prompt' ,image=__UpperCamelCase ,text_to_image_strength=0.75 ,generator=__UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ,).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Any = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' ,torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : int = 'cyberpunk 2077' lowercase_ : Union[str, Any] = load_image( 'https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase_ : Optional[Any] = torch.manual_seed(0 ) lowercase_ : int = pipe.dual_guided( prompt=__UpperCamelCase ,image=__UpperCamelCase ,text_to_image_strength=0.75 ,generator=__UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ,).images lowercase_ : int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Union[str, Any] = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowercase_ : Optional[Any] = 'A painting of a squirrel eating a burger ' lowercase_ : Optional[Any] = torch.manual_seed(0 ) lowercase_ : Dict = pipe.text_to_image( prompt=__UpperCamelCase ,generator=__UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ).images lowercase_ : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Tuple = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowercase_ : Dict = pipe.image_variation(__UpperCamelCase ,generator=__UpperCamelCase ,output_type='numpy' ).images lowercase_ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Union[str, Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
425
0
def __magic_name__ ( lowercase_ ) -> bool: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase_ ) if number < 0: return False UpperCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
701
def __magic_name__ ( lowercase_ ) -> str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
414
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a photo of {}." ): """simple docstring""" _lowerCAmelCase = load_image(_lowercase ) _lowerCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 ) _lowerCAmelCase = probs.tolist() if not isinstance(_lowercase , _lowercase ): _lowerCAmelCase = [scores] elif self.framework == "tf": _lowerCAmelCase = stable_softmax(_lowercase , axis=-1 ) _lowerCAmelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowercase__( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : Optional[int] )-> List[Any]: """simple docstring""" _UpperCamelCase = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _UpperCamelCase = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _UpperCamelCase = f"{src_lang}-{tgt_lang}" _UpperCamelCase = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co./allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co./allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co./allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) _UpperCamelCase = os.path.join(_UpperCamelCase , "README.md" ) print(f"Generating {path}" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project snake_case_ : List[Any] = Path(__file__).resolve().parent.parent.parent snake_case_ : List[Any] = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: snake_case_ : str = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
138
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( lowercase_ , unittest.TestCase ): """simple docstring""" snake_case =None snake_case =BloomTokenizerFast snake_case =BloomTokenizerFast snake_case =True snake_case =False snake_case ="""tokenizer_file""" snake_case ={"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def SCREAMING_SNAKE_CASE ( self ): super().setUp() _UpperCAmelCase =BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self , **_snake_case ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_rust_tokenizer() _UpperCAmelCase =["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] _UpperCAmelCase =[[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] _UpperCAmelCase =tokenizer.batch_encode_plus(lowerCamelCase_ )["""input_ids"""] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCAmelCase =tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self , _snake_case=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _UpperCAmelCase =self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _UpperCAmelCase ="""This is a simple input""" _UpperCAmelCase =["""This is a simple input 1""", """This is a simple input 2"""] _UpperCAmelCase =("""This is a simple input""", """This is a pair""") _UpperCAmelCase =[ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(lowerCamelCase_ , max_length=lowerCamelCase_ ) tokenizer_r.encode_plus(lowerCamelCase_ , max_length=lowerCamelCase_ ) tokenizer_r.batch_encode_plus(lowerCamelCase_ , max_length=lowerCamelCase_ ) tokenizer_r.encode(lowerCamelCase_ , max_length=lowerCamelCase_ ) tokenizer_r.batch_encode_plus(lowerCamelCase_ , max_length=lowerCamelCase_ ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) _UpperCAmelCase =None # Hotfixing padding = None self.assertRaises(lowerCamelCase_ , tokenizer_r.encode , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="max_length" ) # Simple input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="max_length" ) # Simple input self.assertRaises( lowerCamelCase_ , tokenizer_r.batch_encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="max_length" , ) # Pair input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="max_length" ) # Pair input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="max_length" ) # Pair input self.assertRaises( lowerCamelCase_ , tokenizer_r.batch_encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="max_length" , ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_rust_tokenizer() _UpperCAmelCase =load_dataset("xnli" , "all_languages" , split="test" , streaming=lowerCamelCase_ ) _UpperCAmelCase =next(iter(lowerCamelCase_ ) )["""premise"""] # pick up one data _UpperCAmelCase =list(sample_data.values() ) _UpperCAmelCase =list(map(tokenizer.encode , lowerCamelCase_ ) ) _UpperCAmelCase =[tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) for x in output_tokens] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self ): self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
713
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" snake_case =MODEL_FOR_MASKED_LM_MAPPING snake_case =TF_MODEL_FOR_MASKED_LM_MAPPING def SCREAMING_SNAKE_CASE ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) _UpperCAmelCase =unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_snake_case , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1E-0_5, "token": 3_8015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1E-0_5, "token": 2_5506, "token_str": " accuser"}, ] , ) _UpperCAmelCase =unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_snake_case , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1E-0_5, "token": 3_8015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1E-0_5, "token": 2_5506, "token_str": " accuser", }, ] , ) _UpperCAmelCase =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_snake_case , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2E-0_5, "token": 1_3606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2E-0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9E-0_5, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) _UpperCAmelCase =unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_snake_case , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2E-0_5, "token": 3_5676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2E-0_5, "token": 1_6416, "token_str": "ELS"}, ] , ) _UpperCAmelCase =unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_snake_case , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2E-0_5, "token": 3_5676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2E-0_5, "token": 1_6416, "token_str": "ELS"}, ] , ) _UpperCAmelCase =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_snake_case , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1E-0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2E-0_5, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2E-0_5, "token": 1_3606, "token_str": " Clara"}, ] , ) _UpperCAmelCase =unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=6 ) , [ [ { "score": 2.2E-0_5, "token": 3_5676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2E-0_5, "token": 1_6416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2E-0_5, "token": 3_5676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2E-0_5, "token": 1_6416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() _UpperCAmelCase =pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_snake_case , _snake_case ) @slow @require_torch def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(_snake_case ) @slow @require_tf def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_snake_case ) , [ {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"}, ] , ) _UpperCAmelCase =unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_snake_case ) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 1_2790, "token_str": " Lyon", }, ] , ) _UpperCAmelCase =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_snake_case ) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 1_3606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) _UpperCAmelCase =None _UpperCAmelCase =None self.run_pipeline_test(_snake_case , [] ) @require_tf def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) _UpperCAmelCase =None _UpperCAmelCase =None self.run_pipeline_test(_snake_case , [] ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) _UpperCAmelCase =FillMaskPipeline(model=_snake_case , tokenizer=_snake_case ) _UpperCAmelCase =[ F"This is another {tokenizer.mask_token} test", ] return fill_masker, examples def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): _UpperCAmelCase =fill_masker.tokenizer _UpperCAmelCase =fill_masker.model _UpperCAmelCase =fill_masker( F"This is a {tokenizer.mask_token}" , ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, ] , ) _UpperCAmelCase =fill_masker([F"This is a {tokenizer.mask_token}"] ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, ] , ) _UpperCAmelCase =fill_masker([F"This is a {tokenizer.mask_token}", F"Another {tokenizer.mask_token} great test."] ) self.assertEqual( _snake_case , [ [ {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, ], [ {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, ], ] , ) with self.assertRaises(_snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_snake_case ): fill_masker("This is" ) self.run_test_top_k(_snake_case , _snake_case ) self.run_test_targets(_snake_case , _snake_case ) self.run_test_top_k_targets(_snake_case , _snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(_snake_case , _snake_case ) self.fill_mask_with_multiple_masks(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): _UpperCAmelCase =tokenizer.get_vocab() _UpperCAmelCase =sorted(vocab.keys() )[:2] # Pipeline argument _UpperCAmelCase =FillMaskPipeline(model=_snake_case , tokenizer=_snake_case , targets=_snake_case ) _UpperCAmelCase =fill_masker(F"This is a {tokenizer.mask_token}" ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, ] , ) _UpperCAmelCase ={vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , _snake_case ) _UpperCAmelCase =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(_snake_case ) ) # Call argument _UpperCAmelCase =FillMaskPipeline(model=_snake_case , tokenizer=_snake_case ) _UpperCAmelCase =fill_masker(F"This is a {tokenizer.mask_token}" , targets=_snake_case ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, ] , ) _UpperCAmelCase ={vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , _snake_case ) _UpperCAmelCase =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(_snake_case ) ) # Score equivalence _UpperCAmelCase =fill_masker(F"This is a {tokenizer.mask_token}" , targets=_snake_case ) _UpperCAmelCase =[top_mask["token_str"] for top_mask in outputs] _UpperCAmelCase =[top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_snake_case ) == set(_snake_case ): _UpperCAmelCase =fill_masker(F"This is a {tokenizer.mask_token}" , targets=_snake_case ) _UpperCAmelCase =[top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_snake_case ) , nested_simplify(_snake_case ) ) # Raises with invalid with self.assertRaises(_snake_case ): _UpperCAmelCase =fill_masker(F"This is a {tokenizer.mask_token}" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_snake_case ): _UpperCAmelCase =fill_masker(F"This is a {tokenizer.mask_token}" , targets=[""] ) with self.assertRaises(_snake_case ): _UpperCAmelCase =fill_masker(F"This is a {tokenizer.mask_token}" , targets="" ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): _UpperCAmelCase =FillMaskPipeline(model=_snake_case , tokenizer=_snake_case , top_k=2 ) _UpperCAmelCase =fill_masker(F"This is a {tokenizer.mask_token}" ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, ] , ) _UpperCAmelCase =FillMaskPipeline(model=_snake_case , tokenizer=_snake_case ) _UpperCAmelCase =fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, ] , ) self.assertEqual(nested_simplify(_snake_case ) , nested_simplify(_snake_case ) ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): _UpperCAmelCase =tokenizer.get_vocab() _UpperCAmelCase =FillMaskPipeline(model=_snake_case , tokenizer=_snake_case ) # top_k=2, ntargets=3 _UpperCAmelCase =sorted(vocab.keys() )[:3] _UpperCAmelCase =fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 , targets=_snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results _UpperCAmelCase =[el["token_str"] for el in sorted(_snake_case , key=lambda _snake_case : x["score"] , reverse=_snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_snake_case ).issubset(_snake_case ): _UpperCAmelCase =fill_masker(F"This is a {tokenizer.mask_token}" , top_k=3 , targets=_snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(_snake_case ) , nested_simplify(_snake_case ) ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): _UpperCAmelCase =FillMaskPipeline(model=_snake_case , tokenizer=_snake_case ) _UpperCAmelCase =tokenizer.get_vocab() # String duplicates + id duplicates _UpperCAmelCase =sorted(vocab.keys() )[:3] _UpperCAmelCase =[targets[0], targets[1], targets[0], targets[2], targets[1]] _UpperCAmelCase =fill_masker(F"My name is {tokenizer.mask_token}" , targets=_snake_case , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_snake_case ) , 3 ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): _UpperCAmelCase =FillMaskPipeline(model=_snake_case , tokenizer=_snake_case ) _UpperCAmelCase =fill_masker( F"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( _snake_case , [ [ {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, ], [ {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, ], [ {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, {"sequence": ANY(_snake_case ), "score": ANY(_snake_case ), "token": ANY(_snake_case ), "token_str": ANY(_snake_case )}, ], ] , )
592
0
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' lowercase = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('RGB' ) lowercase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase = transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(__SCREAMING_SNAKE_CASE ) return image def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if "visual_encoder" in key: lowercase = re.sub('visual_encoder*' , 'vision_model.encoder' , __SCREAMING_SNAKE_CASE ) if "blocks" in key: lowercase = re.sub(r'blocks' , 'layers' , __SCREAMING_SNAKE_CASE ) if "attn" in key: lowercase = re.sub(r'attn' , 'self_attn' , __SCREAMING_SNAKE_CASE ) if "norm1" in key: lowercase = re.sub(r'norm1' , 'layer_norm1' , __SCREAMING_SNAKE_CASE ) if "norm2" in key: lowercase = re.sub(r'norm2' , 'layer_norm2' , __SCREAMING_SNAKE_CASE ) if "encoder.norm" in key: lowercase = re.sub(r'encoder.norm' , 'post_layernorm' , __SCREAMING_SNAKE_CASE ) if "encoder.patch_embed.proj" in key: lowercase = re.sub(r'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , __SCREAMING_SNAKE_CASE ) if "encoder.pos_embed" in key: lowercase = re.sub(r'encoder.pos_embed' , 'embeddings.position_embedding' , __SCREAMING_SNAKE_CASE ) if "encoder.cls_token" in key: lowercase = re.sub(r'encoder.cls_token' , 'embeddings.class_embedding' , __SCREAMING_SNAKE_CASE ) if "self_attn" in key: lowercase = re.sub(r'self_attn.proj' , 'self_attn.projection' , __SCREAMING_SNAKE_CASE ) return key @torch.no_grad() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): if config_path is not None: lowercase = BlipConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: lowercase = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase = BlipForConditionalGeneration(__SCREAMING_SNAKE_CASE ).eval() lowercase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' lowercase = blip_decoder(pretrained=__SCREAMING_SNAKE_CASE , image_size=384 , vit='base' ) lowercase = pt_model.eval() lowercase = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) lowercase = rename_key(__SCREAMING_SNAKE_CASE ) lowercase = value hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) lowercase = 384 lowercase = load_demo_image(image_size=__SCREAMING_SNAKE_CASE , device='cpu' ) lowercase = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase = tokenizer(['a picture of'] ).input_ids lowercase = hf_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase = hf_model.generate(__SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) lowercase = blip_vqa(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit='base' ) vqa_model.eval() lowercase = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) lowercase = rename_key(__SCREAMING_SNAKE_CASE ) lowercase = value lowercase = BlipForQuestionAnswering(__SCREAMING_SNAKE_CASE ) hf_vqa_model.load_state_dict(__SCREAMING_SNAKE_CASE ) lowercase = ['How many dogs are in this image?'] lowercase = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).input_ids lowercase = hf_vqa_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) lowercase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' lowercase = blip_itm(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit='base' ) itm_model.eval() lowercase = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) lowercase = rename_key(__SCREAMING_SNAKE_CASE ) lowercase = value lowercase = BlipForImageTextRetrieval(__SCREAMING_SNAKE_CASE ) lowercase = ['A picture of a woman with a dog sitting in a beach'] lowercase = tokenizer( __SCREAMING_SNAKE_CASE , return_tensors='pt' , padding='max_length' , truncation=__SCREAMING_SNAKE_CASE , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__SCREAMING_SNAKE_CASE ) hf_itm_model.eval() lowercase = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE ) lowercase = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
84
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __a = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex __a = 10 __a = 256 def _UpperCamelCase ( lowerCAmelCase_ ) ->Optional[MinHash]: if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None UpperCAmelCase = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def _UpperCamelCase ( lowerCAmelCase_ ) ->Set[str]: return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class __lowercase : def __init__( self : List[str] , *, __lowerCamelCase : float = 0.85 , ) -> Any: """simple docstring""" UpperCAmelCase = duplication_jaccard_threshold UpperCAmelCase = NUM_PERM UpperCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) UpperCAmelCase = defaultdict(__lowerCamelCase ) def _lowercase ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : MinHash ) -> None: """simple docstring""" UpperCAmelCase = self._index.query(__lowerCamelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__lowerCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__lowerCamelCase ) def _lowercase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" UpperCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): UpperCAmelCase = [base] + list(__lowerCamelCase ) # reformat the cluster to be a list of dict UpperCAmelCase = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__lowerCamelCase ) return duplicate_clusters def _lowercase ( self : Tuple , __lowerCamelCase : Optional[int] ) -> None: """simple docstring""" UpperCAmelCase = self.get_duplicate_clusters() with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def _UpperCamelCase ( lowerCAmelCase_ ) ->Tuple: UpperCAmelCase , UpperCAmelCase = element UpperCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _UpperCamelCase ( lowerCAmelCase_ ) ->int: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Any: UpperCAmelCase = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=1_0_0 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->float: UpperCAmelCase = get_tokens(lowerCAmelCase_ ) UpperCAmelCase = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __a = None def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Dict: UpperCAmelCase = [] for elementa in cluster: UpperCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: UpperCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCAmelCase = 1 extremes.append(lowerCAmelCase_ ) return extremes def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->Optional[int]: global _shared_dataset UpperCAmelCase = dataset UpperCAmelCase = [] UpperCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ = 0.85 ) ->Tuple[Type[Dataset], List[List[Dict]]]: UpperCAmelCase = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} UpperCAmelCase = {} UpperCAmelCase = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: UpperCAmelCase = element UpperCAmelCase = duplicate_indices - set(extreme_dict.keys() ) UpperCAmelCase = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCAmelCase = element["""base_index"""] in extreme_dict if element["is_extreme"]: UpperCAmelCase = extreme_dict[element["""base_index"""]]["""copies"""] print(F"""Original dataset size: {len(lowerCAmelCase_ )}""" ) print(F"""Number of duplicate clusters: {len(lowerCAmelCase_ )}""" ) print(F"""Files in duplicate cluster: {len(lowerCAmelCase_ )}""" ) print(F"""Unique files in duplicate cluster: {len(lowerCAmelCase_ )}""" ) print(F"""Filtered dataset size: {len(lowerCAmelCase_ )}""" ) return ds_filter, duplicate_clusters
377
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["CLIPFeatureExtractor"] SCREAMING_SNAKE_CASE__ = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
from collections import defaultdict class _UpperCAmelCase : def __init__( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int): SCREAMING_SNAKE_CASE_ :Dict = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 SCREAMING_SNAKE_CASE_ :Optional[int] = [ [-1 for i in range(total + 1)] for j in range(2 ** len(UpperCAmelCase)) ] SCREAMING_SNAKE_CASE_ :Tuple = defaultdict(UpperCAmelCase) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 SCREAMING_SNAKE_CASE_ :Tuple = (1 << len(UpperCAmelCase)) - 1 def _snake_case ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Dict): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement SCREAMING_SNAKE_CASE_ :Optional[int] = self.count_ways_until(UpperCAmelCase , task_no + 1) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1) # save the value. SCREAMING_SNAKE_CASE_ :Union[str, Any] = total_ways_util return self.dp[mask][task_no] def _snake_case ( self : str , UpperCAmelCase : Optional[int]): # Store the list of persons for each task for i in range(len(UpperCAmelCase)): for j in task_performed[i]: self.task[j].append(UpperCAmelCase) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. SCREAMING_SNAKE_CASE__ = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
140
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Dict = '▁' __UpperCAmelCase : Optional[Any] = {'vocab_file': 'spiece.model'} __UpperCAmelCase : Optional[int] = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co./google/pegasus-xsum/resolve/main/spiece.model'} } __UpperCAmelCase : List[str] = { 'google/pegasus-xsum': 512, } __UpperCAmelCase : Any = logging.get_logger(__name__) class lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): UpperCAmelCase : Dict = VOCAB_FILES_NAMES UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Any = ['input_ids', 'attention_mask'] def __init__( self : str , __snake_case : Any , __snake_case : Dict="<pad>" , __snake_case : Optional[Any]="</s>" , __snake_case : Optional[int]="<unk>" , __snake_case : int="<mask_2>" , __snake_case : Union[str, Any]="<mask_1>" , __snake_case : List[str]=None , __snake_case : Tuple=103 , __snake_case : Dict = None , **__snake_case : int , ) -> List[str]: _a : Dict = offset if additional_special_tokens is not None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(__lowerCamelCase )}, but is""" f""" {type(__lowerCamelCase )}""" ) _a : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(__lowerCamelCase ) , self.offset - 1 ) ] if len(set(__lowerCamelCase ) ) != len(__lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _a : Tuple = additional_special_tokens_extended else: _a : Any = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] _a : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , mask_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token_sent=__lowerCamelCase , offset=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _a : List[Any] = mask_token_sent _a : Dict = vocab_file _a : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) # add special tokens to encoder dict _a : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _a : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def snake_case_ ( self : str ) -> int: return len(self.sp_model ) + self.offset def snake_case_ ( self : Dict ) -> List[str]: _a : Optional[Any] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Dict: _a : int = self.__dict__.copy() _a : Union[str, Any] = None return state def __setstate__( self : Union[str, Any] , __snake_case : int ) -> List[str]: _a : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a : Tuple = {} _a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self : List[Any] , __snake_case : int ) -> str: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def snake_case_ ( self : List[Any] , __snake_case : List[Any] ) -> Union[str, Any]: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _a : Any = self.sp_model.piece_to_id(__lowerCamelCase ) return sp_id + self.offset def snake_case_ ( self : Optional[int] , __snake_case : Optional[int] ) -> Tuple: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _a : Optional[Any] = self.sp_model.IdToPiece(index - self.offset ) return token def snake_case_ ( self : Tuple , __snake_case : Tuple ) -> List[str]: _a : int = [] _a : Optional[Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token _a : Dict = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def snake_case_ ( self : Tuple , __snake_case : Union[str, Any]=False ) -> str: return 1 def snake_case_ ( self : Dict , __snake_case : Union[str, Any] ) -> int: _a : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def snake_case_ ( self : List[str] , __snake_case : str , __snake_case : str = None , __snake_case : Union[str, Any] = False ) -> Optional[int]: if already_has_special_tokens: return self._special_token_mask(__lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(__lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def snake_case_ ( self : Any , __snake_case : Dict , __snake_case : Any=None ) -> Tuple: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def snake_case_ ( self : Tuple , __snake_case : Dict , __snake_case : Optional[Any] = None ) -> int: if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Optional[int] = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: _a : List[Any] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
471
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co./microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co./models?filter=unispeech } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """unispeech""" def __init__( self , __lowerCamelCase=32 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase="group" , __lowerCamelCase="gelu" , __lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , __lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , __lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , __lowerCamelCase=False , __lowerCamelCase=128 , __lowerCamelCase=16 , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_5 , __lowerCamelCase=10 , __lowerCamelCase=2 , __lowerCamelCase=0.0 , __lowerCamelCase=10 , __lowerCamelCase=0 , __lowerCamelCase=320 , __lowerCamelCase=2 , __lowerCamelCase=0.1 , __lowerCamelCase=100 , __lowerCamelCase=256 , __lowerCamelCase=256 , __lowerCamelCase=0.1 , __lowerCamelCase="mean" , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=256 , __lowerCamelCase=80 , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=2 , __lowerCamelCase=0.5 , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase ) __A : Dict = hidden_size __A : Dict = feat_extract_norm __A : int = feat_extract_activation __A : Dict = list(__lowerCamelCase ) __A : str = list(__lowerCamelCase ) __A : Dict = list(__lowerCamelCase ) __A : str = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : int = num_conv_pos_embedding_groups __A : Union[str, Any] = len(self.conv_dim ) __A : List[str] = num_hidden_layers __A : Dict = intermediate_size __A : List[str] = hidden_act __A : int = num_attention_heads __A : str = hidden_dropout __A : str = attention_dropout __A : Optional[Any] = activation_dropout __A : Optional[int] = feat_proj_dropout __A : Optional[Any] = final_dropout __A : List[Any] = layerdrop __A : Any = layer_norm_eps __A : str = initializer_range __A : List[str] = num_ctc_classes __A : Dict = vocab_size __A : Dict = do_stable_layer_norm __A : Union[str, Any] = use_weighted_layer_sum __A : Tuple = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : List[Any] = apply_spec_augment __A : str = mask_time_prob __A : Dict = mask_time_length __A : List[str] = mask_time_min_masks __A : Union[str, Any] = mask_feature_prob __A : Tuple = mask_feature_length __A : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : int = num_codevectors_per_group __A : Any = num_codevector_groups __A : Optional[Any] = contrastive_logits_temperature __A : Dict = feat_quantizer_dropout __A : Tuple = num_negatives __A : List[str] = codevector_dim __A : str = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : Tuple = ctc_loss_reduction __A : Optional[int] = ctc_zero_infinity # pretraining loss __A : str = replace_prob @property def UpperCamelCase__( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
177
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowercase : str = '''CompVis/stable-diffusion-v1-1''' lowercase : Union[str, Any] = '''CompVis/stable-diffusion-v1-2''' lowercase : Any = '''CompVis/stable-diffusion-v1-3''' lowercase : Tuple = '''CompVis/stable-diffusion-v1-4''' class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Any: super()._init_() snake_case_ : List[Any] = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : int = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = StableDiffusionPipeline( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=_SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def _lowerCAmelCase ( self ) -> str: return {k: getattr(self , _SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("_" )} def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> List[str]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case_ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> List[Any]: self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> str: return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> int: return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Any: snake_case_ : Tuple = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(_SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 snake_case_ : Optional[Any] = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 snake_case_ : Dict = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 snake_case_ : str = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 snake_case_ : List[str] = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
703
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowercase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : List[str] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(_SCREAMING_SNAKE_CASE ) ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : List[str] = [sequences] snake_case_ : List[str] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(_SCREAMING_SNAKE_CASE )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE=ZeroShotClassificationArgumentHandler() , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ : Dict = args_parser super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def _lowerCAmelCase ( self ) -> str: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=TruncationStrategy.ONLY_FIRST , **_SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ : List[Any] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) snake_case_ : List[str] = self.tokenizer.eos_token try: snake_case_ : Union[str, Any] = self.tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , ) except Exception as e: if "too short" in str(_SCREAMING_SNAKE_CASE ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. snake_case_ : Union[str, Any] = self.tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: if kwargs.get("multi_class" , _SCREAMING_SNAKE_CASE ) is not None: snake_case_ : Any = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) snake_case_ : Any = {} if "candidate_labels" in kwargs: snake_case_ : Tuple = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: snake_case_ : Optional[Any] = kwargs["hypothesis_template"] snake_case_ : Dict = {} if "multi_label" in kwargs: snake_case_ : List[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) -> str: if len(_SCREAMING_SNAKE_CASE ) == 0: pass elif len(_SCREAMING_SNAKE_CASE ) == 1 and "candidate_labels" not in kwargs: snake_case_ : int = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="This example is {}." ) -> str: snake_case_ , snake_case_ : Optional[int] = self._args_parser(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i, (candidate_label, sequence_pair) in enumerate(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): snake_case_ : str = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(_SCREAMING_SNAKE_CASE ) - 1, **model_input, } def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ : Optional[Any] = inputs["candidate_label"] snake_case_ : Dict = inputs["sequence"] snake_case_ : Optional[int] = {k: inputs[k] for k in self.tokenizer.model_input_names} snake_case_ : Dict = self.model(**_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: snake_case_ : str = [outputs["candidate_label"] for outputs in model_outputs] snake_case_ : Union[str, Any] = [outputs["sequence"] for outputs in model_outputs] snake_case_ : List[Any] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) snake_case_ : Tuple = logits.shape[0] snake_case_ : List[Any] = len(_SCREAMING_SNAKE_CASE ) snake_case_ : int = N // n snake_case_ : Optional[Any] = logits.reshape((num_sequences, n, -1) ) if multi_label or len(_SCREAMING_SNAKE_CASE ) == 1: # softmax over the entailment vs. contradiction dim for each label independently snake_case_ : Any = self.entailment_id snake_case_ : List[str] = -1 if entailment_id == 0 else 0 snake_case_ : Dict = reshaped_outputs[..., [contradiction_id, entailment_id]] snake_case_ : List[str] = np.exp(_SCREAMING_SNAKE_CASE ) / np.exp(_SCREAMING_SNAKE_CASE ).sum(-1 , keepdims=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels snake_case_ : List[str] = reshaped_outputs[..., self.entailment_id] snake_case_ : Optional[Any] = np.exp(_SCREAMING_SNAKE_CASE ) / np.exp(_SCREAMING_SNAKE_CASE ).sum(-1 , keepdims=_SCREAMING_SNAKE_CASE ) snake_case_ : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
114
0
from sklearn.metrics import recall_score import datasets snake_case = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ snake_case = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ snake_case = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : int ) -> str: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'] ,) def __UpperCAmelCase ( self : Optional[Any] ,__A : Union[str, Any] ,__A : Tuple ,__A : Tuple=None ,__A : List[str]=1 ,__A : List[str]="binary" ,__A : Optional[int]=None ,__A : str="warn" ,) -> Optional[Any]: _lowercase = recall_score( __A ,__A ,labels=__A ,pos_label=__A ,average=__A ,sample_weight=__A ,zero_division=__A ,) return {"recall": float(__A ) if score.size == 1 else score}
67
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class __lowercase : """simple docstring""" _A : float _A : TreeNode | None = None _A : TreeNode | None = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode | None ): """simple docstring""" def is_valid_tree(SCREAMING_SNAKE_CASE__ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(SCREAMING_SNAKE_CASE__ ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( SCREAMING_SNAKE_CASE__ : TreeNode | None , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , SCREAMING_SNAKE_CASE__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , SCREAMING_SNAKE_CASE__ ) ) return is_binary_search_tree_recursive_check(SCREAMING_SNAKE_CASE__ , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
480
0
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Union[str, Any] = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] UpperCamelCase : Tuple = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" a : int = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks a : int = int(re.match(R'.*layer_(\d*).*' , snake_case )[1] ) layer_number -= 3 return F"""h.{layer_number}.""" + key def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] ) -> Any: """simple docstring""" if dtype == torch.bool: return 1 / 8 a : List[Any] = re.search(R'[^\d](\d+)$' , str(snake_case ) ) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" ) a : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : Dict , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int ) -> List[str]: """simple docstring""" # Construct model if bloom_config_file == "": a : Optional[int] = BloomConfig() else: a : Union[str, Any] = BloomConfig.from_json_file(snake_case ) if shard_model: a : Optional[Any] = os.listdir(snake_case ) a : str = sorted(filter(lambda snake_case : s.startswith('layer' ) and "model_00" in s , snake_case ) ) a : List[str] = {'weight_map': {}, 'metadata': {}} a : int = 0 a : List[Any] = None a : str = BloomConfig() for j, file in enumerate(snake_case ): print('Processing file: {}'.format(snake_case ) ) a : Union[str, Any] = None for i in range(snake_case ): # load all TP files a : List[str] = file.replace('model_00' , F"""model_0{i}""" ) a : Dict = torch.load(os.path.join(snake_case , snake_case ) , map_location='cpu' ) # Rename keys in the transformers names a : Dict = list(temp.keys() ) for key in keys: a : List[Any] = temp.pop(snake_case ) if tensors is None: a : Optional[Any] = temp else: for key in tensors.keys(): if any(key.endswith(snake_case ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel a : List[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks a : Tuple = torch.cat([tensors[key], temp[key]] , dim=snake_case ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(snake_case ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): a : Dict = tensors[key] / pretraining_tp torch.save( snake_case , os.path.join( snake_case , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(snake_case ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): a : Optional[Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: a : Union[str, Any] = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(snake_case ) ).zfill(5 ) ) a : Any = BloomConfig() a : Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME a : List[str] = total_size with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(snake_case , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: a : Optional[int] = json.dumps(snake_case , indent=2 , sort_keys=snake_case ) + '\n' f.write(snake_case ) else: a : str = BloomModel(snake_case ) a : Optional[Any] = os.listdir(snake_case ) a : Optional[Any] = sorted(filter(lambda snake_case : s.startswith('layer' ) and "model_00" in s , snake_case ) ) a : Optional[int] = None for i, file in enumerate(snake_case ): a : Tuple = None for i in range(snake_case ): # load all TP files a : Dict = file.replace('model_00' , F"""model_0{i}""" ) a : Optional[Any] = torch.load(os.path.join(snake_case , snake_case ) , map_location='cpu' ) # Rename keys in the transformers names a : Optional[int] = list(temp.keys() ) for key in keys: a : Optional[int] = temp.pop(snake_case ) if tensors is None: a : Optional[Any] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(snake_case ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel a : str = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks a : List[Any] = torch.cat([tensors[key], temp[key]] , dim=snake_case ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(snake_case ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): a : Optional[Any] = tensors[key] / pretraining_tp a : str = model.load_state_dict(snake_case , strict=snake_case ) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: a : Any = set(other_keys.missing_keys ) else: a : str = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(snake_case , exist_ok=snake_case ) a : List[str] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME a : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: a : List[Any] = model.to(config.torch_dtype ) torch.save(model.state_dict() , snake_case ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) UpperCamelCase : List[str] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
701
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer UpperCamelCase : Dict = logging.get_logger(__name__) UpperCamelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : str = [ """small""", """small-base""", """medium""", """medium-base""", """intermediate""", """intermediate-base""", """large""", """large-base""", """xlarge""", """xlarge-base""", ] UpperCamelCase : List[Any] = { """vocab_file""": { """funnel-transformer/small""": """https://huggingface.co./funnel-transformer/small/resolve/main/vocab.txt""", """funnel-transformer/small-base""": """https://huggingface.co./funnel-transformer/small-base/resolve/main/vocab.txt""", """funnel-transformer/medium""": """https://huggingface.co./funnel-transformer/medium/resolve/main/vocab.txt""", """funnel-transformer/medium-base""": ( """https://huggingface.co./funnel-transformer/medium-base/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co./funnel-transformer/intermediate/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co./funnel-transformer/intermediate-base/resolve/main/vocab.txt""" ), """funnel-transformer/large""": """https://huggingface.co./funnel-transformer/large/resolve/main/vocab.txt""", """funnel-transformer/large-base""": """https://huggingface.co./funnel-transformer/large-base/resolve/main/vocab.txt""", """funnel-transformer/xlarge""": """https://huggingface.co./funnel-transformer/xlarge/resolve/main/vocab.txt""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co./funnel-transformer/xlarge-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """funnel-transformer/small""": """https://huggingface.co./funnel-transformer/small/resolve/main/tokenizer.json""", """funnel-transformer/small-base""": ( """https://huggingface.co./funnel-transformer/small-base/resolve/main/tokenizer.json""" ), """funnel-transformer/medium""": """https://huggingface.co./funnel-transformer/medium/resolve/main/tokenizer.json""", """funnel-transformer/medium-base""": ( """https://huggingface.co./funnel-transformer/medium-base/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co./funnel-transformer/intermediate/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co./funnel-transformer/intermediate-base/resolve/main/tokenizer.json""" ), """funnel-transformer/large""": """https://huggingface.co./funnel-transformer/large/resolve/main/tokenizer.json""", """funnel-transformer/large-base""": ( """https://huggingface.co./funnel-transformer/large-base/resolve/main/tokenizer.json""" ), """funnel-transformer/xlarge""": """https://huggingface.co./funnel-transformer/xlarge/resolve/main/tokenizer.json""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co./funnel-transformer/xlarge-base/resolve/main/tokenizer.json""" ), }, } UpperCamelCase : List[str] = {f'''funnel-transformer/{name}''': 512 for name in _model_names} UpperCamelCase : List[Any] = {f'''funnel-transformer/{name}''': {"""do_lower_case""": True} for name in _model_names} class UpperCamelCase ( a_ ): """simple docstring""" A : int = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_INIT_CONFIGURATION A : Optional[Any] = FunnelTokenizer A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = 2 def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Union[str, Any]="<sep>" , UpperCAmelCase_ : Union[str, Any]="<pad>" , UpperCAmelCase_ : Tuple="<cls>" , UpperCAmelCase_ : List[str]="<mask>" , UpperCAmelCase_ : Dict="<s>" , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[int]="##" , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , clean_text=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , wordpieces_prefix=UpperCAmelCase_ , **UpperCAmelCase_ , ) a : str = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , UpperCAmelCase_) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase_) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase_) != tokenize_chinese_chars ): a : Optional[Any] = getattr(UpperCAmelCase_ , normalizer_state.pop('type')) a : Any = do_lower_case a : List[str] = strip_accents a : List[Any] = tokenize_chinese_chars a : Dict = normalizer_class(**UpperCAmelCase_) a : Union[str, Any] = do_lower_case def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str=None): """simple docstring""" a : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" a : Any = [self.sep_token_id] a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): """simple docstring""" a : List[str] = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
610
0
_lowercase: Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def _lowerCamelCase ( snake_case ): # Make sure the supplied data is a bytes-like object if not isinstance(snake_case , snake_case ): _lowerCAmelCase = F'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(snake_case ) _lowerCAmelCase = ''.join(bin(snake_case )[2:].zfill(8 ) for byte in data ) _lowerCAmelCase = len(snake_case ) % 6 != 0 if padding_needed: # The padding that will be added later _lowerCAmelCase = b'=' * ((6 - len(snake_case ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(snake_case ) % 6) else: _lowerCAmelCase = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(snake_case ) , 6 ) ).encode() + padding ) def _lowerCamelCase ( snake_case ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(snake_case , snake_case ) and not isinstance(snake_case , snake_case ): _lowerCAmelCase = ( 'argument should be a bytes-like object or ASCII string, ' F'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(snake_case ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(snake_case , snake_case ): try: _lowerCAmelCase = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowerCAmelCase = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(snake_case ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowerCAmelCase = encoded_data[:-padding] _lowerCAmelCase = ''.join( bin(B64_CHARSET.index(snake_case ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowerCAmelCase = ''.join( bin(B64_CHARSET.index(snake_case ) )[2:].zfill(6 ) for char in encoded_data ) _lowerCAmelCase = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(snake_case ) , 8 ) ] return bytes(snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
192
def _lowerCamelCase ( snake_case = 10 ): if not isinstance(snake_case , snake_case ) or n < 0: raise ValueError('Invalid input' ) _lowerCAmelCase = 10**n _lowerCAmelCase = 28_433 * (pow(2 , 7_830_457 , snake_case )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(1_0) = }""")
192
1
"""simple docstring""" a : int = """Alexander Joslin""" import operator as op from .stack import Stack def lowercase__(A ) ->str: """simple docstring""" lowercase__ : str= {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} lowercase__ : Stack[int]= Stack() lowercase__ : Stack[str]= Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCAmelCase_ ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCAmelCase_ ) elif i == ")": # RULE 4 lowercase__ : Any= operator_stack.peek() operator_stack.pop() lowercase__ : Dict= operand_stack.peek() operand_stack.pop() lowercase__ : Dict= operand_stack.peek() operand_stack.pop() lowercase__ : Optional[Any]= operators[opr](lowerCAmelCase_ , lowerCAmelCase_ ) operand_stack.push(lowerCAmelCase_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : List[str] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
707
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
85
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class __a ( unittest.TestCase ): __UpperCamelCase : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCamelCase : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __UpperCamelCase : List[str] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __UpperCamelCase : Any = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCAmelCase__ ( self : Any ,lowerCamelCase : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ZeroShotClassificationPipeline( model=lowerCamelCase ,tokenizer=lowerCamelCase ,candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Tuple ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = classifier("""Who are you voting for in 2020?""" ,candidate_labels="""politics""" ) self.assertEqual(lowerCamelCase ,{"""sequence""": ANY(lowerCamelCase ), """labels""": [ANY(lowerCamelCase )], """scores""": [ANY(lowerCamelCase )]} ) # No kwarg __SCREAMING_SNAKE_CASE = classifier("""Who are you voting for in 2020?""" ,["""politics"""] ) self.assertEqual(lowerCamelCase ,{"""sequence""": ANY(lowerCamelCase ), """labels""": [ANY(lowerCamelCase )], """scores""": [ANY(lowerCamelCase )]} ) __SCREAMING_SNAKE_CASE = classifier("""Who are you voting for in 2020?""" ,candidate_labels=["""politics"""] ) self.assertEqual(lowerCamelCase ,{"""sequence""": ANY(lowerCamelCase ), """labels""": [ANY(lowerCamelCase )], """scores""": [ANY(lowerCamelCase )]} ) __SCREAMING_SNAKE_CASE = classifier("""Who are you voting for in 2020?""" ,candidate_labels="""politics, public health""" ) self.assertEqual( lowerCamelCase ,{"""sequence""": ANY(lowerCamelCase ), """labels""": [ANY(lowerCamelCase ), ANY(lowerCamelCase )], """scores""": [ANY(lowerCamelCase ), ANY(lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) ,1.0 ) __SCREAMING_SNAKE_CASE = classifier("""Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health"""] ) self.assertEqual( lowerCamelCase ,{"""sequence""": ANY(lowerCamelCase ), """labels""": [ANY(lowerCamelCase ), ANY(lowerCamelCase )], """scores""": [ANY(lowerCamelCase ), ANY(lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) ,1.0 ) __SCREAMING_SNAKE_CASE = classifier( """Who are you voting for in 2020?""" ,candidate_labels="""politics""" ,hypothesis_template="""This text is about {}""" ) self.assertEqual(lowerCamelCase ,{"""sequence""": ANY(lowerCamelCase ), """labels""": [ANY(lowerCamelCase )], """scores""": [ANY(lowerCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 __SCREAMING_SNAKE_CASE = classifier(["""I am happy"""] ,["""positive""", """negative"""] ) self.assertEqual( lowerCamelCase ,[ {"""sequence""": ANY(lowerCamelCase ), """labels""": [ANY(lowerCamelCase ), ANY(lowerCamelCase )], """scores""": [ANY(lowerCamelCase ), ANY(lowerCamelCase )]} for i in range(1 ) ] ,) __SCREAMING_SNAKE_CASE = classifier(["""I am happy""", """I am sad"""] ,["""positive""", """negative"""] ) self.assertEqual( lowerCamelCase ,[ {"""sequence""": ANY(lowerCamelCase ), """labels""": [ANY(lowerCamelCase ), ANY(lowerCamelCase )], """scores""": [ANY(lowerCamelCase ), ANY(lowerCamelCase )]} for i in range(2 ) ] ,) with self.assertRaises(lowerCamelCase ): classifier("""""" ,candidate_labels="""politics""" ) with self.assertRaises(lowerCamelCase ): classifier(lowerCamelCase ,candidate_labels="""politics""" ) with self.assertRaises(lowerCamelCase ): classifier("""Who are you voting for in 2020?""" ,candidate_labels="""""" ) with self.assertRaises(lowerCamelCase ): classifier("""Who are you voting for in 2020?""" ,candidate_labels=lowerCamelCase ) with self.assertRaises(lowerCamelCase ): classifier( """Who are you voting for in 2020?""" ,candidate_labels="""politics""" ,hypothesis_template="""Not formatting template""" ,) with self.assertRaises(lowerCamelCase ): classifier( """Who are you voting for in 2020?""" ,candidate_labels="""politics""" ,hypothesis_template=lowerCamelCase ,) self.run_entailment_id(lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Pipeline ): '''simple docstring''' __SCREAMING_SNAKE_CASE = zero_shot_classifier.model.config __SCREAMING_SNAKE_CASE = config.labelaid __SCREAMING_SNAKE_CASE = zero_shot_classifier.entailment_id __SCREAMING_SNAKE_CASE = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id ,-1 ) __SCREAMING_SNAKE_CASE = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) __SCREAMING_SNAKE_CASE = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) __SCREAMING_SNAKE_CASE = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id ,2 ) __SCREAMING_SNAKE_CASE = original_labelaid self.assertEqual(lowerCamelCase ,zero_shot_classifier.entailment_id ) @require_torch def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline( """zero-shot-classification""" ,model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" ,framework="""pt""" ,) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100 ,candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline( """zero-shot-classification""" ,model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" ,framework="""pt""" ,) __SCREAMING_SNAKE_CASE = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowerCamelCase ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } ,) @require_tf def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline( """zero-shot-classification""" ,model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" ,framework="""tf""" ,) __SCREAMING_SNAKE_CASE = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowerCamelCase ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } ,) @slow @require_torch def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline("""zero-shot-classification""" ,model="""roberta-large-mnli""" ,framework="""pt""" ) __SCREAMING_SNAKE_CASE = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowerCamelCase ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } ,) __SCREAMING_SNAKE_CASE = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" ,candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] ,multi_label=lowerCamelCase ,) self.assertEqual( nested_simplify(lowerCamelCase ) ,{ """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } ,) @slow @require_tf def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline("""zero-shot-classification""" ,model="""roberta-large-mnli""" ,framework="""tf""" ) __SCREAMING_SNAKE_CASE = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowerCamelCase ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } ,) __SCREAMING_SNAKE_CASE = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" ,candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] ,multi_label=lowerCamelCase ,) self.assertEqual( nested_simplify(lowerCamelCase ) ,{ """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } ,)
109
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __a : def __init__( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple=14 ,lowerCamelCase : Optional[Any]=7 ,lowerCamelCase : str=True ,lowerCamelCase : List[str]=True ,lowerCamelCase : Dict=True ,lowerCamelCase : Any=True ,lowerCamelCase : int=True ,lowerCamelCase : Dict=99 ,lowerCamelCase : Dict=32 ,lowerCamelCase : Optional[Any]=5 ,lowerCamelCase : Tuple=4 ,lowerCamelCase : Optional[int]=37 ,lowerCamelCase : Optional[int]="gelu" ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Dict=512 ,lowerCamelCase : int=16 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : str=3 ,lowerCamelCase : Union[str, Any]=4 ,lowerCamelCase : Any=None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = use_mc_token_ids __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = self.vocab_size - 1 def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_mc_token_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ,lowerCamelCase : Any ,lowerCamelCase : List[str] ,lowerCamelCase : str ,*lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() model(lowerCamelCase ,token_type_ids=lowerCamelCase ,head_mask=lowerCamelCase ) model(lowerCamelCase ,token_type_ids=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : int ,lowerCamelCase : Dict ,*lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLLMHeadModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCamelCase ,token_type_ids=lowerCamelCase ,labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : int ,lowerCamelCase : str ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Optional[Any] ,*lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = CTRLForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ,token_type_ids=lowerCamelCase ,labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class __a ( _snake_case, _snake_case, _snake_case, unittest.TestCase ): __UpperCamelCase : str = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __UpperCamelCase : Dict = (CTRLLMHeadModel,) if is_torch_available() else () __UpperCamelCase : int = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : List[str] = True __UpperCamelCase : Dict = False __UpperCamelCase : Tuple = False def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Any ,lowerCamelCase : str ,lowerCamelCase : List[str] ,lowerCamelCase : int ,lowerCamelCase : Dict ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,n_embd=37 ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass @slow def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = CTRLModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : int ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.tensor( [[1_1859, 0, 1611, 8]] ,dtype=torch.long ,device=lowerCamelCase ) # Legal the president is __SCREAMING_SNAKE_CASE = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __SCREAMING_SNAKE_CASE = model.generate(lowerCamelCase ,do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() ,lowerCamelCase )
109
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : str = logging.get_logger(__name__) lowerCAmelCase__ : Any = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co./RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co./RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co./RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co./RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co./RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co./RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co./RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co./RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co./RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co./RWKV/rwkv-raven-14b/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''rwkv''' SCREAMING_SNAKE_CASE = {'''max_position_embeddings''': '''context_length'''} def __init__( self : int , UpperCAmelCase_ : Union[str, Any]=50_277 , UpperCAmelCase_ : str=1_024 , UpperCAmelCase_ : Optional[Any]=4_096 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=1e-5 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : List[str]=6 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]=True , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : List[Any] = context_length __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size __UpperCAmelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size __UpperCAmelCase : Any = layer_norm_epsilon __UpperCAmelCase : Optional[Any] = rescale_every __UpperCAmelCase : Union[str, Any] = use_cache __UpperCAmelCase : List[Any] = bos_token_id __UpperCAmelCase : Tuple = eos_token_id super().__init__( tie_word_embeddings=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
702
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): stooge(_UpperCAmelCase, 0, len(_UpperCAmelCase ) - 1 ) return arr def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __UpperCAmelCase , __UpperCAmelCase : Dict = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __UpperCAmelCase : str = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_UpperCAmelCase, _UpperCAmelCase, (h - t) ) # Recursively sort last 2/3 elements stooge(_UpperCAmelCase, i + t, (_UpperCAmelCase) ) # Recursively sort first 2/3 elements stooge(_UpperCAmelCase, _UpperCAmelCase, (h - t) ) if __name__ == "__main__": lowerCAmelCase__ : Any = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase__ : Any = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
329
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase__ ( unittest.TestCase ): def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = mock.Mock() SCREAMING_SNAKE_CASE__ = 500 SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = HTTPError SCREAMING_SNAKE_CASE__ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=snake_case_ ) as mock_head: SCREAMING_SNAKE_CASE__ = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = mock.Mock() SCREAMING_SNAKE_CASE__ = 500 SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = HTTPError SCREAMING_SNAKE_CASE__ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=snake_case_ ) as mock_head: SCREAMING_SNAKE_CASE__ = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def A_ ( self : str ): try: SCREAMING_SNAKE_CASE__ = tempfile.mktemp() with open(snake_case_ , 'wb' ) as f: http_get('https://huggingface.co./albert-base-v1/resolve/main/spiece.model' , snake_case_ ) SCREAMING_SNAKE_CASE__ = AlbertTokenizer.from_pretrained(snake_case_ ) finally: os.remove(snake_case_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co./hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , snake_case_ ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = AlbertTokenizer.from_pretrained('https://huggingface.co./albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowercase__ ( unittest.TestCase ): A__ : List[str] =["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def A_ ( cls : Optional[int] ): SCREAMING_SNAKE_CASE__ = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def A_ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def A_ ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(snake_case_ , 'vocab.txt' ) with open(snake_case_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = BertTokenizer(snake_case_ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case_ , repo_id='test-tokenizer' , push_to_hub=snake_case_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def A_ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(snake_case_ , 'vocab.txt' ) with open(snake_case_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = BertTokenizer(snake_case_ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=snake_case_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def A_ ( self : int ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(snake_case_ , 'vocab.txt' ) with open(snake_case_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = CustomTokenizer(snake_case_ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=snake_case_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(snake_case_ , 'vocab.txt' ) with open(snake_case_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained(snake_case_ ) bert_tokenizer.save_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE__ = CustomTokenizerFast.from_pretrained(snake_case_ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=snake_case_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=snake_case_ , trust_remote_code=snake_case_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class lowercase__ ( unittest.TestCase ): def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = Trie() SCREAMING_SNAKE_CASE__ = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case_ , ['AB', 'C'] )
472
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' def A ( self ) -> List[str]: '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case_ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(snake_case_ , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(snake_case_ , '''num_encoder_blocks''' ) ) class lowerCamelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=6_4 , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[1_6, 3_2, 6_4, 1_2_8] , snake_case_=[1, 4, 8, 1_6] , snake_case_=[1, 2, 4, 8] , snake_case_=True , snake_case_=True , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0_2 , snake_case_=3 , snake_case_=None , ) -> int: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_encoder_blocks __lowercase = sr_ratios __lowercase = depths __lowercase = hidden_sizes __lowercase = downsampling_rates __lowercase = num_attention_heads __lowercase = is_training __lowercase = use_labels __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = num_labels __lowercase = scope def A ( self ) -> Optional[int]: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def A ( self ) -> Union[str, Any]: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: '''simple docstring''' __lowercase = SegformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowercase = model(snake_case_ ) __lowercase = __lowercase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> str: '''simple docstring''' __lowercase = self.num_labels __lowercase = SegformerForSemanticSegmentation(snake_case_ ) model.to(snake_case_ ) model.eval() __lowercase = model(snake_case_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) __lowercase = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: '''simple docstring''' __lowercase = 1 __lowercase = SegformerForSemanticSegmentation(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowercase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(snake_case_ ) __lowercase = model(snake_case_ , labels=snake_case_ ) self.parent.assertGreater(result.loss , 0.0 ) def A ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def A ( self ) -> Any: '''simple docstring''' __lowercase = SegformerModelTester(self ) __lowercase = SegformerConfigTester(self , config_class=snake_case_ ) def A ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A ( self ) -> Dict: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def A ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*snake_case_ ) def A ( self ) -> int: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*snake_case_ ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def A ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def A ( self ) -> str: '''simple docstring''' pass def A ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(snake_case_ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def A ( self ) -> List[str]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowercase = outputs.attentions __lowercase = sum(self.model_tester.depths ) self.assertEqual(len(snake_case_ ) , snake_case_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowercase = outputs.attentions self.assertEqual(len(snake_case_ ) , snake_case_ ) # verify the first attentions (first block, first layer) __lowercase = (self.model_tester.image_size // 4) ** 2 __lowercase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __lowercase = (self.model_tester.image_size // 3_2) ** 2 __lowercase = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __lowercase = len(snake_case_ ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 1 , len(snake_case_ ) ) __lowercase = outputs.attentions self.assertEqual(len(snake_case_ ) , snake_case_ ) # verify the first attentions (first block, first layer) __lowercase = (self.model_tester.image_size // 4) ** 2 __lowercase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def A ( self ) -> Dict: '''simple docstring''' def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): __lowercase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowercase = outputs.hidden_states __lowercase = self.model_tester.num_encoder_blocks self.assertEqual(len(snake_case_ ) , snake_case_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def A ( self ) -> str: '''simple docstring''' if not self.model_tester.is_training: return __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: if model_class in get_values(snake_case_ ): continue __lowercase = model_class(snake_case_ ) model.to(snake_case_ ) model.train() __lowercase = self._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) __lowercase = model(**snake_case_ ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self ) -> List[Any]: '''simple docstring''' pass @slow def A ( self ) -> str: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = SegformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowercase_ ( ): '''simple docstring''' __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=snake_case_ , align=snake_case_ , do_random_crop=snake_case_ ) __lowercase = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( snake_case_ ) __lowercase = prepare_img() __lowercase = image_processor(images=snake_case_ , return_tensors='''pt''' ) __lowercase = encoded_inputs.pixel_values.to(snake_case_ ) with torch.no_grad(): __lowercase = model(snake_case_ ) __lowercase = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __lowercase = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , snake_case_ , atol=1e-4 ) ) @slow def A ( self ) -> int: '''simple docstring''' __lowercase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=snake_case_ , align=snake_case_ , do_random_crop=snake_case_ ) __lowercase = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(snake_case_ ) __lowercase = prepare_img() __lowercase = image_processor(images=snake_case_ , return_tensors='''pt''' ) __lowercase = encoded_inputs.pixel_values.to(snake_case_ ) with torch.no_grad(): __lowercase = model(snake_case_ ) __lowercase = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __lowercase = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , snake_case_ , atol=1e-1 ) ) @slow def A ( self ) -> int: '''simple docstring''' __lowercase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=snake_case_ , align=snake_case_ , do_random_crop=snake_case_ ) __lowercase = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( snake_case_ ) __lowercase = prepare_img() __lowercase = image_processor(images=snake_case_ , return_tensors='''pt''' ) __lowercase = encoded_inputs.pixel_values.to(snake_case_ ) with torch.no_grad(): __lowercase = model(snake_case_ ) __lowercase = outputs.logits.detach().cpu() __lowercase = image_processor.post_process_semantic_segmentation(outputs=snake_case_ , target_sizes=[(5_0_0, 3_0_0)] ) __lowercase = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case_ ) __lowercase = image_processor.post_process_semantic_segmentation(outputs=snake_case_ ) __lowercase = torch.Size((1_2_8, 1_2_8) ) self.assertEqual(segmentation[0].shape , snake_case_ )
639
0
"""simple docstring""" import numpy as np class __A : def __init__( self ): _lowerCAmelCase : List[Any] = (0, 0) _lowerCAmelCase : List[Any] = None _lowerCAmelCase : str = 0 _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : str = 0 def __eq__( self , a__ ): return self.position == cell.position def __A ( self ): print(self.position ) class __A : def __init__( self , a__=(5, 5) ): _lowerCAmelCase : Optional[Any] = np.zeros(a__ ) _lowerCAmelCase : Dict = world_size[0] _lowerCAmelCase : List[Any] = world_size[1] def __A ( self ): print(self.w ) def __A ( self , a__ ): _lowerCAmelCase : Dict = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _lowerCAmelCase : List[Any] = cell.position[0] _lowerCAmelCase : Union[str, Any] = cell.position[1] _lowerCAmelCase : Optional[Any] = [] for n in neughbour_cord: _lowerCAmelCase : Dict = current_x + n[0] _lowerCAmelCase : Union[str, Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _lowerCAmelCase : int = Cell() _lowerCAmelCase : Tuple = (x, y) _lowerCAmelCase : Optional[Any] = cell neighbours.append(a__ ) return neighbours def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : List[str] ) -> Optional[int]: _lowerCAmelCase : str = [] _lowerCAmelCase : Any = [] _open.append(_lowerCamelCase ) while _open: _lowerCAmelCase : Optional[int] = np.argmin([n.f for n in _open] ) _lowerCAmelCase : Optional[Any] = _open[min_f] _closed.append(_open.pop(_lowerCamelCase ) ) if current == goal: break for n in world.get_neigbours(_lowerCamelCase ): for c in _closed: if c == n: continue _lowerCAmelCase : Dict = current.g + 1 _lowerCAmelCase , _lowerCAmelCase : Optional[int] = n.position _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = goal.position _lowerCAmelCase : Optional[Any] = (ya - ya) ** 2 + (xa - xa) ** 2 _lowerCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowerCamelCase ) _lowerCAmelCase : Tuple = [] while current.parent is not None: path.append(current.position ) _lowerCAmelCase : int = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _a : Tuple = Gridworld() # Start position and goal _a : int = Cell() _a : Optional[int] = (0, 0) _a : Optional[int] = Cell() _a : List[Any] = (4, 4) print(F"""path from {start.position} to {goal.position}""") _a : int = astar(world, start, goal) # Just for visual reasons. for i in s: _a : List[str] = 1 print(world.w)
663
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
1
import unittest from knapsack import knapsack as k class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> str: snake_case_ = 0 snake_case_ = [0] snake_case_ = [0] snake_case_ = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 0 ) snake_case_ = [60] snake_case_ = [10] snake_case_ = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 0 ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = 3 snake_case_ = [1, 2, 3] snake_case_ = [3, 2, 1] snake_case_ = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 5 ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = 50 snake_case_ = [60, 1_00, 1_20] snake_case_ = [10, 20, 30] snake_case_ = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 2_20 ) if __name__ == "__main__": unittest.main()
198
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 def __init__( self : int ,lowercase_ : UNetaDModel ,lowercase_ : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=lowercase_ ,scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] ,lowercase_ : int = 1 ,lowercase_ : int = 2_0_0_0 ,lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,lowercase_ : Optional[str] = "pil" ,lowercase_ : bool = True ,**lowercase_ : Dict ,): lowerCAmelCase__ : str = self.unet.config.sample_size lowerCAmelCase__ : int = (batch_size, 3, img_size, img_size) lowerCAmelCase__ : List[Any] = self.unet lowerCAmelCase__ : Tuple = randn_tensor(lowercase_ ,generator=lowercase_ ) * self.scheduler.init_noise_sigma lowerCAmelCase__ : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowercase_ ) self.scheduler.set_sigmas(lowercase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase__ : str = self.unet(lowercase_ ,lowercase_ ).sample lowerCAmelCase__ : List[str] = self.scheduler.step_correct(lowercase_ ,lowercase_ ,generator=lowercase_ ).prev_sample # prediction step lowerCAmelCase__ : Dict = model(lowercase_ ,lowercase_ ).sample lowerCAmelCase__ : Optional[int] = self.scheduler.step_pred(lowercase_ ,lowercase_ ,lowercase_ ,generator=lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = output.prev_sample, output.prev_sample_mean lowerCAmelCase__ : List[str] = sample_mean.clamp(0 ,1 ) lowerCAmelCase__ : Union[str, Any] = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowerCAmelCase__ : Union[str, Any] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowercase_ )
450
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __magic_name__ : def __init__( self , snake_case_ , snake_case_=14 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_12 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): lowercase =parent lowercase =batch_size lowercase =seq_length lowercase =is_training lowercase =use_token_type_ids lowercase =use_input_mask lowercase =use_labels lowercase =use_mc_token_ids lowercase =vocab_size lowercase =hidden_size lowercase =num_hidden_layers lowercase =num_attention_heads lowercase =intermediate_size lowercase =hidden_act lowercase =hidden_dropout_prob lowercase =attention_probs_dropout_prob lowercase =max_position_embeddings lowercase =type_vocab_size lowercase =type_sequence_label_size lowercase =initializer_range lowercase =num_labels lowercase =num_choices lowercase =scope lowercase =self.vocab_size - 1 def _A( self ): lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase =None if self.use_input_mask: lowercase =random_attention_mask([self.batch_size, self.seq_length] ) lowercase =None if self.use_token_type_ids: lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase =None if self.use_mc_token_ids: lowercase =ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowercase =None lowercase =None lowercase =None if self.use_labels: lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase =ids_tensor([self.batch_size] , self.num_choices ) lowercase =self.get_config() lowercase =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _A( self ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ): lowercase =CTRLModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() model(lowercase_ , token_type_ids=lowercase_ , head_mask=lowercase_ ) model(lowercase_ , token_type_ids=lowercase_ ) lowercase =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ): lowercase =CTRLLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase =model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A( self ): lowercase =self.prepare_config_and_inputs() ( lowercase ) =config_and_inputs lowercase ={"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ): lowercase =self.num_labels lowercase =CTRLForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase =model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __magic_name__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): UpperCamelCase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCamelCase__ = (CTRLLMHeadModel,) if is_torch_available() else () UpperCamelCase__ = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _A( self ): lowercase =CTRLModelTester(self ) lowercase =ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def _A( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _A( self ): self.config_tester.run_common_tests() def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowercase_ ) def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _A( self ): pass @slow def _A( self ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase =CTRLModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _A( self ): pass @require_torch class __magic_name__ ( unittest.TestCase ): def _A( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _A( self ): lowercase =CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(lowercase_ ) lowercase =torch.tensor( [[1_18_59, 0, 16_11, 8]] , dtype=torch.long , device=lowercase_ ) # Legal the president is lowercase =[ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowercase =model.generate(lowercase_ , do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist() , lowercase_ )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Optional[Any] = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
145
0
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union lowercase_ : Union[str, Any] = TypeVar('''T''') lowercase_ : Tuple = Union[List[T], Tuple[T, ...]] lowercase_ : Any = Union[T, List[T], Dict[str, T]] lowercase_ : List[Any] = Union[str, bytes, os.PathLike]
572
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase_ : List[str] = datasets.utils.logging.get_logger(__name__) lowercase_ : List[Any] = ['''names''', '''prefix'''] lowercase_ : List[str] = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] lowercase_ : Optional[Any] = ['''encoding_errors''', '''on_bad_lines'''] lowercase_ : Optional[Any] = ['''date_format'''] @dataclass class UpperCamelCase ( datasets.BuilderConfig ): A__ = "," A__ = None A__ = "infer" A__ = None A__ = None A__ = None A__ = None A__ = None A__ = True A__ = None A__ = None A__ = None A__ = None A__ = False A__ = None A__ = None A__ = None A__ = True A__ = True A__ = False A__ = True A__ = None A__ = "." A__ = None A__ = '"' A__ = 0 A__ = None A__ = None A__ = None A__ = None A__ = True A__ = True A__ = 0 A__ = True A__ = False A__ = None A__ = 10000 A__ = None A__ = "strict" A__ = "error" A__ = None def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" if self.delimiter is not None: _SCREAMING_SNAKE_CASE : Optional[Any] = self.delimiter if self.column_names is not None: _SCREAMING_SNAKE_CASE : Optional[Any] = self.column_names @property def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , snake_case__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class UpperCamelCase ( datasets.ArrowBasedBuilder ): A__ = CsvConfig def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _SCREAMING_SNAKE_CASE : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ , (str, list, tuple) ): _SCREAMING_SNAKE_CASE : Optional[Any] = data_files if isinstance(snake_case__ , snake_case__ ): _SCREAMING_SNAKE_CASE : Optional[int] = [files] _SCREAMING_SNAKE_CASE : Tuple = [dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _SCREAMING_SNAKE_CASE : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(snake_case__ , snake_case__ ): _SCREAMING_SNAKE_CASE : Optional[int] = [files] _SCREAMING_SNAKE_CASE : List[Any] = [dl_manager.iter_files(snake_case__ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={"files": files} ) ) return splits def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" if self.config.features is not None: _SCREAMING_SNAKE_CASE : Any = self.config.features.arrow_schema if all(not require_storage_cast(snake_case__ ) for feature in self.config.features.values() ): # cheaper cast _SCREAMING_SNAKE_CASE : Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=snake_case__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _SCREAMING_SNAKE_CASE : Union[str, Any] = table_cast(snake_case__ , snake_case__ ) return pa_table def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _SCREAMING_SNAKE_CASE : Union[str, Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(snake_case__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): _SCREAMING_SNAKE_CASE : int = pd.read_csv(snake_case__ , iterator=snake_case__ , dtype=snake_case__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE : Any = pa.Table.from_pandas(snake_case__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(snake_case__ )}: {e}''' ) raise
572
1
import requests from bsa import BeautifulSoup def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
643
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] ) UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:] UpperCamelCase : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
643
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ ): _lowercase: str = AutoConfig.from_pretrained(UpperCamelCase__ ) _lowercase: Optional[int] = FlaxAutoModelForSeqaSeqLM.from_config(config=UpperCamelCase__ ) _lowercase: List[str] = checkpoints.load_tax_checkpoint(UpperCamelCase__ ) _lowercase: Any = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": _lowercase: Union[str, Any] = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": _lowercase: List[Any] = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowercase: Optional[Any] = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): _lowercase: int = f"layers_{str(UpperCamelCase__ )}" # Self-Attention _lowercase: int = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] _lowercase: List[str] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] _lowercase: Union[str, Any] = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] _lowercase: Dict = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowercase: int = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization _lowercase: str = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: _lowercase: Union[str, Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] _lowercase: str = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _lowercase: int = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] _lowercase: Optional[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _lowercase: List[Any] = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _lowercase: List[Any] = flax_model.params["encoder"]["block"][str(UpperCamelCase__ )]["layer"] _lowercase: Optional[int] = tax_attention_key _lowercase: str = tax_attention_out _lowercase: int = tax_attention_query _lowercase: Optional[Any] = tax_attention_value _lowercase: List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowercase: Optional[Any] = tax_global_layer_norm if split_mlp_wi: _lowercase: int = tax_mlp_wi_a _lowercase: Union[str, Any] = tax_mlp_wi_a else: _lowercase: int = tax_mlp_wi _lowercase: List[str] = tax_mlp_wo _lowercase: Optional[Any] = tax_mlp_layer_norm _lowercase: str = flax_model_encoder_layer_block # Only for layer 0: _lowercase: Optional[int] = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T _lowercase: int = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowercase: Any = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T _lowercase: int = tax_encoder_global_rel_embedding # Assigning _lowercase: Union[str, Any] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] _lowercase: Optional[int] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _lowercase: List[Any] = f"layers_{str(UpperCamelCase__ )}" # Self-Attention _lowercase: str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] _lowercase: List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] _lowercase: Union[str, Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] _lowercase: str = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization _lowercase: Any = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention _lowercase: str = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] _lowercase: Union[str, Any] = tax_enc_dec_attention_module["key"]["kernel"] _lowercase: Optional[int] = tax_enc_dec_attention_module["out"]["kernel"] _lowercase: str = tax_enc_dec_attention_module["query"]["kernel"] _lowercase: Union[str, Any] = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization _lowercase: List[str] = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: _lowercase: Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] _lowercase: Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _lowercase: Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] _lowercase: str = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _lowercase: List[Any] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _lowercase: Tuple = flax_model.params["decoder"]["block"][str(UpperCamelCase__ )]["layer"] _lowercase: List[str] = tax_attention_key _lowercase: Tuple = tax_attention_out _lowercase: Dict = tax_attention_query _lowercase: int = tax_attention_value _lowercase: Union[str, Any] = tax_pre_attention_layer_norm _lowercase: Dict = tax_enc_dec_attention_key _lowercase: Union[str, Any] = tax_enc_dec_attention_out _lowercase: Any = tax_enc_dec_attention_query _lowercase: Tuple = tax_enc_dec_attention_value _lowercase: Optional[Any] = tax_cross_layer_norm if split_mlp_wi: _lowercase: Optional[int] = tax_mlp_wi_a _lowercase: str = tax_mlp_wi_a else: _lowercase: Any = tax_mlp_wi _lowercase: Dict = tax_mlp_wo _lowercase: Tuple = txa_mlp_layer_norm _lowercase: Any = flax_model_decoder_layer_block # Decoder Normalization _lowercase: List[Any] = tax_model["target"]["decoder"]["decoder_norm"]["scale"] _lowercase: int = txa_decoder_norm # Only for layer 0: _lowercase: Any = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T _lowercase: Tuple = tax_decoder_rel_embedding # Token Embeddings _lowercase: str = tax_model["target"]["token_embedder"]["embedding"] _lowercase: List[str] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _lowercase: Optional[Any] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(UpperCamelCase__ ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
226
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase__ =logging.get_logger(__name__) UpperCAmelCase__ ={ "EleutherAI/gpt-j-6B": "https://huggingface.co./EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co./models?filter=gpt_j } class lowerCamelCase__ ( _a ): a : Tuple = """gptj""" a : Union[str, Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , A_ : Optional[int]=5_0_4_0_0 , A_ : Optional[Any]=2_0_4_8 , A_ : Optional[Any]=4_0_9_6 , A_ : Any=2_8 , A_ : Union[str, Any]=1_6 , A_ : int=6_4 , A_ : int=None , A_ : str="gelu_new" , A_ : str=0.0 , A_ : Optional[Any]=0.0 , A_ : Dict=0.0 , A_ : Dict=1e-5 , A_ : Optional[int]=0.02 , A_ : List[str]=True , A_ : List[Any]=5_0_2_5_6 , A_ : Optional[int]=5_0_2_5_6 , A_ : List[Any]=False , **A_ : int , ): '''simple docstring''' __lowercase = vocab_size __lowercase = n_positions __lowercase = n_embd __lowercase = n_layer __lowercase = n_head __lowercase = n_inner __lowercase = rotary_dim __lowercase = activation_function __lowercase = resid_pdrop __lowercase = embd_pdrop __lowercase = attn_pdrop __lowercase = layer_norm_epsilon __lowercase = initializer_range __lowercase = use_cache __lowercase = bos_token_id __lowercase = eos_token_id super().__init__( bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ ) class lowerCamelCase__ ( _a ): def __init__( self : int , A_ : PretrainedConfig , A_ : str = "default" , A_ : List[PatchingSpec] = None , A_ : bool = False , ): '''simple docstring''' super().__init__(A_ , task=A_ , patching_specs=A_ , use_past=A_ ) if not getattr(self._config , """pad_token_id""" , A_ ): # TODO: how to do that better? __lowercase = 0 @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A_ , direction="""inputs""" ) __lowercase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowercase = {0: """batch""", 1: """sequence"""} return common_inputs @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' return self._config.n_layer @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return self._config.n_head def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , A_ : PreTrainedTokenizer , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional[TensorType] = None , ): '''simple docstring''' __lowercase = super(A_ , self ).generate_dummy_inputs( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) # We need to order the input in the way they appears in the forward() __lowercase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase , __lowercase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowercase = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(self.num_layers ) ] __lowercase = common_inputs["""attention_mask"""] if self.use_past: __lowercase = ordered_inputs["""attention_mask"""].dtype __lowercase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return 1_3
616
0
import collections import importlib.util import os import re from pathlib import Path snake_case = """src/transformers""" # Matches is_xxx_available() snake_case = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} snake_case = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available snake_case = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") snake_case = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", snake_case = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], snake_case = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo snake_case = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: snake_case = re.compile(R"""^\s*try:""") # Catches a line with else: snake_case = re.compile(R"""^\s*else:""") def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple ) -> int: if _re_test_backend.search(snake_case__ ) is None: return None _lowercase = [b[0] for b in _re_backend.findall(snake_case__ )] backends.sort() return "_and_".join(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Dict ) -> str: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowercase = f.readlines() _lowercase = 0 while line_index < len(snake_case__ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case__ ): return None # First grab the objects without a specific backend in _import_structure _lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: _lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case__ ): _lowercase = _re_one_line_import_struct.search(snake_case__ ).groups()[0] _lowercase = re.findall('\[([^\]]+)\]' , snake_case__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue _lowercase = _re_import_struct_key_value.search(snake_case__ ) if single_line_import_search is not None: _lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(snake_case__ ) > 0] objects.extend(snake_case__ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 _lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. _lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): _lowercase = lines[line_index] if _re_import_struct_add_one.search(snake_case__ ) is not None: objects.append(_re_import_struct_add_one.search(snake_case__ ).groups()[0] ) elif _re_import_struct_add_many.search(snake_case__ ) is not None: _lowercase = _re_import_struct_add_many.search(snake_case__ ).groups()[0].split(', ' ) _lowercase = [obj[1:-1] for obj in imports if len(snake_case__ ) > 0] objects.extend(snake_case__ ) elif _re_between_brackets.search(snake_case__ ) is not None: _lowercase = _re_between_brackets.search(snake_case__ ).groups()[0].split(', ' ) _lowercase = [obj[1:-1] for obj in imports if len(snake_case__ ) > 0] objects.extend(snake_case__ ) elif _re_quote_object.search(snake_case__ ) is not None: objects.append(_re_quote_object.search(snake_case__ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 _lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _lowercase = [] while ( line_index < len(snake_case__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): _lowercase = lines[line_index] _lowercase = _re_import.search(snake_case__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 _lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(snake_case__ ): # If the line is an if is_backend_available, we grab all objects associated. _lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): _lowercase = lines[line_index] _lowercase = _re_import.search(snake_case__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 _lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE__ ( snake_case__ :str , snake_case__ :Union[str, Any] ) -> Union[str, Any]: def find_duplicates(snake_case__ :Optional[Any] ): return [k for k, v in collections.Counter(snake_case__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _lowercase = [] for key in import_dict_objects.keys(): _lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) _lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _lowercase = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def SCREAMING_SNAKE_CASE__ ( ) -> str: _lowercase = [] for root, _, files in os.walk(snake_case__ ): if "__init__.py" in files: _lowercase = os.path.join(snake_case__ , '__init__.py' ) _lowercase = parse_init(snake_case__ ) if objects is not None: _lowercase = analyze_results(*snake_case__ ) if len(snake_case__ ) > 0: _lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(snake_case__ ) ) if len(snake_case__ ) > 0: raise ValueError('\n\n'.join(snake_case__ ) ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: _lowercase = [] for path, directories, files in os.walk(snake_case__ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(snake_case__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case__ ) / folder).glob('*.py' ) ) ) == 0: continue _lowercase = str((Path(snake_case__ ) / folder).relative_to(snake_case__ ) ) _lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(snake_case__ ) for fname in files: if fname == "__init__.py": continue _lowercase = str((Path(snake_case__ ) / fname).relative_to(snake_case__ ) ) _lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(snake_case__ ) return submodules snake_case = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: # This is to make sure the transformers module imported is the one in the repo. _lowercase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(snake_case__ , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _lowercase = spec.loader.load_module() _lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(snake_case__ ) > 0: _lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
535
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = PegasusTokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = PegasusTokenizerFast SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ : Optional[int] = True def __UpperCAmelCase ( self : List[str] ) -> Any: super().setUp() # We have a SentencePiece fixture for testing _lowercase = PegasusTokenizer(__A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def __UpperCAmelCase ( self : Any ,**__A : int ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : Union[str, Any] ,__A : int ) -> List[str]: return ("This is a test", "This is a test") def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: _lowercase = '</s>' _lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) ,__A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) ,__A ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: _lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<pad>' ) self.assertEqual(vocab_keys[1] ,'</s>' ) self.assertEqual(vocab_keys[-1] ,'v' ) self.assertEqual(len(__A ) ,1103 ) def __UpperCAmelCase ( self : Tuple ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size ,1103 ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: _lowercase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) _lowercase = rust_tokenizer([raw_input_str] ,return_tensors=__A ,add_special_tokens=__A ).input_ids[0] _lowercase = py_tokenizer([raw_input_str] ,return_tensors=__A ,add_special_tokens=__A ).input_ids[0] self.assertListEqual(__A ,__A ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: _lowercase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _lowercase = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' _lowercase = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _lowercase = tokenizer([raw_input_str] ,return_tensors=__A ).input_ids[0] self.assertListEqual(__A ,__A ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: _lowercase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _lowercase = 'To ensure a smooth flow of bank resolutions.' _lowercase = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _lowercase = tokenizer([raw_input_str] ,return_tensors=__A ).input_ids[0] self.assertListEqual(__A ,__A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: _lowercase = ['This is going to be way too long.' * 150, 'short example'] _lowercase = ['not super long but more than 5 tokens', 'tiny'] _lowercase = self._large_tokenizer(__A ,padding=__A ,truncation=__A ,return_tensors='pt' ) _lowercase = self._large_tokenizer( text_target=__A ,max_length=5 ,padding=__A ,truncation=__A ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(__A ) == 2 # input_ids, attention_mask. @slow def __UpperCAmelCase ( self : Dict ) -> Optional[int]: # fmt: off _lowercase = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A ,model_name='google/bigbird-pegasus-large-arxiv' ,revision='ba85d0851d708441f91440d509690f1ab6353415' ,) @require_sentencepiece @require_tokenizers class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = PegasusTokenizer SCREAMING_SNAKE_CASE_ : int = PegasusTokenizerFast SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : List[Any] = True def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing _lowercase = PegasusTokenizer(__A ,offset=0 ,mask_token_sent=__A ,mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : str ) -> Optional[Any]: return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def __UpperCAmelCase ( self : Union[str, Any] ,**__A : Union[str, Any] ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : Union[str, Any] ,__A : int ) -> Tuple: return ("This is a test", "This is a test") def __UpperCAmelCase ( self : List[Any] ) -> Dict: _lowercase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) _lowercase = rust_tokenizer([raw_input_str] ,return_tensors=__A ,add_special_tokens=__A ).input_ids[0] _lowercase = py_tokenizer([raw_input_str] ,return_tensors=__A ,add_special_tokens=__A ).input_ids[0] self.assertListEqual(__A ,__A ) @require_torch def __UpperCAmelCase ( self : List[str] ) -> Dict: _lowercase = ['This is going to be way too long.' * 1000, 'short example'] _lowercase = ['not super long but more than 5 tokens', 'tiny'] _lowercase = self._large_tokenizer(__A ,padding=__A ,truncation=__A ,return_tensors='pt' ) _lowercase = self._large_tokenizer( text_target=__A ,max_length=5 ,padding=__A ,truncation=__A ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(__A ) == 2 # input_ids, attention_mask. def __UpperCAmelCase ( self : Union[str, Any] ) -> int: _lowercase = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) _lowercase = self._large_tokenizer(__A ).input_ids self.assertListEqual( __A ,[182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] ,)
535
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = filter(lambda lowercase : p.requires_grad , model.parameters() ) __lowercase = sum([np.prod(p.size() ) for p in model_parameters] ) return params __a : str = logging.getLogger(__name__) def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if metric == "rouge2": __lowercase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __lowercase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __lowercase = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": __lowercase = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ''' function.''' ) __lowercase = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F"val_{metric}" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='''min''' if '''loss''' in metric else '''max''' , patience=lowercase , verbose=lowercase , ) class _UpperCamelCase ( pl.Callback ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' __lowercase = {F"lr_group_{i}": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase__ ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=True ) -> None: '''simple docstring''' logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) __lowercase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __lowercase = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowercase = od / '''test_results.txt''' __lowercase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowercase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" __lowercase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''a+''' ) as writer: for key in sorted(lowerCAmelCase__ ): if key in ["log", "progress_bar", "preds"]: continue __lowercase = metrics[key] if isinstance(lowerCAmelCase__ , torch.Tensor ): __lowercase = val.item() __lowercase = F"{key}: {val:.6f}\n" writer.write(lowerCAmelCase__ ) if not save_generations: return if "preds" in metrics: __lowercase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowerCAmelCase__ ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' try: __lowercase = pl_module.model.model.num_parameters() except AttributeError: __lowercase = pl_module.model.num_parameters() __lowercase = count_trainable_parameters(lowerCAmelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase__ , lowerCAmelCase__ , '''test''' ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
534
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __a : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCAmelCase__ , speech_processor=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ = "auto" ) -> Dict: '''simple docstring''' if slice_size == "auto": __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.enable_attention_slicing(lowerCAmelCase__ ) @torch.no_grad() def __call__( self , lowerCAmelCase__ , lowerCAmelCase__=1_60_00 , lowerCAmelCase__ = 5_12 , lowerCAmelCase__ = 5_12 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = 7.5 , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , **lowerCAmelCase__ , ) -> List[str]: '''simple docstring''' __lowercase = self.speech_processor.feature_extractor( lowerCAmelCase__ , return_tensors='''pt''' , sampling_rate=lowerCAmelCase__ ).input_features.to(self.device ) __lowercase = self.speech_model.generate(lowerCAmelCase__ , max_length=48_00_00 ) __lowercase = self.speech_processor.tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , normalize=lowerCAmelCase__ )[ 0 ] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = len(lowerCAmelCase__ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowerCAmelCase__ )}." ) # get prompt text embeddings __lowercase = self.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __lowercase = text_input_ids[:, : self.tokenizer.model_max_length] __lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowercase , __lowercase , __lowercase = text_embeddings.shape __lowercase = text_embeddings.repeat(1 , lowerCAmelCase__ , 1 ) __lowercase = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = 42 if negative_prompt is None: __lowercase = [''''''] * batch_size elif type(lowerCAmelCase__ ) is not type(lowerCAmelCase__ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__ )} !=" F" {type(lowerCAmelCase__ )}." ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = [negative_prompt] elif batch_size != len(lowerCAmelCase__ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: __lowercase = negative_prompt __lowercase = text_input_ids.shape[-1] __lowercase = self.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''pt''' , ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = uncond_embeddings.shape[1] __lowercase = uncond_embeddings.repeat(1 , lowerCAmelCase__ , 1 ) __lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowercase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device='''cpu''' , dtype=lowerCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) __lowercase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowercase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual __lowercase = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = 1 / 0.1_8215 * latents __lowercase = self.vae.decode(lowerCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCAmelCase__ , nsfw_content_detected=lowerCAmelCase__ )
534
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Any = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
75
# Imports import numpy as np class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None )-> Any: self.set_matricies(red=_SCREAMING_SNAKE_CASE , green=_SCREAMING_SNAKE_CASE , blue=_SCREAMING_SNAKE_CASE , red_edge=_SCREAMING_SNAKE_CASE , nir=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None )-> Union[str, Any]: if red is not None: lowerCamelCase_ =red if green is not None: lowerCamelCase_ =green if blue is not None: lowerCamelCase_ =blue if red_edge is not None: lowerCamelCase_ =red_edge if nir is not None: lowerCamelCase_ =nir return True def _snake_case ( self , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None )-> Union[str, Any]: self.set_matricies(red=_SCREAMING_SNAKE_CASE , green=_SCREAMING_SNAKE_CASE , blue=_SCREAMING_SNAKE_CASE , red_edge=_SCREAMING_SNAKE_CASE , nir=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ={ """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self )-> Optional[Any]: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self )-> Tuple: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self )-> str: return self.nir * (self.red / (self.green**2)) def _snake_case ( self )-> Optional[int]: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self )-> Tuple: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self )-> Dict: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self )-> List[Any]: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self )-> Tuple: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self )-> Optional[int]: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self )-> List[str]: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self )-> List[str]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self )-> Optional[int]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=0.0_8 , _SCREAMING_SNAKE_CASE=1.2_2 , _SCREAMING_SNAKE_CASE=0.0_3 )-> Any: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self )-> Tuple: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self )-> Any: return (self.nir / self.green) - 1 def _snake_case ( self )-> Union[str, Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self )-> Union[str, Any]: return (self.red - self.blue) / self.red def _snake_case ( self )-> Dict: lowerCamelCase_ =self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self )-> int: return self.nir - self.green def _snake_case ( self )-> Dict: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =(2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , _SCREAMING_SNAKE_CASE=0.1_6 )-> List[Any]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , _SCREAMING_SNAKE_CASE=0.5 )-> Dict: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self )-> int: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None )-> Union[str, Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self )-> int: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self )-> Optional[Any]: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self )-> List[str]: return self.nir / self.red def _snake_case ( self )-> List[str]: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self )-> str: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self )-> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self )-> Dict: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self )-> List[str]: return self.red / (self.nir + self.red + self.green) def _snake_case ( self )-> int: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self )-> str: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self )-> str: lowerCamelCase_ =np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCamelCase_ =np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self )-> List[str]: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self )-> List[Any]: return self.nir / self.red def _snake_case ( self )-> Optional[int]: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self )-> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
75
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
477
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: a__ = None a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} a__ = { """vocab_file""": { """google/rembert""": """https://huggingface.co./google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co./google/rembert/resolve/main/tokenizer.json""", }, } a__ = { """google/rembert""": 2_56, } a__ = """▁""" class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = VOCAB_FILES_NAMES snake_case_ : Dict = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : str = RemBertTokenizer def __init__( self : List[str] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Tuple=False , lowerCAmelCase : Union[str, Any]="[CLS]" , lowerCAmelCase : List[Any]="[SEP]" , lowerCAmelCase : List[str]="<unk>" , lowerCAmelCase : int="[SEP]" , lowerCAmelCase : Optional[Any]="<pad>" , lowerCAmelCase : Union[str, Any]="[CLS]" , lowerCAmelCase : Optional[Any]="[MASK]" , **lowerCAmelCase : Optional[int] , ) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else mask_token super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , remove_space=lowerCAmelCase , keep_accents=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : List[str] = do_lower_case _snake_case : Optional[int] = remove_space _snake_case : List[Any] = keep_accents _snake_case : Optional[Any] = vocab_file _snake_case : Any = False if not self.vocab_file else True def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : Any = [self.sep_token_id] _snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase)) + [1] + ([0] * len(lowerCAmelCase)) + [1] return [1] + ([0] * len(lowerCAmelCase)) + [1] def UpperCamelCase_ ( self : int , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : List[str] = [self.sep_token_id] _snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase_ ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(lowerCAmelCase)) return _snake_case : Optional[Any] = os.path.join( lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase): copyfile(self.vocab_file , lowerCAmelCase) return (out_vocab_file,)
477
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple=7 ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE = "636036" SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" SCREAMING_SNAKE_CASE = requests.get(UpperCAmelCase__ , headers=UpperCAmelCase__ ).json() return result["workflow_runs"] def __lowerCamelCase (UpperCAmelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = get_daily_ci_runs(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE = workflow_run["id"] break return workflow_run_id def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Any ): SCREAMING_SNAKE_CASE = get_last_daily_ci_runs(UpperCAmelCase__ ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE = get_artifacts_links(worflow_run_id=UpperCAmelCase__ , token=UpperCAmelCase__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE = artifacts_links[artifact_name] download_artifact( artifact_name=UpperCAmelCase__ , artifact_url=UpperCAmelCase__ , output_dir=UpperCAmelCase__ , token=UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict ): get_last_daily_ci_artifacts(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = {} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , F"{artifact_name}.zip" ) if os.path.isfile(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = {} with zipfile.ZipFile(UpperCAmelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCAmelCase__ ): # read the file with z.open(UpperCAmelCase__ ) as f: SCREAMING_SNAKE_CASE = f.read().decode("UTF-8" ) return results
647
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _lowerCamelCase : List[Any] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
647
1
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowerCamelCase__ : Tuple = getLogger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : int = 8 , __UpperCAmelCase : int = 10_24 , __UpperCAmelCase : Tuple="val" , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Any=False , __UpperCAmelCase : List[Any]="summarization" , __UpperCAmelCase : Any=None , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Dict = None , __UpperCAmelCase : Any="" , **__UpperCAmelCase : List[Any] , ) -> Dict: SCREAMING_SNAKE_CASE_ = str(__UpperCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = Path(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = save_dir.joinpath(f"rank_{local_rank}_output.json" ) torch.cuda.set_device(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ).cuda() if fpaa: SCREAMING_SNAKE_CASE_ = model.half() # determine if we need to increase num_beams use_task_specific_params(__UpperCAmelCase , __UpperCAmelCase ) # update config with task specific params SCREAMING_SNAKE_CASE_ = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: SCREAMING_SNAKE_CASE_ = num_return_sequences SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: SCREAMING_SNAKE_CASE_ = tokenizer.model_max_length if prefix is None: SCREAMING_SNAKE_CASE_ = prefix or getattr(model.config , 'prefix' , '' ) or '' SCREAMING_SNAKE_CASE_ = SeqaSeqDataset( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , max_target_length=10_24 , type_path=__UpperCAmelCase , n_obs=__UpperCAmelCase , prefix=__UpperCAmelCase , **__UpperCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. SCREAMING_SNAKE_CASE_ = ds.make_sortish_sampler(__UpperCAmelCase , distributed=__UpperCAmelCase , add_extra_examples=__UpperCAmelCase , shuffle=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = DataLoader(__UpperCAmelCase , sampler=__UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=ds.collate_fn ) SCREAMING_SNAKE_CASE_ = [] for batch in tqdm(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=__UpperCAmelCase , num_beams=__UpperCAmelCase , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = batch['ids'] if num_return_sequences > 1: SCREAMING_SNAKE_CASE_ = chunks(__UpperCAmelCase , __UpperCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__UpperCAmelCase ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(__UpperCAmelCase , __UpperCAmelCase ) return results, sampler.num_replicas def UpperCAmelCase_ ( ) -> Dict: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=__UpperCAmelCase , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=__UpperCAmelCase , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=__UpperCAmelCase , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=__UpperCAmelCase , default=__UpperCAmelCase ) parser.add_argument( '--type_path' , type=__UpperCAmelCase , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=__UpperCAmelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=__UpperCAmelCase , default=8 , required=__UpperCAmelCase , help='batch size' ) parser.add_argument( '--local_rank' , type=__UpperCAmelCase , default=-1 , required=__UpperCAmelCase , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=__UpperCAmelCase , default=1 , required=__UpperCAmelCase , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=__UpperCAmelCase , default=6_00 , required=__UpperCAmelCase , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase ) parser.add_argument('--tgt_lang' , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase ) parser.add_argument( '--prefix' , type=__UpperCAmelCase , required=__UpperCAmelCase , default=__UpperCAmelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_known_args() SCREAMING_SNAKE_CASE_ = parse_numeric_n_bool_cl_kwargs(__UpperCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}" ) SCREAMING_SNAKE_CASE_ = Path(args.save_dir + '_tmp' ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) # this handles locking. SCREAMING_SNAKE_CASE_ = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. SCREAMING_SNAKE_CASE_ = {} if args.src_lang is not None: SCREAMING_SNAKE_CASE_ = args.src_lang if args.tgt_lang is not None: SCREAMING_SNAKE_CASE_ = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = eval_data_dir( args.data_dir , __UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__UpperCAmelCase , **__UpperCAmelCase , ) if args.local_rank <= 0: SCREAMING_SNAKE_CASE_ = Path(args.save_dir ) save_dir.mkdir(exist_ok=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = gather_results_from_each_node(__UpperCAmelCase , __UpperCAmelCase , args.sync_timeout ) SCREAMING_SNAKE_CASE_ = combine_partial_results(__UpperCAmelCase ) if args.num_return_sequences > 1: SCREAMING_SNAKE_CASE_ = save_dir.joinpath('pseudolabel_results.json' ) print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(__UpperCAmelCase , __UpperCAmelCase ) return SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(__UpperCAmelCase ) as f: SCREAMING_SNAKE_CASE_ = [x.rstrip() for x in f.readlines()][: len(__UpperCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt SCREAMING_SNAKE_CASE_ = 'translation' in args.task SCREAMING_SNAKE_CASE_ = calculate_bleu if calc_bleu else calculate_rouge SCREAMING_SNAKE_CASE_ = 'bleu' if calc_bleu else 'rouge' SCREAMING_SNAKE_CASE_ = score_fn(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = time.time() - start_time SCREAMING_SNAKE_CASE_ = round(runtime / metrics['n_obs'] , 4 ) SCREAMING_SNAKE_CASE_ = num_replicas # TODO(@stas00): add whatever metadata to metrics SCREAMING_SNAKE_CASE_ = save_dir.joinpath(f"{args.type_path}_{metric_name}.json" ) save_json(__UpperCAmelCase , __UpperCAmelCase , indent=__UpperCAmelCase ) print(__UpperCAmelCase ) write_txt_file(__UpperCAmelCase , save_dir.joinpath(f"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(__UpperCAmelCase , save_dir.joinpath(f"{args.type_path}.target" ) ) else: shutil.rmtree(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> List: SCREAMING_SNAKE_CASE_ = [] for partial_result in partial_results: records.extend(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["id"] ) SCREAMING_SNAKE_CASE_ = [x['pred'] for x in records] return preds def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files SCREAMING_SNAKE_CASE_ = time.time() logger.info('waiting for all nodes to finish' ) SCREAMING_SNAKE_CASE_ = None while (time.time() - start_wait) < timeout: SCREAMING_SNAKE_CASE_ = list(save_dir.glob('rank_*.json' ) ) if len(__UpperCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved SCREAMING_SNAKE_CASE_ = lmap(__UpperCAmelCase , __UpperCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
31
def __a ( SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) if n_element < 1: __UpperCAmelCase = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = (0, 0, 0) __UpperCAmelCase = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": A_ : List[str] = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') A_ : Union[str, Any] = hamming(int(n)) print('-----------------------------------------------------') print(F"""The list with nth numbers is: {hamming_numbers}""") print('-----------------------------------------------------')
303
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """dandelin/vilt-b32-finetuned-vqa""" _lowerCAmelCase = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) _lowerCAmelCase = """image_qa""" _lowerCAmelCase = AutoProcessor _lowerCAmelCase = AutoModelForVisualQuestionAnswering _lowerCAmelCase = ["""image""", """text"""] _lowerCAmelCase = ["""text"""] def __init__( self , *__magic_name__ , **__magic_name__ ) -> Tuple: requires_backends(self , ['vision'] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Tuple: return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='pt' ) def __UpperCAmelCase ( self , __magic_name__ ) -> Any: with torch.no_grad(): return self.model(**__magic_name__ ).logits def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: _a = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
532
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) a_ : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class a : _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class a : _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 42 def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__=False , __magic_name__ = False , ) -> Optional[int]: _a = hans_processors[task]() _a = os.path.join( __magic_name__ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(__magic_name__ ) , __magic_name__ , ) , ) _a = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _a , _a = label_list[2], label_list[1] _a = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a = cached_features_file + '.lock' with FileLock(__magic_name__ ): if os.path.exists(__magic_name__ ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) _a = torch.load(__magic_name__ ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) _a = ( processor.get_dev_examples(__magic_name__ ) if evaluate else processor.get_train_examples(__magic_name__ ) ) logger.info('Training examples: %s' , len(__magic_name__ ) ) _a = hans_convert_examples_to_features(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) logger.info('Saving features into cached file %s' , __magic_name__ ) torch.save(self.features , __magic_name__ ) def __len__( self ) -> List[Any]: return len(self.features ) def __getitem__( self , __magic_name__ ) -> InputFeatures: return self.features[i] def __UpperCAmelCase ( self ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class a : _lowerCAmelCase = 42 def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 1_28 , __magic_name__=False , __magic_name__ = False , ) -> str: _a = hans_processors[task]() _a = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _a , _a = label_list[2], label_list[1] _a = label_list _a = processor.get_dev_examples(__magic_name__ ) if evaluate else processor.get_train_examples(__magic_name__ ) _a = hans_convert_examples_to_features(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d of %d' % (ex_index, len(__magic_name__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) _a = tf.data.Dataset.from_generator( __magic_name__ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def __UpperCAmelCase ( self ) -> Tuple: return self.dataset def __len__( self ) -> Optional[Any]: return len(self.features ) def __getitem__( self , __magic_name__ ) -> InputFeatures: return self.features[i] def __UpperCAmelCase ( self ) -> List[Any]: return self.label_list class a ( _SCREAMING_SNAKE_CASE ): def __UpperCAmelCase ( self , __magic_name__ ) -> Tuple: return self._create_examples(self._read_tsv(os.path.join(__magic_name__ , 'heuristics_train_set.txt' ) ) , 'train' ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(__magic_name__ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def __UpperCAmelCase ( self ) -> Tuple: return ["contradiction", "entailment", "neutral"] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Optional[Any]: _a = [] for i, line in enumerate(__magic_name__ ): if i == 0: continue _a = '%s-%s' % (set_type, line[0]) _a = line[5] _a = line[6] _a = line[7][2:] if line[7].startswith('ex' ) else line[7] _a = line[0] examples.append(InputExample(guid=__magic_name__ , text_a=__magic_name__ , text_b=__magic_name__ , label=__magic_name__ , pairID=__magic_name__ ) ) return examples def _A (lowerCAmelCase__ :List[InputExample] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :PreTrainedTokenizer , ) -> Tuple: '''simple docstring''' _a = {label: i for i, label in enumerate(lowerCAmelCase__ )} _a = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCAmelCase__ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) _a = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='max_length' , truncation=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , ) _a = label_map[example.label] if example.label in label_map else 0 _a = int(example.pairID ) features.append(InputFeatures(**lowerCAmelCase__ , label=lowerCAmelCase__ , pairID=lowerCAmelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features a_ : Optional[int] = { "hans": 3, } a_ : Optional[Any] = { "hans": HansProcessor, }
532
1
from __future__ import annotations __UpperCamelCase : Optional[Any] = list[list[int]] # assigning initial values to the grid __UpperCamelCase : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __UpperCamelCase : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def snake_case ( lowerCamelCase ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def snake_case ( lowerCamelCase ): '''simple docstring''' if location := find_empty_location(lowerCamelCase ): __lowercase , __lowercase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __lowercase = digit if sudoku(lowerCamelCase ) is not None: return grid __lowercase = 0 return None def snake_case ( lowerCamelCase ): '''simple docstring''' for row in grid: for cell in row: print(lowerCamelCase , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") __UpperCamelCase : Optional[Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
80
def _lowerCamelCase ( lowerCamelCase_: int ): '''simple docstring''' A : Any = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _lowerCamelCase ( lowerCamelCase_: int = 100 ): '''simple docstring''' A : Dict = 1 A : Union[str, Any] = 2 for i in range(2 , max_n + 1 ): A : List[Any] = pre_numerator A : Tuple = 2 * i // 3 if i % 3 == 0 else 1 A : str = cur_numerator A : str = e_cont * pre_numerator + temp return sum_digits(lowerCamelCase_ ) if __name__ == "__main__": print(F'''{solution() = }''')
256
0
lowerCAmelCase_ = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
669
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCamelCase__ = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) UpperCAmelCase__ : List[Any] = self.transformer_dir shutil.copy( os.path.join(__snake_case , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def lowercase_ ( self : List[str] , _A : Optional[Any] , _A : int , _A : List[Any] , _A : str=None ): '''simple docstring''' UpperCAmelCase__ : Tuple = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: UpperCAmelCase__ : List[Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result UpperCAmelCase__ : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) UpperCAmelCase__ : Optional[Any] = black.format_str(__snake_case , mode=__snake_case ) UpperCAmelCase__ : Any = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(__snake_case , '''w''' , newline='''\n''' ) as f: f.write(__snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__snake_case ) with open(__snake_case , '''r''' ) as f: self.assertTrue(f.read() , __snake_case ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(__snake_case , __snake_case ) def lowercase_ ( self : Tuple ): '''simple docstring''' self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , __snake_case , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , __snake_case ) , ) # Copy consistency with a really long name UpperCAmelCase__ : Any = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub('''Bert''' , __snake_case , __snake_case ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , __snake_case , overwrite_result=re.sub('''Bert''' , '''TestModel''' , __snake_case ) , ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] UpperCAmelCase__ : Optional[Any] = ( '''1. **[ALBERT](https://huggingface.co./transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co./transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co./transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) UpperCAmelCase__ : Optional[int] = ( '''1. **[ALBERT](https://huggingface.co./transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase__ : int = ( '''1. **[ALBERT](https://huggingface.co./transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co./transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co./transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme['''format_model_list'''] ) self.assertFalse(__snake_case ) self.assertEqual(__snake_case , __snake_case ) UpperCAmelCase__ , UpperCAmelCase__ : Any = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__snake_case ) UpperCAmelCase__ : str = ( '''1. **[ALBERT](https://huggingface.co./transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) UpperCAmelCase__ : List[Any] = ( '''1. **[ALBERT](https://huggingface.co./transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase__ : Any = ( '''1. **[ALBERT](https://huggingface.co./transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(__snake_case , __snake_case )
75
def UpperCAmelCase_ ( _UpperCAmelCase :list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) < 2: return collection def circle_sort_util(_UpperCAmelCase :list , _UpperCAmelCase :int , _UpperCAmelCase :int ) -> bool: A_ = False if low == high: return swapped A_ = low A_ = high while left < right: if collection[left] > collection[right]: A_ , A_ = ( collection[right], collection[left], ) A_ = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: A_ , A_ = ( collection[right + 1], collection[left], ) A_ = True A_ = low + int((high - low) / 2 ) A_ = circle_sort_util(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A_ = circle_sort_util(_UpperCAmelCase , mid + 1 , _UpperCAmelCase ) return swapped or left_swap or right_swap A_ = True while is_not_sorted is True: A_ = circle_sort_util(_UpperCAmelCase , 0 , len(_UpperCAmelCase ) - 1 ) return collection if __name__ == "__main__": a__ : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() a__ : List[str] = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
188
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : List[Any] = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class __snake_case ( SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = AlbertTokenizer SCREAMING_SNAKE_CASE__ = AlbertTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = AlbertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = 'this is a test' lowerCAmelCase__ = 'this is a test' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = '<pad>' lowerCAmelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) ,a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<pad>' ) self.assertEqual(vocab_keys[1] ,'<unk>' ) self.assertEqual(vocab_keys[-1] ,'▁eloquent' ) self.assertEqual(len(a_ ) ,3_0000 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,3_0000 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ = tokenizer.tokenize(a_ ) lowerCAmelCase__ = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ ,a_ ) lowerCAmelCase__ = tokenizer.encode(a_ ,add_special_tokens=a_ ) lowerCAmelCase__ = rust_tokenizer.encode(a_ ,add_special_tokens=a_ ) self.assertListEqual(a_ ,a_ ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(a_ ) lowerCAmelCase__ = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = AlbertTokenizer(a_ ,keep_accents=a_ ) lowerCAmelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(a_ ,['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) ,[48, 25, 21, 1289] ) lowerCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( a_ ,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual(a_ ,[31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ ,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] ,) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = AlbertTokenizer(a_ ) lowerCAmelCase__ = tokenizer.encode('sequence builders' ) lowerCAmelCase__ = tokenizer.encode('multi-sequence build' ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(a_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(a_ ,a_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # fmt: off lowerCAmelCase__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ ,model_name='albert-base-v2' ,revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' ,)
604
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] ,dtype=tf.floataa ,) lowerCAmelCase__ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] ,dtype=tf.intaa ,) # expected non filtered idx as noted above lowerCAmelCase__ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] ,dtype=tf.floataa ,) # expected non filtered values as noted above lowerCAmelCase__ = tf_top_k_top_p_filtering(a_ ,top_k=10 ,top_p=0.6 ,min_tokens_to_keep=4 ) lowerCAmelCase__ = output[output != -float('inf' )] lowerCAmelCase__ = tf.cast( tf.where(tf.not_equal(a_ ,tf.constant(-float('inf' ) ,dtype=tf.floataa ) ) ) ,dtype=tf.intaa ,) tf.debugging.assert_near(a_ ,a_ ,rtol=1e-1_2 ) tf.debugging.assert_equal(a_ ,a_ ) @require_tf class __snake_case ( unittest.TestCase , SCREAMING_SNAKE_CASE ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): SCREAMING_SNAKE_CASE__ = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 class __snake_case ( tf.Module ): def __init__( self ,a_ ): """simple docstring""" super(a_ ,self ).__init__() lowerCAmelCase__ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) ,tf.intaa ,name='input_ids' ), tf.TensorSpec((None, input_length) ,tf.intaa ,name='attention_mask' ), ) ,jit_compile=a_ ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model.generate( input_ids=a_ ,attention_mask=a_ ,max_new_tokens=a_ ,return_dict_in_generate=a_ ,) return {"sequences": outputs["sequences"]} lowerCAmelCase__ = [[2, 0], [102, 103]] lowerCAmelCase__ = [[1, 0], [1, 1]] lowerCAmelCase__ = DummyModel(model=a_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a_ ,a_ ,signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase__ = tf.saved_model.load(a_ ).signatures['serving_default'] for batch_size in range(1 ,len(a_ ) + 1 ): lowerCAmelCase__ = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } lowerCAmelCase__ = serving_func(**a_ )['sequences'] lowerCAmelCase__ = test_model.generate(**a_ ,max_new_tokens=a_ ) tf.debugging.assert_equal(a_ ,a_ ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 class __snake_case ( tf.Module ): def __init__( self ,a_ ): """simple docstring""" super(a_ ,self ).__init__() lowerCAmelCase__ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) ,tf.intaa ,name='input_ids' ), tf.TensorSpec((batch_size, None) ,tf.intaa ,name='attention_mask' ), ) ,jit_compile=a_ ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model.generate( input_ids=a_ ,attention_mask=a_ ,max_new_tokens=a_ ,return_dict_in_generate=a_ ,) return {"sequences": outputs["sequences"]} lowerCAmelCase__ = [[2], [102, 103]] lowerCAmelCase__ = [[1], [1, 1]] lowerCAmelCase__ = DummyModel(model=a_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a_ ,a_ ,signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase__ = tf.saved_model.load(a_ ).signatures['serving_default'] for input_row in range(len(a_ ) ): lowerCAmelCase__ = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } lowerCAmelCase__ = serving_func(**a_ )['sequences'] lowerCAmelCase__ = test_model.generate(**a_ ,max_new_tokens=a_ ) tf.debugging.assert_equal(a_ ,a_ ) @slow @require_tensorflow_text def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' ,filename='spiece.model' ,local_dir=a_ ) class __snake_case ( tf.keras.layers.Layer ): def __init__( self ): """simple docstring""" super().__init__() lowerCAmelCase__ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a_ ,'spiece.model' ) ,'rb' ).read() ) lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,*a_ ,**a_ ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.tokenize(a_ ) lowerCAmelCase__ , lowerCAmelCase__ = text.pad_model_inputs( a_ ,max_seq_length=64 ,pad_value=self.model.config.pad_token_id ) lowerCAmelCase__ = self.model.generate(input_ids=a_ ,attention_mask=a_ ) return self.tokenizer.detokenize(a_ ) lowerCAmelCase__ = CompleteSentenceTransformer() lowerCAmelCase__ = tf.keras.layers.Input(shape=(1,) ,dtype=tf.string ,name='inputs' ) lowerCAmelCase__ = complete_model(a_ ) lowerCAmelCase__ = tf.keras.Model(a_ ,a_ ) keras_model.save(a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # Has PT equivalent: this test relies on random sampling lowerCAmelCase__ = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } lowerCAmelCase__ = 14 lowerCAmelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 'Hello, my dog is cute and' lowerCAmelCase__ = tokenizer(a_ ,return_tensors='tf' ) lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase__ = model.generate(**a_ ,eos_token_id=a_ ,**a_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCAmelCase__ = [638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase__ = model.generate(**a_ ,eos_token_id=a_ ,**a_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # Has PT equivalent: ample use of framework-specific code lowerCAmelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = 'Hugging Face is a technology company based in New York and Paris.' lowerCAmelCase__ = bart_tokenizer(a_ ,return_tensors='tf' ).input_ids lowerCAmelCase__ = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = bart_model.generate(a_ ).numpy() class __snake_case ( SCREAMING_SNAKE_CASE ): def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_=None ,**a_ ): """simple docstring""" return super().call(a_ ,**a_ ) lowerCAmelCase__ = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = bart_model.generate(a_ ,foo='bar' ).numpy() self.assertTrue(np.array_equal(a_ ,a_ ) ) class __snake_case ( bart_model.model.encoder.__class__ ): def SCREAMING_SNAKE_CASE_ ( self ,a_ ,**a_ ): """simple docstring""" return super().call(a_ ,**a_ ) lowerCAmelCase__ = FakeEncoder(bart_model.config ,bart_model.model.shared ) lowerCAmelCase__ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase__ = bart_model.generate(a_ ).numpy() with self.assertRaises(a_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a_ ,foo='bar' )
604
1
"""simple docstring""" def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
196
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: SCREAMING_SNAKE_CASE__ = torch.nn.Linear(1_0 , 1_0 ) SCREAMING_SNAKE_CASE__ = torch.optim.SGD(model.parameters() , 0.1 ) SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.prepare(__UpperCAmelCase ) try: pickle.loads(pickle.dumps(__UpperCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
196
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a : List[str] = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Dict = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Any = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Tuple = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Union[str, Any] = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a : Any = logging.get_logger(__name__) __a : Dict = { """hustvl/yolos-small""": """https://huggingface.co./hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co./models?filter=yolos } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Optional[Any] = '''yolos''' def __init__( self , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=[5_12, 8_64] , lowerCAmelCase__=16 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=1_00 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , **lowerCAmelCase__ , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : int = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _SCREAMING_SNAKE_CASE ( self ) -> float: '''simple docstring''' return 1E-4 @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return 12
522
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py UpperCamelCase_ : List[str] = '''src/transformers''' UpperCamelCase_ : Optional[Any] = '''docs/source/en/tasks''' def __a ( _UpperCamelCase: Optional[Any] , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Any ) -> int: """simple docstring""" with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: _snake_case = f.readlines() # Find the start prompt. _snake_case = 0 while not lines[start_index].startswith(_UpperCamelCase ): start_index += 1 start_index += 1 _snake_case = start_index while not lines[end_index].startswith(_UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase_ : str = direct_transformers_import(TRANSFORMERS_PATH) UpperCamelCase_ : Optional[int] = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). UpperCamelCase_ : Any = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def __a ( _UpperCamelCase: str ) -> Dict: """simple docstring""" _snake_case = TASK_GUIDE_TO_MODELS[task_guide] _snake_case = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_UpperCamelCase , set() ) _snake_case = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: Optional[Any]=False ) -> Any: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case = _find_text_in_file( filename=os.path.join(_UpperCamelCase , _UpperCamelCase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) _snake_case = get_model_list_for_task(_UpperCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_UpperCamelCase , _UpperCamelCase ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" " to fix this." ) if __name__ == "__main__": UpperCamelCase_ : str = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCamelCase_ : Dict = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
185
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record UpperCamelCase_ : Tuple = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' UpperCamelCase_ : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' UpperCamelCase_ : Dict = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: int ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __a ( _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Optional[int] , _UpperCamelCase: int="binary" ) -> Any: """simple docstring""" _snake_case = simple_accuracy(_UpperCamelCase , _UpperCamelCase ) _snake_case = float(fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase , average=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __a ( _UpperCamelCase: str , _UpperCamelCase: Any ) -> Tuple: """simple docstring""" _snake_case = {} for id_pred, label in zip(_UpperCamelCase , _UpperCamelCase ): _snake_case = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _snake_case = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _snake_case = [(pred, label)] _snake_case , _snake_case = [], [] for question, preds_labels in question_map.items(): _snake_case , _snake_case = zip(*_UpperCamelCase ) _snake_case = fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase , average="macro" ) fas.append(_UpperCamelCase ) _snake_case = int(sum(pred == label for pred, label in preds_labels ) == len(_UpperCamelCase ) ) ems.append(_UpperCamelCase ) _snake_case = float(sum(_UpperCamelCase ) / len(_UpperCamelCase ) ) _snake_case = sum(_UpperCamelCase ) / len(_UpperCamelCase ) _snake_case = float(fa_score(y_true=_UpperCamelCase , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def _lowercase ( self ) -> Union[str, Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None ,) def _lowercase ( self ) -> Union[str, Any]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,fa_avg="macro" ) elif self.config_name == "record": _snake_case = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] _snake_case = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
185
1
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : """simple docstring""" def __init__( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=13 , UpperCamelCase_ : Tuple=7 , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Union[str, Any]=99 , UpperCamelCase_ : Optional[int]=24 , UpperCamelCase_ : int=2 , UpperCamelCase_ : List[str]=6 , UpperCamelCase_ : int=37 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : List[str]=512 , UpperCamelCase_ : Any=16 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Any=0.0_2 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : List[Any]=1000 , ): lowerCAmelCase_ : Any =parent lowerCAmelCase_ : Any =batch_size lowerCAmelCase_ : Optional[Any] =seq_length lowerCAmelCase_ : Tuple =is_training lowerCAmelCase_ : str =use_input_mask lowerCAmelCase_ : Union[str, Any] =use_token_type_ids lowerCAmelCase_ : Any =use_labels lowerCAmelCase_ : Tuple =vocab_size lowerCAmelCase_ : Any =hidden_size lowerCAmelCase_ : Union[str, Any] =num_hidden_layers lowerCAmelCase_ : Dict =num_attention_heads lowerCAmelCase_ : Optional[Any] =intermediate_size lowerCAmelCase_ : str =hidden_act lowerCAmelCase_ : Union[str, Any] =hidden_dropout_prob lowerCAmelCase_ : Optional[int] =attention_probs_dropout_prob lowerCAmelCase_ : Any =max_position_embeddings lowerCAmelCase_ : str =type_vocab_size lowerCAmelCase_ : Optional[Any] =type_sequence_label_size lowerCAmelCase_ : Optional[int] =initializer_range lowerCAmelCase_ : Optional[int] =num_labels lowerCAmelCase_ : List[str] =scope lowerCAmelCase_ : List[str] =range_bbox def __A ( self : Any ): lowerCAmelCase_ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Any =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase_ : Union[str, Any] =bbox[i, j, 3] lowerCAmelCase_ : Any =bbox[i, j, 1] lowerCAmelCase_ : Any =t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase_ : int =bbox[i, j, 2] lowerCAmelCase_ : Optional[Any] =bbox[i, j, 0] lowerCAmelCase_ : int =t lowerCAmelCase_ : Any =None if self.use_input_mask: lowerCAmelCase_ : Dict =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase_ : int =None if self.use_token_type_ids: lowerCAmelCase_ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : List[Any] =None lowerCAmelCase_ : Any =None if self.use_labels: lowerCAmelCase_ : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Dict =self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self : str ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __A ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , ): lowerCAmelCase_ : Any =LiltModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ : List[Any] =model(lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) lowerCAmelCase_ : List[Any] =model(lowercase_ , bbox=lowercase_ , token_type_ids=lowercase_ ) lowerCAmelCase_ : str =model(lowercase_ , bbox=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : int , ): lowerCAmelCase_ : Union[str, Any] =self.num_labels lowerCAmelCase_ : Optional[int] =LiltForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ : List[Any] =model( lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , ): lowerCAmelCase_ : Optional[Any] =LiltForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ : str =model( lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] =self.prepare_config_and_inputs() ( lowerCAmelCase_ ) : int =config_and_inputs lowerCAmelCase_ : Optional[int] ={ """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Optional[int] = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : List[str] = False _UpperCamelCase : List[str] = False def __A ( self : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Any ): return True def __A ( self : Tuple ): lowerCAmelCase_ : List[str] =LiltModelTester(self ) lowerCAmelCase_ : List[Any] =ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def __A ( self : int ): self.config_tester.run_common_tests() def __A ( self : List[str] ): lowerCAmelCase_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __A ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[int] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ : List[str] =type self.model_tester.create_and_check_model(*lowercase_ ) def __A ( self : int ): lowerCAmelCase_ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def __A ( self : Tuple ): lowerCAmelCase_ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @slow def __A ( self : str ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Tuple =LiltModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @slow class _snake_case ( unittest.TestCase ): """simple docstring""" def __A ( self : int ): lowerCAmelCase_ : Dict =LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(lowercase_ ) lowerCAmelCase_ : Optional[int] =torch.tensor([[1, 2]] , device=lowercase_ ) lowerCAmelCase_ : Any =torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowercase_ ) # forward pass with torch.no_grad(): lowerCAmelCase_ : List[str] =model(input_ids=lowercase_ , bbox=lowercase_ ) lowerCAmelCase_ : Union[str, Any] =torch.Size([1, 2, 768] ) lowerCAmelCase_ : Dict =torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowercase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowercase_ , atol=1E-3 ) )
708
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : UNetaDModel _UpperCamelCase : ScoreSdeVeScheduler def __init__( self : Union[str, Any] , UpperCamelCase_ : UNetaDModel , UpperCamelCase_ : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 2000 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , **UpperCamelCase_ : Dict , ): lowerCAmelCase_ : Union[str, Any] =self.unet.config.sample_size lowerCAmelCase_ : Dict =(batch_size, 3, img_size, img_size) lowerCAmelCase_ : Dict =self.unet lowerCAmelCase_ : Optional[int] =randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ ) * self.scheduler.init_noise_sigma lowerCAmelCase_ : Any =sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase_ ) self.scheduler.set_sigmas(UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase_ : Optional[Any] =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase_ : int =self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample lowerCAmelCase_ : List[str] =self.scheduler.step_correct(UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # prediction step lowerCAmelCase_ : Any =model(UpperCamelCase_ , UpperCamelCase_ ).sample lowerCAmelCase_ : Tuple =self.scheduler.step_pred(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple =output.prev_sample, output.prev_sample_mean lowerCAmelCase_ : Tuple =sample_mean.clamp(0 , 1 ) lowerCAmelCase_ : int =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ : Optional[Any] =self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase_ )
305
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Tuple =VideoToVideoSDPipeline a : Optional[int] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} a : List[Any] =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} a : int =PipelineTesterMixin.required_optional_params - {"""latents"""} a : Dict =False # No `output_type`. a : List[Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = VideoToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __lowerCAmelCase = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""",torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = torch.randn((1, 10, 3, 10_24, 5_76),generator=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = video.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,video=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=3,output_type="""pt""" ).frames __lowerCAmelCase = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
689
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
1
'''simple docstring''' snake_case_ = {str(digit): digit**5 for digit in range(10)} def __lowercase (_SCREAMING_SNAKE_CASE :int ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_SCREAMING_SNAKE_CASE ) ) def __lowercase (): return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(solution())
355
'''simple docstring''' from __future__ import annotations def __lowercase (_SCREAMING_SNAKE_CASE :int | str ): SCREAMING_SNAKE_CASE : int = str(_SCREAMING_SNAKE_CASE ) return n == n[::-1] def __lowercase (_SCREAMING_SNAKE_CASE :int = 1_00_00_00 ): SCREAMING_SNAKE_CASE : int = 0 for i in range(1 , _SCREAMING_SNAKE_CASE ): if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
355
1
def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = (boundary[1] - boundary[0]) / steps lowerCamelCase_ = boundary[0] lowerCamelCase_ = boundary[1] lowerCamelCase_ = make_points(lowercase , lowercase , lowercase ) lowerCamelCase_ = 0.0 y += (h / 2.0) * f(lowercase ) for i in x_i: # print(i) y += h * f(lowercase ) y += (h / 2.0) * f(lowercase ) return y def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Union[str, Any] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = a + h while x < (b - h): yield x lowerCamelCase_ = x + h def _SCREAMING_SNAKE_CASE ( lowercase : str ): # enter your function here '''simple docstring''' lowerCamelCase_ = (x - 0) * (x - 0) return y def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0.0 # Lower bound of integration lowerCamelCase_ = 1.0 # Upper bound of integration lowerCamelCase_ = 10.0 # define number of steps or resolution lowerCamelCase_ = [a, b] # define boundary of integration lowerCamelCase_ = method_a(lowercase , lowercase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
70
from collections import Counter from timeit import timeit def _SCREAMING_SNAKE_CASE ( lowercase : str = "" , ): '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def _SCREAMING_SNAKE_CASE ( lowercase : str = "" ): '''simple docstring''' if len(lowercase ) == 0: return True lowerCamelCase_ = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCamelCase_ = {} for character in lower_case_input_str: lowerCamelCase_ = character_freq_dict.get(lowercase , 0 ) + 1 lowerCamelCase_ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _SCREAMING_SNAKE_CASE ( lowercase : str = "" ): '''simple docstring''' print('\nFor string = ' , lowercase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(lowercase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(lowercase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) lowerCamelCase : int = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
70
1
import pytest import datasets # Import fixture modules as plugins __a : Union[str, Any] = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def UpperCAmelCase ( lowercase ): """simple docstring""" config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase ) def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = tmp_path_factory.getbasetemp() / '''cache''' __lowercase = test_hf_cache_home / '''datasets''' __lowercase = test_hf_cache_home / '''metrics''' __lowercase = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase ) ) __lowercase = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase ) ) __lowercase = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase ) ) @pytest.fixture(autouse=lowercase , scope='''session''' ) def UpperCAmelCase ( ): """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase ) def UpperCAmelCase ( lowercase ): """simple docstring""" monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase ) @pytest.fixture def UpperCAmelCase ( lowercase ): """simple docstring""" monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase )
522
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : int = (EulerDiscreteScheduler,) __a : Any = 10 def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' __lowercase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase__ ) return config def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowercase = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowercase = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
522
1
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCAmelCase__ : """simple docstring""" @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return self.get_dummy_input() @property def __lowerCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def __lowerCAmelCase ( self : Dict , A__ : Tuple=True , A__ : List[Any]=False , A__ : List[str]=False , A__ : List[Any]=False , ) -> str: '''simple docstring''' a__ : List[Any] = 4 a__ : Dict = 3_2 a__ : int = (3_2, 3_2) a__ : Union[str, Any] = torch.manual_seed(0 ) a__ : Union[str, Any] = torch.device(A__ ) a__ : Optional[int] = (batch_size, num_channels) + sizes a__ : Optional[Any] = randn_tensor(A__ , generator=A__ , device=A__ ) a__ : int = {'''hidden_states''': hidden_states} if include_temb: a__ : List[Any] = 1_2_8 a__ : List[str] = randn_tensor((batch_size, temb_channels) , generator=A__ , device=A__ ) if include_res_hidden_states_tuple: a__ : str = torch.manual_seed(1 ) a__ : int = (randn_tensor(A__ , generator=A__ , device=A__ ),) if include_encoder_hidden_states: a__ : List[Any] = floats_tensor((batch_size, 3_2, 3_2) ).to(A__ ) if include_skip_sample: a__ : Optional[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=A__ , device=A__ ) return dummy_input def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' a__ : List[str] = { '''in_channels''': 3_2, '''out_channels''': 3_2, '''temb_channels''': 1_2_8, } if self.block_type == "up": a__ : int = 3_2 if self.block_type == "mid": init_dict.pop('''out_channels''' ) a__ : Tuple = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self : Dict , A__ : Any ) -> str: '''simple docstring''' a__ , a__ : List[Any] = self.prepare_init_args_and_inputs_for_common() a__ : Union[str, Any] = self.block_class(**A__ ) unet_block.to(A__ ) unet_block.eval() with torch.no_grad(): a__ : Tuple = unet_block(**A__ ) if isinstance(A__ , A__ ): a__ : Dict = output[0] self.assertEqual(output.shape , self.output_shape ) a__ : Optional[int] = output[0, -1, -3:, -3:] a__ : List[str] = torch.tensor(A__ ).to(A__ ) assert torch_all_close(output_slice.flatten() , A__ , atol=5E-3 ) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' a__ , a__ : Dict = self.prepare_init_args_and_inputs_for_common() a__ : Optional[int] = self.block_class(**A__ ) model.to(A__ ) model.train() a__ : Dict = model(**A__ ) if isinstance(A__ , A__ ): a__ : Tuple = output[0] a__ : Dict = torch.device(A__ ) a__ : Union[str, Any] = randn_tensor(output.shape , device=A__ ) a__ : str = torch.nn.functional.mse_loss(A__ , A__ ) loss.backward()
688
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int: '''simple docstring''' a__ : Optional[int] = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A__ ) return config def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A__ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A__ , beta_end=A__ ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A__ ) def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : Any = self.scheduler_classes[0] a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) a__ : Dict = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : Tuple = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Dict = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ ) a__ : Union[str, Any] = model(A__ , A__ ) a__ : List[str] = scheduler.step(A__ , A__ , A__ ) a__ : Optional[Any] = output.prev_sample a__ : Tuple = torch.sum(torch.abs(A__ ) ) a__ : Optional[int] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return a__ : List[Any] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : Tuple = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : List[Any] = self.dummy_model() a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Any = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : str = scheduler.scale_model_input(A__ , A__ ) a__ : List[str] = model(A__ , A__ ) a__ : str = scheduler.step(A__ , A__ , A__ ) a__ : List[Any] = output.prev_sample a__ : Dict = torch.sum(torch.abs(A__ ) ) a__ : Optional[Any] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' if torch_device == "mps": return a__ : Optional[int] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : List[Any] = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps , device=A__ ) a__ : Union[str, Any] = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ ) a__ : List[Any] = model(A__ , A__ ) a__ : Any = scheduler.step(A__ , A__ , A__ ) a__ : List[str] = output.prev_sample a__ : Any = torch.sum(torch.abs(A__ ) ) a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) ) if str(A__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
688
1
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self: int , snake_case: NestedDataStructureLike[PathLike] , snake_case: Optional[NamedSplit] = None , snake_case: Optional[Features] = None , snake_case: str = None , snake_case: bool = False , snake_case: bool = False , snake_case: Optional[int] = None , **snake_case: Optional[Any] , ) -> Optional[Any]: super().__init__( snake_case , split=snake_case , features=snake_case , cache_dir=snake_case , keep_in_memory=snake_case , streaming=snake_case , num_proc=snake_case , **snake_case , ) snake_case_ :Union[str, Any] = path_or_paths if isinstance(snake_case , snake_case ) else {self.split: path_or_paths} snake_case_ :List[str] = Text( cache_dir=snake_case , data_files=snake_case , features=snake_case , **snake_case , ) def lowerCAmelCase_ ( self: List[str] ) -> int: # Build iterable dataset if self.streaming: snake_case_ :int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case_ :int = None snake_case_ :Dict = None snake_case_ :Optional[Any] = None snake_case_ :Tuple = None self.builder.download_and_prepare( download_config=snake_case , download_mode=snake_case , verification_mode=snake_case , base_path=snake_case , num_proc=self.num_proc , ) snake_case_ :Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=snake_case , in_memory=self.keep_in_memory ) return dataset
713
"""simple docstring""" from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class lowerCamelCase : '''simple docstring''' def __init__( self: Any , snake_case: List[Any] , snake_case: List[Any]=None ) -> Union[str, Any]: snake_case_ :str = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , snake_case , getattr(snake_case , snake_case ) ) snake_case_ :Optional[int] = module._original_module if isinstance(snake_case , _PatchedModuleObj ) else module class lowerCamelCase : '''simple docstring''' _A : Union[str, Any] = [] def __init__( self: Optional[Any] , snake_case: List[str] , snake_case: str , snake_case: int , snake_case: Dict=None ) -> Any: snake_case_ :Union[str, Any] = obj snake_case_ :List[str] = target snake_case_ :Any = new snake_case_ :Optional[Any] = target.split(""".""" )[0] snake_case_ :Tuple = {} snake_case_ :List[str] = attrs or [] def __enter__( self: Dict ) -> Optional[Any]: *snake_case_, snake_case_ :List[Any] = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(snake_case ) ): try: snake_case_ :Optional[int] = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): snake_case_ :Optional[Any] = getattr(self.obj , snake_case ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(snake_case , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): snake_case_ :int = obj_attr # patch at top level setattr(self.obj , snake_case , _PatchedModuleObj(snake_case , attrs=self.attrs ) ) snake_case_ :Optional[Any] = getattr(self.obj , snake_case ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(snake_case , snake_case , _PatchedModuleObj(getattr(snake_case , snake_case , snake_case ) , attrs=self.attrs ) ) snake_case_ :int = getattr(snake_case , snake_case ) # finally set the target attribute setattr(snake_case , snake_case , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: snake_case_ :Tuple = getattr(import_module(""".""".join(snake_case ) ) , snake_case ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , snake_case ) is attr_value: snake_case_ :Union[str, Any] = getattr(self.obj , snake_case ) setattr(self.obj , snake_case , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" snake_case_ :Dict = globals()["""__builtins__"""][target_attr] setattr(self.obj , snake_case , self.new ) else: raise RuntimeError(f"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self: List[Any] , *snake_case: List[Any] ) -> int: for attr in list(self.original ): setattr(self.obj , snake_case , self.original.pop(snake_case ) ) def lowerCAmelCase_ ( self: List[str] ) -> int: self.__enter__() self._active_patches.append(self ) def lowerCAmelCase_ ( self: int ) -> Optional[Any]: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
310
0
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __UpperCamelCase ( unittest.TestCase , a__ ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = load_tool('text-to-speech' ) self.tool.setup() def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : str = self.tool('hey' ) _lowerCAmelCase : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] ,torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) ,) ) def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : str = self.tool('hey' ) _lowerCAmelCase : Any = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] ,torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) ,) )
259
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 while repunit: _lowerCAmelCase : List[str] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowerCamelCase__ ( _lowerCamelCase = 1000000 ): '''simple docstring''' _lowerCAmelCase : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'''{solution() = }''')
259
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __magic_name__ ( lowercase_ ): """simple docstring""" def _UpperCAmelCase ( self , a__ ): os.makedirs(a__ , exist_ok=a__ ) _lowerCamelCase = {'''source''': '''What is love ?''', '''target''': '''life'''} _lowerCamelCase = {'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _lowerCamelCase = '''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(a__ , f'''{split}.{field}''' ) , '''w''' ) as f: f.write(a__ ) def _UpperCAmelCase ( self , a__ , a__ = "pytorch" ): _lowerCamelCase = self.get_auto_remove_tmp_dir() _lowerCamelCase = os.path.join(a__ , '''output''' ) _lowerCamelCase = os.path.join(a__ , '''data''' ) self._create_dummy_data(data_dir=a__ ) _lowerCamelCase = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) _lowerCamelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(a__ , env=self.get_env() ) _lowerCamelCase = os.path.join(a__ , '''metrics.json''' ) with open(a__ ) as f: _lowerCamelCase = json.load(a__ ) return result @require_torch_gpu def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
297
0
A : Tuple = [0, 2, 4, 6, 8] A : Dict = [1, 3, 5, 7, 9] def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : int ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase__ = 0 for digit in range(10 ): lowercase__ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __magic_name__ , __magic_name__ ) return result lowercase__ = 0 for digita in range(10 ): lowercase__ = digita if (remainder + digita) % 2 == 0: lowercase__ = ODD_DIGITS else: lowercase__ = EVEN_DIGITS for digita in other_parity_digits: lowercase__ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __magic_name__ , __magic_name__ , ) return result def UpperCamelCase ( __magic_name__ : int = 9 ) -> int: """simple docstring""" lowercase__ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__magic_name__ , 0 , [0] * length , __magic_name__ ) return result if __name__ == "__main__": print(F'{solution() = }')
15
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co./facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co./facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co./facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } SCREAMING_SNAKE_CASE : Tuple = "</w>" SCREAMING_SNAKE_CASE : int = "@@ " def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" a_ : int = set() a_ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a_ : Union[str, Any] = char return pairs # Speech2Text2 has no max input length SCREAMING_SNAKE_CASE : int = {"facebook/s2t-wav2vec2-large-en-de": 10_24} class snake_case__ ( __A ): UpperCAmelCase : Tuple = VOCAB_FILES_NAMES UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="<pad>" , UpperCamelCase_="</s>" , UpperCamelCase_="<unk>" , UpperCamelCase_=False , UpperCamelCase_=None , **UpperCamelCase_ , ) -> Dict: """simple docstring""" super().__init__( unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , **UpperCamelCase_ , ) a_ : str = do_lower_case with open(UpperCamelCase_ , encoding="""utf-8""" ) as vocab_handle: a_ : Any = json.load(UpperCamelCase_ ) a_ : List[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) a_ : str = None a_ : Tuple = None else: with open(UpperCamelCase_ , encoding="""utf-8""" ) as merges_handle: a_ : Any = merges_handle.read().split("""\n""" )[:-1] a_ : Optional[int] = [tuple(merge.split()[:2] ) for merge in merges] a_ : Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) a_ : Union[str, Any] = {} @property def A ( self ) -> int: """simple docstring""" return len(self.decoder ) def A ( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def A ( self , UpperCamelCase_ ) -> List[str]: """simple docstring""" a_ : Union[str, Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] a_ : Dict = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: a_ : Optional[Any] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break a_ , a_ : List[Any] = bigram a_ : Any = [] a_ : Any = 0 while i < len(UpperCamelCase_ ): try: a_ : int = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a_ : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a_ : str = tuple(UpperCamelCase_ ) a_ : List[str] = new_word if len(UpperCamelCase_ ) == 1: break else: a_ : Union[str, Any] = get_pairs(UpperCamelCase_ ) a_ : str = """ """.join(UpperCamelCase_ ) if word == "\n " + BPE_TOKEN_MERGES: a_ : Tuple = """\n""" + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase_ ): a_ : int = word.replace(UpperCamelCase_ , """""" ) a_ : List[str] = word.replace(""" """ , UpperCamelCase_ ) a_ : int = word return word def A ( self , UpperCamelCase_ ) -> int: """simple docstring""" if self.bpe_ranks is None: raise ValueError( """This tokenizer was instantiated without a `merges.txt` file, so""" """ that it can only be used for decoding, not for encoding.""" """Make sure to provide `merges.txt` file at instantiation to enable """ """encoding.""" ) if self.do_lower_case: a_ : str = text.lower() a_ : List[Any] = text.split() a_ : str = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(""" """ ) ) ) return split_tokens def A ( self , UpperCamelCase_ ) -> int: """simple docstring""" return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def A ( self , UpperCamelCase_ ) -> str: """simple docstring""" a_ : int = self.decoder.get(UpperCamelCase_ , self.unk_token ) return result def A ( self , UpperCamelCase_ ) -> str: """simple docstring""" a_ : Optional[Any] = """ """.join(UpperCamelCase_ ) # make sure @@ tokens are concatenated a_ : str = """""".join(string.split(UpperCamelCase_ ) ) return string def A ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) a_ : Dict = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + """\n""" ) a_ : Optional[Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) a_ : List[Any] = token_index writer.write(""" """.join(UpperCamelCase_ ) + """\n""" ) index += 1 return (vocab_file, merges_file)
419
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __lowerCamelCase ( A__ : Union[str, Any] ) -> Tuple: lowerCamelCase_ : List[str] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __lowerCamelCase ( A__ : Tuple ) -> Union[str, Any]: lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = emb.weight.shape lowerCamelCase_ : Tuple = nn.Linear(A__ , A__ , bias=A__ ) lowerCamelCase_ : Any = emb.weight.data return lin_layer def __lowerCamelCase ( A__ : str , A__ : Optional[Any]=None ) -> List[str]: lowerCamelCase_ : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCamelCase_ : Tuple = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ : Optional[Any] = key.replace("""moe_layer.experts.0""" , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ : Tuple = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: lowerCamelCase_ : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: lowerCamelCase_ : Dict = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: lowerCamelCase_ : int = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: lowerCamelCase_ : Optional[int] = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: lowerCamelCase_ : Any = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) lowerCamelCase_ : List[str] = state_dict[old_key] return new_dict def __lowerCamelCase ( A__ : Optional[Any] , A__ : Any , A__ : Union[str, Any] , A__ : Any , A__ : str = WEIGHTS_NAME ) -> int: lowerCamelCase_ : str = [] lowerCamelCase_ : Any = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): lowerCamelCase_ : str = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(A__ ): lowerCamelCase_ : str = torch.load(A__ )["""model"""] remove_ignore_keys_(A__ ) lowerCamelCase_ : List[Any] = rename_fairseq_keys(A__ , A__ ) lowerCamelCase_ : Dict = os.path.join( A__ , weights_name.replace(""".bin""" , f'''-{len(A__ )+1:05d}-of-???.bin''' ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block lowerCamelCase_ : Tuple = os.path.join(A__ , weights_name.replace(""".bin""" , f'''-{len(A__ )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ : Optional[int] = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(A__ ) lowerCamelCase_ : Any = rename_fairseq_keys(A__ , A__ ) lowerCamelCase_ : List[Any] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: lowerCamelCase_ : List[Any] = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index lowerCamelCase_ : Union[str, Any] = {} for idx, shard in enumerate(A__ ): lowerCamelCase_ : Optional[int] = weights_name.replace(""".bin""" , f'''-{idx+1:05d}-of-{len(A__ ):05d}.bin''' ) lowerCamelCase_ : Optional[Any] = os.path.join(A__ , weights_name.replace(""".bin""" , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: lowerCamelCase_ : List[str] = shard_file # Add the metadata lowerCamelCase_ : Dict = {"""total_size""": total_size} lowerCamelCase_ : List[str] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(A__ , A__ ) , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase_ : Optional[int] = json.dumps(A__ , indent=2 , sort_keys=A__ ) + """\n""" f.write(A__ ) return metadata, index if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) snake_case__ : int = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : List[Any] = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Union[str, Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
171
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' _a = MODEL_FOR_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _lowerCAmelCase ( self : Optional[Any] ) ->int: lowerCamelCase_ : List[str] = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ : List[str] = text_generator("""This is a test""" , do_sample=__a ) self.assertEqual( __a , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) lowerCamelCase_ : List[str] = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( __a , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) lowerCamelCase_ : Any = text_generator("""This is a test""" , do_sample=__a , num_return_sequences=2 , return_tensors=__a ) self.assertEqual( __a , [ {"""generated_token_ids""": ANY(__a )}, {"""generated_token_ids""": ANY(__a )}, ] , ) lowerCamelCase_ : List[Any] = text_generator.model.config.eos_token_id lowerCamelCase_ : Tuple = """<pad>""" lowerCamelCase_ : Union[str, Any] = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {"""generated_token_ids""": ANY(__a )}, {"""generated_token_ids""": ANY(__a )}, ], [ {"""generated_token_ids""": ANY(__a )}, {"""generated_token_ids""": ANY(__a )}, ], ] , ) @require_tf def _lowerCAmelCase ( self : Union[str, Any] ) ->int: lowerCamelCase_ : int = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ : Dict = text_generator("""This is a test""" , do_sample=__a ) self.assertEqual( __a , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) lowerCamelCase_ : str = text_generator(["""This is a test""", """This is a second test"""] , do_sample=__a ) self.assertEqual( __a , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def _lowerCAmelCase ( self : int , __a : Any , __a : List[str] , __a : Optional[Any] ) ->Tuple: lowerCamelCase_ : List[str] = TextGenerationPipeline(model=__a , tokenizer=__a ) return text_generator, ["This is a test", "Another test"] def _lowerCAmelCase ( self : int ) ->Optional[int]: lowerCamelCase_ : str = """Hello I believe in""" lowerCamelCase_ : List[Any] = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) lowerCamelCase_ : Dict = text_generator(__a ) self.assertEqual( __a , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) lowerCamelCase_ : Union[str, Any] = text_generator(__a , stop_sequence=""" fe""" ) self.assertEqual(__a , [{"""generated_text""": """Hello I believe in fe"""}] ) def _lowerCAmelCase ( self : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) ->Tuple: lowerCamelCase_ : int = text_generator.model lowerCamelCase_ : Any = text_generator.tokenizer lowerCamelCase_ : Optional[Any] = text_generator("""This is a test""" ) self.assertEqual(__a , [{"""generated_text""": ANY(__a )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) lowerCamelCase_ : Any = text_generator("""This is a test""" , return_full_text=__a ) self.assertEqual(__a , [{"""generated_text""": ANY(__a )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) lowerCamelCase_ : Optional[Any] = pipeline(task="""text-generation""" , model=__a , tokenizer=__a , return_full_text=__a ) lowerCamelCase_ : Any = text_generator("""This is a test""" ) self.assertEqual(__a , [{"""generated_text""": ANY(__a )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) lowerCamelCase_ : Any = text_generator("""This is a test""" , return_full_text=__a ) self.assertEqual(__a , [{"""generated_text""": ANY(__a )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) lowerCamelCase_ : List[str] = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__a ) self.assertEqual( __a , [ [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ : List[str] = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__a ) self.assertEqual( __a , [ [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], [{"""generated_text""": ANY(__a )}, {"""generated_text""": ANY(__a )}], ] , ) with self.assertRaises(__a ): lowerCamelCase_ : Dict = text_generator("""test""" , return_full_text=__a , return_text=__a ) with self.assertRaises(__a ): lowerCamelCase_ : Union[str, Any] = text_generator("""test""" , return_full_text=__a , return_tensors=__a ) with self.assertRaises(__a ): lowerCamelCase_ : Optional[Any] = text_generator("""test""" , return_text=__a , return_tensors=__a ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ : str = text_generator("""""" ) self.assertEqual(__a , [{"""generated_text""": ANY(__a )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ : Union[str, Any] = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ : str = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 10_000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 , max_new_tokens=20 ) lowerCamelCase_ : Optional[int] = text_generator("""This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__a ): text_generator( """This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: import torch # Classic `model_kwargs` lowerCamelCase_ : Any = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ : int = pipe("""This is a test""" ) self.assertEqual( __a , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ : Optional[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ : str = pipe("""This is a test""" ) self.assertEqual( __a , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ : List[str] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ : str = pipe("""This is a test""" ) self.assertEqual( __a , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def _lowerCAmelCase ( self : Dict ) ->Optional[Any]: import torch lowerCamelCase_ : Any = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def _lowerCAmelCase ( self : List[str] ) ->Optional[int]: import torch lowerCamelCase_ : Optional[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=__a , top_p=0.5 ) def _lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: lowerCamelCase_ : Optional[int] = """Hello world""" lowerCamelCase_ : Optional[Any] = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": lowerCamelCase_ : str = logging.get_logger("""transformers.generation.tf_utils""" ) else: lowerCamelCase_ : int = logging.get_logger("""transformers.generation.utils""" ) lowerCamelCase_ : List[Any] = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__a ) as cl: lowerCamelCase_ : Any = text_generator(__a , max_length=10 , max_new_tokens=1 ) self.assertIn(__a , cl.out ) # The user only sets one -> no warning with CaptureLogger(__a ) as cl: lowerCamelCase_ : int = text_generator(__a , max_new_tokens=1 ) self.assertNotIn(__a , cl.out ) with CaptureLogger(__a ) as cl: lowerCamelCase_ : Optional[int] = text_generator(__a , max_length=10 ) self.assertNotIn(__a , cl.out )
171
1