code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCAmelCase__ : """simple docstring""" lowerCAmelCase__ : Optional[Union[str, Path]] = None lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : Optional[Dict] = None lowerCAmelCase__ : Optional[str] = None lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = True lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : int = 1 lowerCAmelCase__ : Optional[Union[str, bool]] = None lowerCAmelCase__ : bool = False lowerCAmelCase__ : Optional[Dict] = None lowerCAmelCase__ : Optional[str] = None def _UpperCAmelCase ( self: Any ) -> "DownloadConfig": '''simple docstring''' return self.__class__(**{k: copy.deepcopy(__lowerCAmelCase ) for k, v in self.__dict__.items()} )
221
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a_ = 250004 a_ = 250020 @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = MBartaaTokenizer lowerCAmelCase__ : List[Any] = MBartaaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[Any] = True def _UpperCAmelCase ( self: int ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = MBartaaTokenizer(__lowerCAmelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self: Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = "<s>" __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def _UpperCAmelCase ( self: List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCAmelCase ) , 1_054 ) def _UpperCAmelCase ( self: Any ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def _UpperCAmelCase ( self: Optional[Any] ) -> Any: '''simple docstring''' __UpperCAmelCase = MBartaaTokenizer(__lowerCAmelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCAmelCase ) __UpperCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def _UpperCAmelCase ( self: List[str] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = {"input_ids": [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Dict = 'facebook/mbart-large-50-one-to-many-mmt' lowerCAmelCase__ : Optional[int] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCAmelCase__ : Union[str, Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCAmelCase__ : Optional[int] = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def _UpperCAmelCase ( cls: Any ) -> Tuple: '''simple docstring''' __UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) __UpperCAmelCase = 1 return cls def _UpperCAmelCase ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 250_038 ) def _UpperCAmelCase ( self: Any ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase ) def _UpperCAmelCase ( self: str ) -> Any: '''simple docstring''' self.assertIn(__lowerCAmelCase , self.tokenizer.all_special_ids ) __UpperCAmelCase = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] __UpperCAmelCase = self.tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCAmelCase ) def _UpperCAmelCase ( self: Union[str, Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , __lowerCAmelCase ) __UpperCAmelCase = 10 __UpperCAmelCase = self.tokenizer(__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase ).input_ids[0] self.assertEqual(ids[0] , __lowerCAmelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) def _UpperCAmelCase ( self: int ) -> Dict: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250_053, 250_001] ) def _UpperCAmelCase ( self: str ) -> Tuple: '''simple docstring''' __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCAmelCase ) __UpperCAmelCase = MBartaaTokenizer.from_pretrained(__lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCAmelCase ) @require_torch def _UpperCAmelCase ( self: Any ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCAmelCase , return_tensors="pt" ) __UpperCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _UpperCAmelCase ( self: Union[str, Any] ) -> Tuple: '''simple docstring''' __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __UpperCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.tokenizer(self.src_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=3 , return_tensors="pt" ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=10 , return_tensors="pt" ) __UpperCAmelCase = targets["input_ids"] __UpperCAmelCase = shift_tokens_right(__lowerCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _UpperCAmelCase ( self: str ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , { # en_XX, A, test, EOS "input_ids": [[250_004, 62, 3_034, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250_001, } , )
221
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase__ ='src/diffusers' lowercase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. lowercase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase__ =spec.loader.load_module() def UpperCamelCase_ ( A__ , A__ ): return line.startswith(A__ ) or len(A__ ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , A__ ) is not None def UpperCamelCase_ ( A__ ): a_ = object_name.split(""".""" ) a_ = 0 # First let's find the module where our object lives. a_ = parts[i] while i < len(A__ ) and not os.path.isfile(os.path.join(A__ , F'''{module}.py''' ) ): i += 1 if i < len(A__ ): a_ = os.path.join(A__ , parts[i] ) if i >= len(A__ ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(A__ , F'''{module}.py''' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: a_ = f.readlines() # Now let's find the class / func in the code! a_ = """""" a_ = 0 for name in parts[i + 1 :]: while ( line_index < len(A__ ) and re.search(rF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(A__ ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a_ = line_index while line_index < len(A__ ) and _should_continue(lines[line_index] , A__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] return "".join(A__ ) lowercase__ =re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') lowercase__ =re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') lowercase__ =re.compile(r'<FILL\s+[^>]*>') def UpperCamelCase_ ( A__ ): a_ = code.split("""\n""" ) a_ = 0 while idx < len(A__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(A__ ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def UpperCamelCase_ ( A__ ): a_ = len(get_indent(A__ ) ) > 0 if has_indent: a_ = F'''class Bla:\n{code}''' a_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=A__ ) a_ = black.format_str(A__ , mode=A__ ) a_ , a_ = style_docstrings_in_code(A__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def UpperCamelCase_ ( A__ , A__=False ): with open(A__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: a_ = f.readlines() a_ = [] a_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(A__ ): a_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a_ , a_ , a_ = search.groups() a_ = find_code_in_diffusers(A__ ) a_ = get_indent(A__ ) a_ = line_index + 1 if indent == theoretical_indent else line_index + 2 a_ = theoretical_indent a_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a_ = True while line_index < len(A__ ) and should_continue: line_index += 1 if line_index >= len(A__ ): break a_ = lines[line_index] a_ = _should_continue(A__ , A__ ) and re.search(F'''^{indent}# End copy''' , A__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] a_ = """""".join(A__ ) # Remove any nested `Copied from` comments to avoid circular copies a_ = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(A__ ) is None] a_ = """\n""".join(A__ ) # Before comparing, use the `replace_pattern` on the original code. if len(A__ ) > 0: a_ = replace_pattern.replace("""with""" , """""" ).split(""",""" ) a_ = [_re_replace_pattern.search(A__ ) for p in patterns] for pattern in patterns: if pattern is None: continue a_ , a_ , a_ = pattern.groups() a_ = re.sub(A__ , A__ , A__ ) if option.strip() == "all-casing": a_ = re.sub(obja.lower() , obja.lower() , A__ ) a_ = re.sub(obja.upper() , obja.upper() , A__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a_ = blackify(lines[start_index - 1] + theoretical_code ) a_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a_ = lines[:start_index] + [theoretical_code] + lines[line_index:] a_ = start_index + 1 if overwrite and len(A__ ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(A__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(A__ ) return diffs def UpperCamelCase_ ( A__ = False ): a_ = glob.glob(os.path.join(A__ , """**/*.py""" ) , recursive=A__ ) a_ = [] for filename in all_files: a_ = is_copy_consistent(A__ , A__ ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(A__ ) > 0: a_ = """\n""".join(A__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
511
'''simple docstring''' def UpperCamelCase_ ( A__ ): if n_term == "": return [] a_ = [] for temp in range(int(A__ ) ): series.append(F'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": lowercase__ =input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
511
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a__ : Any = logging.get_logger(__name__) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self , lowercase = True , lowercase = None , lowercase = 0.9 , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = None , lowercase = 1 / 2_5_5 , lowercase = True , lowercase = True , lowercase = None , lowercase = None , **lowercase , ) -> None: super().__init__(**lowercase ) __UpperCamelCase = size if size is not None else {"""shortest_edge""": 2_2_4} __UpperCamelCase = get_size_dict(lowercase , default_to_square=lowercase ) __UpperCamelCase = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} __UpperCamelCase = get_size_dict(lowercase , param_name="""crop_size""" ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCamelCase ( self , lowercase , lowercase , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: __UpperCamelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size["""height"""] / crop_pct ) else: __UpperCamelCase = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase ) ) __UpperCamelCase = get_resize_output_image_size(lowercase , size=lowercase , default_to_square=lowercase ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(lowercase , size=size["""shortest_edge"""] , default_to_square=lowercase ) elif "height" in size and "width" in size: __UpperCamelCase = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase ) ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: __UpperCamelCase = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(lowercase , size=(size["""height"""], size["""width"""]) , data_format=lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> str: return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(lowercase , default_to_square=lowercase ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(lowercase , param_name="""crop_size""" ) __UpperCamelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(lowercase ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=lowercase , size=lowercase , crop_pct=lowercase , resample=lowercase ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] __UpperCamelCase = {"""pixel_values""": images} return BatchFeature(data=lowercase , tensor_type=lowercase )
601
'''simple docstring''' def _lowercase ( ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = 1 while len(__A ) < 1E6: constant.append(str(__A ) ) i += 1 __UpperCamelCase = """""".join(__A ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9_999] ) * int(constant[99_999] ) * int(constant[999_999] ) ) if __name__ == "__main__": print(solution())
601
1
import sys from collections import defaultdict class A : '''simple docstring''' def __init__( self : Dict ) -> Any: """simple docstring""" A__ = [] def a_ ( self : int , __lowerCAmelCase : List[Any] ) -> int: """simple docstring""" return self.node_position[vertex] def a_ ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" A__ = pos def a_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ) -> Optional[int]: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A__ = 2 * start + 1 else: A__ = 2 * start + 2 if heap[smallest_child] < heap[start]: A__ , A__ = heap[smallest_child], positions[smallest_child] A__ , A__ = ( heap[start], positions[start], ) A__ , A__ = temp, tempa A__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __lowerCAmelCase ) self.top_to_bottom(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int ) -> List[Any]: """simple docstring""" A__ = position[index] while index != 0: A__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A__ = heap[parent] A__ = position[parent] self.set_position(position[parent] , __lowerCAmelCase ) else: A__ = val A__ = temp self.set_position(__lowerCAmelCase , __lowerCAmelCase ) break A__ = parent else: A__ = val A__ = temp self.set_position(__lowerCAmelCase , 0 ) def a_ ( self : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" A__ = len(__lowerCAmelCase ) // 2 - 1 for i in range(__lowerCAmelCase , -1 , -1 ): self.top_to_bottom(__lowerCAmelCase , __lowerCAmelCase , len(__lowerCAmelCase ) , __lowerCAmelCase ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" A__ = positions[0] A__ = sys.maxsize self.top_to_bottom(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) , __lowerCAmelCase ) return temp def __lowerCamelCase ( __a :Any ) -> Dict: """simple docstring""" A__ = Heap() A__ = [0] * len(__a ) A__ = [-1] * len(__a ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A__ = [] # Heap of Distance of vertices from their neighboring vertex A__ = [] for vertex in range(len(__a ) ): distance_tv.append(sys.maxsize ) positions.append(__a ) heap.node_position.append(__a ) A__ = [] A__ = 1 A__ = sys.maxsize for neighbor, distance in adjacency_list[0]: A__ = 0 A__ = distance heap.heapify(__a , __a ) for _ in range(1 , len(__a ) ): A__ = heap.delete_minimum(__a , __a ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__a )] ): A__ = distance heap.bottom_to_top( __a , heap.get_position(__a ) , __a , __a ) A__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A : Any = int(input('''Enter number of edges: ''').strip()) A : Any = defaultdict(list) for _ in range(edges_number): A : int = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
714
from __future__ import annotations A : Optional[int] = 8.988e9 # units = N * m^s * C^-2 def __lowerCamelCase ( __a :float , __a :float , __a :float , __a :float ) -> dict[str, float]: """simple docstring""" A__ = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if distance < 0: raise ValueError("""Distance cannot be negative""" ) if force == 0: A__ = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: A__ = abs(__a ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: A__ = abs(__a ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: A__ = (COULOMBS_CONSTANT * charge_product / abs(__a )) ** 0.5 return {"distance": distance} raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
247
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
146
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''sail/poolformer_s12''': '''https://huggingface.co./sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co./models?filter=poolformer } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """poolformer""" def __init__(self , __a=3 , __a=16 , __a=16 , __a=3 , __a=4.0 , __a=[2, 2, 6, 2] , __a=[64, 128, 320, 512] , __a=[7, 3, 3, 3] , __a=[4, 2, 2, 2] , __a=[2, 1, 1, 1] , __a=4 , __a=0.0 , __a="gelu" , __a=True , __a=1E-5 , __a=0.02 , **__a , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = num_channels UpperCAmelCase__ = patch_size UpperCAmelCase__ = stride UpperCAmelCase__ = padding UpperCAmelCase__ = pool_size UpperCAmelCase__ = hidden_sizes UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = depths UpperCAmelCase__ = patch_sizes UpperCAmelCase__ = strides UpperCAmelCase__ = num_encoder_blocks UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_layer_scale UpperCAmelCase__ = layer_scale_init_value UpperCAmelCase__ = initializer_range super().__init__(**__a ) class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ (self ) -> float: """simple docstring""" return 2E-3
146
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Optional[Any] = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
'''simple docstring''' from manim import * class UpperCamelCase__ (a ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 ) lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""CPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(1 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""GPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""Model""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,) lowerCamelCase__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) lowerCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for i, rect in enumerate(_lowerCAmelCase ): lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 ) cpu_target.move_to(_lowerCAmelCase ) cpu_target.generate_target() lowerCamelCase__ = 0.46 / 4 lowerCamelCase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 ) cpu_targs.append(_lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) ) second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
9
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> np.array: _UpperCAmelCase = f"""{sampling_rate}""" _UpperCAmelCase = "1" _UpperCAmelCase = "f32le" _UpperCAmelCase = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__snake_case , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _UpperCAmelCase = ffmpeg_process.communicate(__snake_case ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error _UpperCAmelCase = output_stream[0] _UpperCAmelCase = np.frombuffer(__snake_case , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case = "f32le" , ) -> int: _UpperCAmelCase = f"""{sampling_rate}""" _UpperCAmelCase = "1" if format_for_conversion == "s16le": _UpperCAmelCase = 2 elif format_for_conversion == "f32le": _UpperCAmelCase = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _UpperCAmelCase = platform.system() if system == "Linux": _UpperCAmelCase = "alsa" _UpperCAmelCase = "default" elif system == "Darwin": _UpperCAmelCase = "avfoundation" _UpperCAmelCase = ":0" elif system == "Windows": _UpperCAmelCase = "dshow" _UpperCAmelCase = "default" _UpperCAmelCase = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] _UpperCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _UpperCAmelCase = _ffmpeg_stream(__snake_case , __snake_case ) for item in iterator: yield item def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case = None , __snake_case = None , __snake_case = "f32le" , ) -> List[str]: if stream_chunk_s is not None: _UpperCAmelCase = stream_chunk_s else: _UpperCAmelCase = chunk_length_s _UpperCAmelCase = ffmpeg_microphone(__snake_case , __snake_case , format_for_conversion=__snake_case ) if format_for_conversion == "s16le": _UpperCAmelCase = np.intaa _UpperCAmelCase = 2 elif format_for_conversion == "f32le": _UpperCAmelCase = np.floataa _UpperCAmelCase = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _UpperCAmelCase = chunk_length_s / 6 _UpperCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__snake_case , (int, float) ): _UpperCAmelCase = [stride_length_s, stride_length_s] _UpperCAmelCase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _UpperCAmelCase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _UpperCAmelCase = datetime.datetime.now() _UpperCAmelCase = datetime.timedelta(seconds=__snake_case ) for item in chunk_bytes_iter(__snake_case , __snake_case , stride=(stride_left, stride_right) , stream=__snake_case ): # Put everything back in numpy scale _UpperCAmelCase = np.frombuffer(item["""raw"""] , dtype=__snake_case ) _UpperCAmelCase = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) _UpperCAmelCase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> str: _UpperCAmelCase = B"" _UpperCAmelCase = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _UpperCAmelCase = 0 for raw in iterator: acc += raw if stream and len(__snake_case ) < chunk_len: _UpperCAmelCase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__snake_case ) >= chunk_len: # We are flushing the accumulator _UpperCAmelCase = (_stride_left, stride_right) _UpperCAmelCase = {"raw": acc[:chunk_len], "stride": stride} if stream: _UpperCAmelCase = False yield item _UpperCAmelCase = stride_left _UpperCAmelCase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__snake_case ) > stride_left: _UpperCAmelCase = {"raw": acc, "stride": (_stride_left, 0)} if stream: _UpperCAmelCase = False yield item def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Tuple: _UpperCAmelCase = 2**2_4 # 16Mo try: with subprocess.Popen(__snake_case , stdout=subprocess.PIPE , bufsize=__snake_case ) as ffmpeg_process: while True: _UpperCAmelCase = ffmpeg_process.stdout.read(__snake_case ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
108
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _lowerCamelCase ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): """simple docstring""" def __init__( self , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__(features=UpperCAmelCase ) __snake_case : Optional[int] = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' import torch if isinstance(UpperCAmelCase , UpperCAmelCase ) and column: if all( isinstance(UpperCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCAmelCase ) return column def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' import torch if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __snake_case : Optional[Any] = {} if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __snake_case : List[Any] = {"dtype": torch.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __snake_case : Union[str, Any] = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image ): __snake_case : Optional[int] = np.asarray(UpperCAmelCase ) return torch.tensor(UpperCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(UpperCAmelCase , "__array__" ) and not isinstance(UpperCAmelCase , torch.Tensor ): __snake_case : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Mapping: '''simple docstring''' __snake_case : Any = self.numpy_arrow_extractor().extract_row(UpperCAmelCase ) __snake_case : Dict = self.python_features_decoder.decode_row(UpperCAmelCase ) return self.recursive_tensorize(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> "torch.Tensor": '''simple docstring''' __snake_case : Optional[Any] = self.numpy_arrow_extractor().extract_column(UpperCAmelCase ) __snake_case : List[str] = self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] ) __snake_case : Union[str, Any] = self.recursive_tensorize(UpperCAmelCase ) __snake_case : Union[str, Any] = self._consolidate(UpperCAmelCase ) return column def UpperCAmelCase ( self , UpperCAmelCase ) -> Mapping: '''simple docstring''' __snake_case : str = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase ) __snake_case : List[str] = self.python_features_decoder.decode_batch(UpperCAmelCase ) __snake_case : Union[str, Any] = self.recursive_tensorize(UpperCAmelCase ) for column_name in batch: __snake_case : Dict = self._consolidate(batch[column_name] ) return batch
243
0
def lowerCamelCase_ ( A : int ): """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) lowerCAmelCase_ = [True] * (num + 1) lowerCAmelCase_ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , A ): lowerCAmelCase_ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
413
_snake_case = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
413
1
def A_ ( ) -> List[Any]: a__ : Any = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] a__ : Optional[Any] = 6 a__ : Any = 1 a__ : Union[str, Any] = 1901 a__ : Dict = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 a__ : List[str] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 a__ : int = day - 29 else: if day > days_per_month[month - 1]: month += 1 a__ : Optional[int] = day - days_per_month[month - 2] if month > 12: year += 1 a__ : Any = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
302
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class A__ : """simple docstring""" __A : Optional[int] = None __A : Optional[jnp.ndarray] = None __A : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def __lowercase ( cls) -> Union[str, Any]: '''simple docstring''' return cls() @dataclass class A__ ( __UpperCAmelCase ): """simple docstring""" __A : jnp.ndarray __A : jnp.ndarray __A : KarrasVeSchedulerState class A__ ( __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" @property def __lowercase ( self) -> str: '''simple docstring''' return True @register_to_config def __init__( self , lowercase = 0.02 , lowercase = 100 , lowercase = 1.0_07 , lowercase = 80 , lowercase = 0.05 , lowercase = 50 , ) -> List[Any]: '''simple docstring''' pass def __lowercase ( self) -> str: '''simple docstring''' return KarrasVeSchedulerState.create() def __lowercase ( self , lowercase , lowercase , lowercase = ()) -> KarrasVeSchedulerState: '''simple docstring''' a__ : Any = jnp.arange(0 , lowercase)[::-1].copy() a__ : Any = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowercase , schedule=jnp.array(lowercase , dtype=jnp.floataa) , timesteps=lowercase , ) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , ) -> Tuple[jnp.ndarray, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: a__ : List[str] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1) else: a__ : str = 0 # sample eps ~ N(0, S_noise^2 * I) a__ : Optional[Any] = random.split(lowercase , num=1) a__ : Optional[Any] = self.config.s_noise * random.normal(key=lowercase , shape=sample.shape) a__ : str = sigma + gamma * sigma a__ : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' a__ : Union[str, Any] = sample_hat + sigma_hat * model_output a__ : Tuple = (sample_hat - pred_original_sample) / sigma_hat a__ : Dict = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowercase , derivative=lowercase , state=lowercase) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' a__ : Optional[int] = sample_prev + sigma_prev * model_output a__ : Union[str, Any] = (sample_prev - pred_original_sample) / sigma_prev a__ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowercase , derivative=lowercase , state=lowercase) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase) -> int: '''simple docstring''' raise NotImplementedError()
302
1
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __a ): __SCREAMING_SNAKE_CASE : Tuple = ['audio_values', 'audio_mask'] def __init__(self , lowercase=2048 , lowercase=1 , lowercase=[16, 16] , lowercase=128 , lowercase=44100 , lowercase=86 , lowercase=2048 , lowercase=0.0 , **lowercase , ): super().__init__( feature_size=a_ , sampling_rate=a_ , padding_value=a_ , **a_ , ) A_ : Optional[int] = spectrogram_length A_ : Dict = num_channels A_ : int = patch_size A_ : Any = feature_size // self.patch_size[1] A_ : List[Any] = n_fft A_ : List[str] = sampling_rate // hop_length_to_sampling_rate A_ : int = sampling_rate A_ : Dict = padding_value A_ : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a_ , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=a_ , norm="""slaney""" , mel_scale="""slaney""" , ).T def _a (self , lowercase ): A_ : List[Any] = spectrogram( a_ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) A_ : Dict = log_spec[:, :-1] A_ : Union[str, Any] = log_spec - 20.0 A_ : int = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowercase , lowercase = None , lowercase = True , lowercase = None , lowercase = False , lowercase = False , **lowercase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A_ : str = isinstance(a_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(a_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a_ , np.ndarray ): A_ : int = np.asarray(a_ , dtype=np.floataa ) elif isinstance(a_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : List[str] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis A_ : Dict = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , a_ ): A_ : str = [np.asarray(a_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask A_ : Any = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: A_ : Any = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] A_ : Optional[int] = np.array(a_ ).astype(np.floataa ) # convert into correct format for padding A_ : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch A_ : Optional[Any] = np.ones([len(a_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) A_ : Any = padded_audio_features * self.padding_value for i in range(len(a_ ) ): A_ : Optional[Any] = audio_features[i] A_ : Optional[int] = feature # return as BatchFeature if return_attention_mask: A_ : Dict = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: A_ : Optional[Any] = {"""audio_values""": padded_audio_features} A_ : int = BatchFeature(data=a_ , tensor_type=a_ ) return encoded_inputs
706
'''simple docstring''' import os import sys import unittest lowerCamelCase :Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Tuple = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = {"""BertModelTest""": """BertModelTester"""} A_ : Union[str, Any] = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : Optional[Any] = get_model_to_test_mapping(lowercase ) A_ : List[str] = get_model_to_test_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } A_ : Any = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : List[Any] = get_model_to_tester_mapping(lowercase ) A_ : Optional[int] = get_model_to_tester_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } A_ : Dict = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase )
686
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = '''ylacombe/bark-small''' UpperCAmelCase__ : int = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = '''en_speaker_1''' UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Any = '''speaker_embeddings_path.json''' UpperCAmelCase__ : Dict = '''speaker_embeddings''' def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCamelCase_ ) def lowercase_ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Optional[int] = BarkProcessor(tokenizer=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase__ : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase__ : int = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase__ : List[Any] = 35 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : List[Any] = 8 UpperCAmelCase__ : Union[str, Any] = { '''semantic_prompt''': np.ones(UpperCamelCase_ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase__ : int = processor(text=self.input_string , voice_preset=UpperCamelCase_ ) UpperCAmelCase__ : int = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase__ : List[str] = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(UpperCamelCase_ , **UpperCamelCase_ ) UpperCAmelCase__ : List[str] = processor(text=self.input_string , voice_preset=UpperCamelCase_ ) UpperCAmelCase__ : str = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.get_tokenizer() UpperCAmelCase__ : int = BarkProcessor(tokenizer=UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = processor(text=self.input_string ) UpperCAmelCase__ : List[str] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
75
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ) ->List[str]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' snake_case__ = nn.Parameter(UpperCAmelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' snake_case__ = nn.Parameter(UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # set torch weights for 1-to-1 comparison snake_case__ = np.asarray(weights[0] ) snake_case__ = np.asarray(weights[1] ) snake_case__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCAmelCase_ ).view(-1 , UpperCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # set torch weights for 1-to-1 comparison snake_case__ = np.asarray(weights[0] ) snake_case__ = np.asarray(weights[1] ) snake_case__ = np.asarray(weights[2] ) snake_case__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCAmelCase_ ).view(-1 , UpperCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Dict: # layernorm 1 snake_case__ = weights[0][0][0] snake_case__ = np.asarray(layer_norm_a[0] ) snake_case__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # lsh weights + output snake_case__ = weights[0][1] if len(UpperCAmelCase_ ) < 4: set_layer_weights_in_torch_lsh(UpperCAmelCase_ , torch_block.attention , UpperCAmelCase_ ) else: set_layer_weights_in_torch_local(UpperCAmelCase_ , torch_block.attention , UpperCAmelCase_ ) # intermediate weighs snake_case__ = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCAmelCase_ ) == 4: snake_case__ = intermediate_weights[2] # layernorm 2 snake_case__ = np.asarray(intermediate_weights[0][0] ) snake_case__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # intermediate dense snake_case__ = np.asarray(intermediate_weights[1][0] ) snake_case__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) # intermediate out snake_case__ = np.asarray(intermediate_weights[4][0] ) snake_case__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Union[str, Any]: # reformer model snake_case__ = torch_model.reformer # word embeds snake_case__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCAmelCase_ ) , ) if isinstance(weights[3] , UpperCAmelCase_ ): snake_case__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' snake_case__ = nn.Parameter(torch.tensor(UpperCAmelCase_ ) ) snake_case__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCAmelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # output layer norm snake_case__ = np.asarray(weights[7][0] ) snake_case__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # output embeddings snake_case__ = np.asarray(weights[9][0] ) snake_case__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # Initialise PyTorch model snake_case__ = ReformerConfig.from_json_file(UpperCAmelCase_ ) print(f'''Building PyTorch model from configuration: {config}''' ) snake_case__ = ReformerModelWithLMHead(UpperCAmelCase_ ) with open(UpperCAmelCase_ , 'rb' ) as f: snake_case__ = pickle.load(UpperCAmelCase_ )['weights'] set_model_weights_in_torch(UpperCAmelCase_ , UpperCAmelCase_ , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a__ : Dict = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
368
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase : List[str] = logging.get_logger(__name__) lowercase : List[Any] = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co./facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class A__ ( __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __A : str = '''convnextv2''' def __init__( self , lowercase=3 , lowercase=4 , lowercase=4 , lowercase=None , lowercase=None , lowercase="gelu" , lowercase=0.02 , lowercase=1e-12 , lowercase=0.0 , lowercase=224 , lowercase=None , lowercase=None , **lowercase , ) -> Tuple: '''simple docstring''' super().__init__(**lowercase) a__ : Tuple = num_channels a__ : Optional[int] = patch_size a__ : List[Any] = num_stages a__ : Optional[Any] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes a__ : Tuple = [3, 3, 9, 3] if depths is None else depths a__ : Union[str, Any] = hidden_act a__ : List[Any] = initializer_range a__ : int = layer_norm_eps a__ : List[Any] = drop_path_rate a__ : Tuple = image_size a__ : int = ['stem'] + [F'stage{idx}' for idx in range(1 , len(self.depths) + 1)] a__ : Dict = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names)
717
from collections import namedtuple lowercase : List[str] = namedtuple("""from_to""", """from_ to""") lowercase : Tuple = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1_0_0_0), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00_454, 264.172), """cubicyard""": from_to(0.76_455, 1.30_795), """cubicfoot""": from_to(0.028, 35.3_147), """cup""": from_to(0.000_236_588, 4_226.75), } def A_ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
392
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel SCREAMING_SNAKE_CASE_:Optional[Any] = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _lowerCAmelCase ( cls ): A : Any = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def _lowerCAmelCase ( cls ): try: delete_repo(token=cls._token, repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def _lowerCAmelCase ( self ): A : Any = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) A : List[Any] = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""test-model-flax""", use_auth_token=self._token ) A : List[str] = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) A : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) A : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__, 1e-3, msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token, repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__, repo_id="""test-model-flax""", push_to_hub=lowerCamelCase__, use_auth_token=self._token ) A : int = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) A : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) A : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__, 1e-3, msg=f'''{key} not identical''' ) def _lowerCAmelCase ( self ): A : Optional[Any] = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) A : Dict = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""valid_org/test-model-flax-org""", use_auth_token=self._token ) A : int = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) A : List[Any] = flatten_dict(unfreeze(model.params ) ) A : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__, 1e-3, msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token, repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCamelCase__, repo_id="""valid_org/test-model-flax-org""", push_to_hub=lowerCamelCase__, use_auth_token=self._token ) A : Tuple = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) A : str = flatten_dict(unfreeze(model.params ) ) A : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__, 1e-3, msg=f'''{key} not identical''' ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" A : Optional[int] = True A : Optional[Any] = flatten_dict(modela.params ) A : Union[str, Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: A : str = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : Any = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A : int = FlaxBertModel(lowerCamelCase__ ) A : str = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__, lowerCamelCase__ ) ) with self.assertRaises(lowerCamelCase__ ): A : str = FlaxBertModel.from_pretrained(lowerCamelCase__ ) A : Optional[Any] = FlaxBertModel.from_pretrained(lowerCamelCase__, subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__, lowerCamelCase__ ) ) def _lowerCAmelCase ( self ): A : Optional[int] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A : Dict = FlaxBertModel(lowerCamelCase__ ) A : Tuple = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__, lowerCamelCase__ ), max_shard_size="""10KB""" ) with self.assertRaises(lowerCamelCase__ ): A : int = FlaxBertModel.from_pretrained(lowerCamelCase__ ) A : str = FlaxBertModel.from_pretrained(lowerCamelCase__, subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__, lowerCamelCase__ ) ) def _lowerCAmelCase ( self ): A : Union[str, Any] = 'bert' A : List[str] = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(lowerCamelCase__ ): A : Union[str, Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) A : Tuple = FlaxBertModel.from_pretrained(lowerCamelCase__, subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Optional[Any] = 'bert' A : Optional[int] = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(lowerCamelCase__ ): A : Tuple = FlaxBertModel.from_pretrained(lowerCamelCase__ ) A : Dict = FlaxBertModel.from_pretrained(lowerCamelCase__, subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
662
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowercase : '''simple docstring''' def __init__( self : List[Any] , snake_case : Optional[Any] , snake_case : int=13 , snake_case : int=7 , snake_case : Dict=True , snake_case : Union[str, Any]=True , snake_case : Union[str, Any]=True , snake_case : List[Any]=True , snake_case : Tuple=99 , snake_case : Any=[1, 1, 2] , snake_case : Dict=1 , snake_case : Optional[int]=32 , snake_case : Union[str, Any]=4 , snake_case : Optional[Any]=8 , snake_case : Dict=37 , snake_case : int="gelu_new" , snake_case : Optional[Any]=0.1 , snake_case : List[str]=0.1 , snake_case : Any=0.0 , snake_case : Dict=512 , snake_case : List[str]=3 , snake_case : Any=0.02 , snake_case : List[str]=3 , snake_case : Optional[Any]=4 , snake_case : Dict=None , snake_case : Any=False , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Any = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Dict = block_sizes SCREAMING_SNAKE_CASE : Dict = num_decoder_layers SCREAMING_SNAKE_CASE : int = d_model SCREAMING_SNAKE_CASE : Union[str, Any] = n_head SCREAMING_SNAKE_CASE : Optional[int] = d_head SCREAMING_SNAKE_CASE : int = d_inner SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : Optional[Any] = activation_dropout SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : str = scope SCREAMING_SNAKE_CASE : int = initializer_std # Used in the tests to check the size of the first attention layer SCREAMING_SNAKE_CASE : int = n_head # Used in the tests to check the size of the first hidden state SCREAMING_SNAKE_CASE : List[str] = self.d_model # Used in the tests to check the number of output hidden states/attentions SCREAMING_SNAKE_CASE : List[str] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: SCREAMING_SNAKE_CASE : Dict = self.num_hidden_layers + 2 def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Dict = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Dict = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase_ ( self : Dict , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = TFFunnelModel(config=snake_case ) SCREAMING_SNAKE_CASE : Dict = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Optional[Any] = model(snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(snake_case ) SCREAMING_SNAKE_CASE : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = TFFunnelModel(config=snake_case ) SCREAMING_SNAKE_CASE : Dict = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : int = TFFunnelModel(config=snake_case ) SCREAMING_SNAKE_CASE : List[Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase_ ( self : str , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Optional[Any] , snake_case : Tuple , snake_case : Dict , snake_case : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = TFFunnelBaseModel(config=snake_case ) SCREAMING_SNAKE_CASE : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = [input_ids, input_mask] SCREAMING_SNAKE_CASE : Tuple = model(snake_case ) SCREAMING_SNAKE_CASE : Any = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : int = TFFunnelBaseModel(config=snake_case ) SCREAMING_SNAKE_CASE : Any = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Optional[Any] = TFFunnelBaseModel(config=snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCamelCase_ ( self : Optional[int] , snake_case : Any , snake_case : str , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFFunnelForPreTraining(config=snake_case ) SCREAMING_SNAKE_CASE : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : List[str] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : List[str] , snake_case : Any , snake_case : int , snake_case : List[str] , snake_case : Tuple , snake_case : int , snake_case : str , snake_case : List[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = TFFunnelForMaskedLM(config=snake_case ) SCREAMING_SNAKE_CASE : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Any , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Dict , snake_case : Optional[Any] , snake_case : Dict , snake_case : Tuple , snake_case : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.num_labels SCREAMING_SNAKE_CASE : Any = TFFunnelForSequenceClassification(config=snake_case ) SCREAMING_SNAKE_CASE : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Optional[Any] , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Dict , snake_case : Dict , snake_case : int , snake_case : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFFunnelForMultipleChoice(config=snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Tuple = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Tuple = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : List[str] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Any , snake_case : Optional[Any] , snake_case : Dict , snake_case : Any , snake_case : int , snake_case : Union[str, Any] , snake_case : Any , snake_case : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFFunnelForTokenClassification(config=snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : str , snake_case : Optional[Any] , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TFFunnelForQuestionAnswering(config=snake_case ) SCREAMING_SNAKE_CASE : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Dict = model(snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Any = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase : Optional[Any] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Tuple = False def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFFunnelModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=snake_case ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @require_tf class lowercase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCAmelCase : List[str] = False UpperCAmelCase : Tuple = False def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFFunnelModelTester(self , base=snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=snake_case ) def lowerCamelCase_ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*snake_case ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case )
352
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
275
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a ( unittest.TestCase ): def __init__( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=7 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : List[Any]=18 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Any=400 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[Any]=True , ): _UpperCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = apply_ocr def lowerCAmelCase_ ( self : int ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """apply_ocr""" ) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : List[str] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __lowerCAmelCase ) self.assertIsInstance(encoding.boxes , __lowerCAmelCase ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Any ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # with apply_OCR = True _UpperCAmelCase = LayoutLMvaImageProcessor() from datasets import load_dataset _UpperCAmelCase = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) _UpperCAmelCase = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _UpperCAmelCase = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 _UpperCAmelCase = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __lowerCAmelCase ) self.assertListEqual(encoding.boxes , __lowerCAmelCase ) # with apply_OCR = False _UpperCAmelCase = LayoutLMvaImageProcessor(apply_ocr=__lowerCAmelCase ) _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
275
1
def A__ ( SCREAMING_SNAKE_CASE_ : list ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _UpperCAmelCase = grid[0] for row_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): _UpperCAmelCase = grid[row_n] _UpperCAmelCase = fill_row(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = grid[row_n] return grid[-1][-1] def A__ ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
32
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" if not postfix_notation: return 0 _SCREAMING_SNAKE_CASE = {'+', '-', '*', '/'} _SCREAMING_SNAKE_CASE = [] for token in postfix_notation: if token in operations: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
605
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Tuple = ["image_processor", "tokenizer"] snake_case__ : Optional[int] = "ViltImageProcessor" snake_case__ : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self , lowercase__=None , lowercase__=None , **lowercase__ ) -> int: SCREAMING_SNAKE_CASE : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase__ , ) SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = self.image_processor def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ) -> BatchEncoding: SCREAMING_SNAKE_CASE : int = self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # add pixel_values + pixel_mask SCREAMING_SNAKE_CASE : Dict = self.image_processor(lowercase__ , return_tensors=lowercase__ ) encoding.update(lowercase__ ) return encoding def _UpperCamelCase ( self , *lowercase__ , **lowercase__ ) -> Any: return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def _UpperCamelCase ( self , *lowercase__ , **lowercase__ ) -> List[Any]: return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCamelCase ( self ) -> Tuple: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase__ , ) return self.image_processor_class @property def _UpperCamelCase ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase__ , ) return self.image_processor
179
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : List[str] = (DDPMParallelScheduler,) def _UpperCamelCase ( self , **lowercase__ ) -> Tuple: SCREAMING_SNAKE_CASE : List[Any] = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**lowercase__ ) return config def _UpperCamelCase ( self ) -> int: for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ ) def _UpperCamelCase ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=lowercase__ , beta_end=lowercase__ ) def _UpperCamelCase ( self ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase__ ) def _UpperCamelCase ( self ) -> str: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase__ ) def _UpperCamelCase ( self ) -> Optional[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase__ ) def _UpperCamelCase ( self ) -> List[str]: self.check_over_configs(thresholding=lowercase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , ) def _UpperCamelCase ( self ) -> Dict: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def _UpperCamelCase ( self ) -> Optional[Any]: for t in [0, 500, 999]: self.check_over_forward(time_step=lowercase__ ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**lowercase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**lowercase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter SCREAMING_SNAKE_CASE : List[Any] = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE : List[Any] = samplea.shape[0] SCREAMING_SNAKE_CASE : str = torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE : List[str] = torch.arange(lowercase__ )[0:3, None].repeat(1 , lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.batch_step_no_noise(lowercase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(lowercase__ ) ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1E-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1E-3 def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowercase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowercase__ ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) for t in reversed(range(lowercase__ ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE : int = model(lowercase__ , lowercase__ ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE : Dict = scheduler.step(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample SCREAMING_SNAKE_CASE : List[str] = pred_prev_sample SCREAMING_SNAKE_CASE : Optional[int] = torch.sum(torch.abs(lowercase__ ) ) SCREAMING_SNAKE_CASE : Dict = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class(**lowercase__ ) SCREAMING_SNAKE_CASE : str = len(lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) for t in reversed(range(lowercase__ ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE : Tuple = model(lowercase__ , lowercase__ ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample SCREAMING_SNAKE_CASE : List[Any] = pred_prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(lowercase__ ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowercase__ ) SCREAMING_SNAKE_CASE : str = scheduler.timesteps for i, timestep in enumerate(lowercase__ ): if i == len(lowercase__ ) - 1: SCREAMING_SNAKE_CASE : List[str] = -1 else: SCREAMING_SNAKE_CASE : Any = timesteps[i + 1] SCREAMING_SNAKE_CASE : str = scheduler.previous_timestep(lowercase__ ) SCREAMING_SNAKE_CASE : str = prev_t.item() self.assertEqual(lowercase__ , lowercase__ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**lowercase__ ) SCREAMING_SNAKE_CASE : int = [100, 87, 50, 51, 0] with self.assertRaises(lowercase__ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=lowercase__ ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class(**lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = [100, 87, 50, 1, 0] SCREAMING_SNAKE_CASE : List[str] = len(lowercase__ ) with self.assertRaises(lowercase__ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=lowercase__ , timesteps=lowercase__ ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**lowercase__ ) SCREAMING_SNAKE_CASE : Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=lowercase__ )
179
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class lowerCamelCase__ ( lowercase_): """simple docstring""" _A = CustomTokenizer pass
623
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''''' _lowercase : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowercase : str = None # compression type in fsspec. ex: "gzip" _lowercase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any] , UpperCamelCase__ : str = "" , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[dict] = None , **UpperCamelCase__ : List[Any]): '''simple docstring''' super().__init__(self , **UpperCamelCase__) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case__ = fsspec.open( UpperCamelCase__ , mode="""rb""" , protocol=UpperCamelCase__ , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case__ = os.path.basename(self.file.path.split("""::""")[0]) snake_case__ = ( self.compressed_name[: self.compressed_name.rindex(""".""")] if """.""" in self.compressed_name else self.compressed_name ) snake_case__ = None @classmethod def __magic_name__ ( cls : Union[str, Any] , UpperCamelCase__ : List[Any]): '''simple docstring''' return super()._strip_protocol(UpperCamelCase__).lstrip("""/""") def __magic_name__ ( self : Dict): '''simple docstring''' if self.dir_cache is None: snake_case__ = {**self.file.fs.info(self.file.path), """name""": self.uncompressed_name} snake_case__ = {f["""name"""]: f} def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : str): '''simple docstring''' return self.file.open().read() def __magic_name__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : str = "rb" , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' snake_case__ = self._strip_protocol(UpperCamelCase__) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''') return self.file.open() class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = '''bz2''' _lowercase : Dict = '''bz2''' _lowercase : Optional[int] = '''.bz2''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = '''gzip''' _lowercase : List[str] = '''gzip''' _lowercase : Any = '''.gz''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : str = '''lz4''' _lowercase : List[Any] = '''lz4''' _lowercase : Dict = '''.lz4''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''xz''' _lowercase : Union[str, Any] = '''xz''' _lowercase : Optional[int] = '''.xz''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''zstd''' _lowercase : Tuple = '''zstd''' _lowercase : Union[str, Any] = '''.zst''' def __init__( self : str , UpperCamelCase__ : str , UpperCamelCase__ : str = "rb" , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[dict] = None , UpperCamelCase__ : int = DEFAULT_BLOCK_SIZE , **UpperCamelCase__ : int , ): '''simple docstring''' super().__init__( fo=UpperCamelCase__ , mode=UpperCamelCase__ , target_protocol=UpperCamelCase__ , target_options=UpperCamelCase__ , block_size=UpperCamelCase__ , **UpperCamelCase__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case__ = self.file.__enter__ class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = file_ def __enter__( self : List[str]): '''simple docstring''' self._file.__enter__() return self def __exit__( self : Dict , *UpperCamelCase__ : str , **UpperCamelCase__ : Optional[Any]): '''simple docstring''' self._file.__exit__(*UpperCamelCase__ , **UpperCamelCase__) def __iter__( self : Any): '''simple docstring''' return iter(self._file) def __magic_name__ ( self : List[str]): '''simple docstring''' return next(self._file) def __getattr__( self : Any , UpperCamelCase__ : int): '''simple docstring''' return getattr(self._file , UpperCamelCase__) def fixed_enter(*UpperCamelCase__ : int , **UpperCamelCase__ : int): return WrappedFile(_enter(*UpperCamelCase__ , **UpperCamelCase__)) snake_case__ = fixed_enter
654
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase_ : NestedDataStructureLike[PathLike] , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : str , ) -> Dict: super().__init__( lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , ) __magic_name__ : Optional[int] = field __magic_name__ : Optional[Any] = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths} __magic_name__ : Optional[Any] = Json( cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , field=lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: # Build iterable dataset if self.streaming: __magic_name__ : Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __magic_name__ : int = None __magic_name__ : Tuple = None __magic_name__ : Tuple = None __magic_name__ : Optional[int] = None self.builder.download_and_prepare( download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , ) __magic_name__ : Any = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase : '''simple docstring''' def __init__( self : int , lowerCamelCase_ : Dataset , lowerCamelCase_ : Union[PathLike, BinaryIO] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : List[Any] , ) -> List[Any]: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) __magic_name__ : Optional[Any] = dataset __magic_name__ : Tuple = path_or_buf __magic_name__ : Dict = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __magic_name__ : Any = num_proc __magic_name__ : Tuple = '''utf-8''' __magic_name__ : Tuple = to_json_kwargs def UpperCAmelCase__ ( self : Dict ) -> int: __magic_name__ : int = self.to_json_kwargs.pop('''path_or_buf''' , lowerCamelCase_ ) __magic_name__ : Any = self.to_json_kwargs.pop('''orient''' , '''records''' ) __magic_name__ : List[Any] = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) __magic_name__ : Optional[int] = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) __magic_name__ : List[str] = self.to_json_kwargs.pop('''compression''' , lowerCamelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=lowerCamelCase_ ) as buffer: __magic_name__ : str = self._write(file_obj=lowerCamelCase_ , orient=lowerCamelCase_ , lines=lowerCamelCase_ , index=lowerCamelCase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ''' was passed. Please provide a local path instead.''' ) __magic_name__ : List[str] = self._write( file_obj=self.path_or_buf , orient=lowerCamelCase_ , lines=lowerCamelCase_ , index=lowerCamelCase_ , **self.to_json_kwargs ) return written def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : Dict ) -> Optional[int]: __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Any = args __magic_name__ : List[Any] = query_table( table=self.dataset.data , key=slice(lowerCamelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __magic_name__ : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCamelCase_ , orient=lowerCamelCase_ , lines=lowerCamelCase_ , index=lowerCamelCase_ , **lowerCamelCase_ ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCAmelCase__ ( self : int , lowerCamelCase_ : BinaryIO , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[Any] , ) -> int: __magic_name__ : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): __magic_name__ : List[str] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowerCamelCase_ ) else: __magic_name__ , __magic_name__ : Optional[Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCamelCase_ , lowerCamelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(lowerCamelCase_ ) return written
501
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
501
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__) @dataclass class snake_case_ ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 10000 SCREAMING_SNAKE_CASE : Optional[List[str]] = None SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None class snake_case_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ParquetConfig def snake_case__( self : Union[str, Any] ) ->List[Any]: return datasets.DatasetInfo(features=self.config.features ) def snake_case__( self : Tuple , _UpperCamelCase : Tuple ) ->Optional[Any]: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCamelCase , (str, list, tuple) ): snake_case_ = data_files if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ = [dl_manager.iter_files(_UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] snake_case_ = [] for split_name, files in data_files.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ = [dl_manager.iter_files(_UpperCamelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_UpperCamelCase ): with open(_UpperCamelCase , '''rb''' ) as f: snake_case_ = datasets.Features.from_arrow_schema(pq.read_schema(_UpperCamelCase ) ) break splits.append(datasets.SplitGenerator(name=_UpperCamelCase , gen_kwargs={'''files''': files} ) ) return splits def snake_case__( self : List[Any] , _UpperCamelCase : pa.Table ) ->pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case_ = table_cast(_UpperCamelCase , self.info.features.arrow_schema ) return pa_table def snake_case__( self : Optional[int] , _UpperCamelCase : Tuple ) ->int: snake_case_ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCamelCase ) ): with open(_UpperCamelCase , '''rb''' ) as f: snake_case_ = pq.ParquetFile(_UpperCamelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): snake_case_ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(_UpperCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_UpperCamelCase )}: {e}''' ) raise
39
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Dict: '''simple docstring''' a__ : str = tempfile.mkdtemp() # fmt: off a__ : Tuple = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on a__ : Tuple = dict(zip(lowercase , range(len(lowercase)))) a__ : List[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] a__ : Dict = {'unk_token': '<unk>'} a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowercase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowercase)) a__ : str = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } a__ : Optional[Any] = os.path.join(self.tmpdirname , lowercase) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(lowercase , lowercase) def __lowercase ( self , **lowercase) -> str: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase) def __lowercase ( self , **lowercase) -> int: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase) def __lowercase ( self , **lowercase) -> List[Any]: '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ : Tuple = [Image.fromarray(np.moveaxis(lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : List[Any] = self.get_tokenizer() a__ : Optional[Any] = self.get_rust_tokenizer() a__ : str = self.get_image_processor() a__ : str = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase) processor_slow.save_pretrained(self.tmpdirname) a__ : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase) a__ : Tuple = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase) processor_fast.save_pretrained(self.tmpdirname) a__ : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , lowercase) self.assertIsInstance(processor_fast.tokenizer , lowercase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , lowercase) self.assertIsInstance(processor_fast.image_processor , lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Dict = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ : Any = self.get_image_processor(do_normalize=lowercase , padding_value=1.0) a__ : int = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Optional[Any] = self.get_image_processor() a__ : str = self.get_tokenizer() a__ : str = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase) a__ : Optional[int] = self.prepare_image_inputs() a__ : Optional[int] = image_processor(lowercase , return_tensors='np') a__ : Optional[int] = processor(images=lowercase , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[Any] = self.get_image_processor() a__ : Union[str, Any] = self.get_tokenizer() a__ : Any = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase) a__ : Optional[Any] = 'lower newer' a__ : Optional[int] = processor(text=lowercase) a__ : Tuple = tokenizer(lowercase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Optional[int] = self.get_image_processor() a__ : Tuple = self.get_tokenizer() a__ : Union[str, Any] = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase) a__ : List[str] = 'lower newer' a__ : Tuple = self.prepare_image_inputs() a__ : List[str] = processor(text=lowercase , images=lowercase) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(lowercase): processor() def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[int] = self.get_image_processor() a__ : Dict = self.get_tokenizer() a__ : Any = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase) a__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ : Optional[int] = processor.batch_decode(lowercase) a__ : int = tokenizer.batch_decode(lowercase) self.assertListEqual(lowercase , lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ : List[Any] = self.get_image_processor() a__ : Union[str, Any] = self.get_tokenizer() a__ : List[str] = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase) a__ : int = 'lower newer' a__ : List[Any] = self.prepare_image_inputs() a__ : List[str] = processor(text=lowercase , images=lowercase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
302
0
'''simple docstring''' from __future__ import annotations from typing import TypedDict class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 42 __magic_name__ = 42 def lowercase (_A ): """simple docstring""" if not isinstance(_A , _A ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(_A ) )] def lowercase (_A ): """simple docstring""" if not isinstance(_A , _A ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) _lowerCAmelCase : int = all_rotations(_A ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowerCAmelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_A ), } return response def lowercase (_A , _A ): """simple docstring""" if not isinstance(_A , _A ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: _lowerCAmelCase : Any = int(_A ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(_A ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) _lowerCAmelCase : Optional[int] = [''] * len(_A ) for _ in range(len(_A ) ): for i in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCAmelCase : Optional[int] = """Provide a string that I will generate its BWT transform: """ lowerCAmelCase : str = input(entry_msg).strip() lowerCAmelCase : Tuple = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result["bwt_string"]}\'''' ) lowerCAmelCase : Optional[Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ''' F'''we get original string \'{original_string}\'''' )
630
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = pad_token_id _lowerCAmelCase : List[Any] = max_length _lowerCAmelCase : Tuple = vocab _lowerCAmelCase : str = merges _lowerCAmelCase : List[str] = BytePairTokenizer(snake_case__ , snake_case__ , sequence_length=snake_case__ ) @classmethod def a ( cls , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = [' '.join(snake_case__ ) for m in tokenizer.bpe_ranks.keys()] _lowerCAmelCase : Any = tokenizer.get_vocab() return cls(snake_case__ , snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def a ( cls , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = GPTaTokenizer.from_pretrained(snake_case__ , *snake_case__ , **snake_case__ ) return cls.from_tokenizer(snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def a ( cls , snake_case__ ): '''simple docstring''' return cls(**snake_case__ ) def a ( self ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = self.tf_tokenizer(snake_case__ ) _lowerCAmelCase : str = tf.ones_like(snake_case__ ) if self.pad_token_id is not None: # pad the tokens up to max length _lowerCAmelCase : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: _lowerCAmelCase , _lowerCAmelCase : str = pad_model_inputs( snake_case__ , max_seq_length=snake_case__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
630
1
snake_case : int = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" assert type(UpperCAmelCase_ ) in (int, float) and decimal == int(UpperCAmelCase_ ) a :int = int(UpperCAmelCase_ ) a :Tuple = '''''' a :int = False if decimal < 0: a :int = True decimal *= -1 while decimal > 0: a , a :Tuple = divmod(UpperCAmelCase_ , 16 ) a :str = values[remainder] + hexadecimal a :int = '''0x''' + hexadecimal if negative: a :Dict = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
445
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : Any = logging.get_logger() def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = True ) ->Dict: print(f'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": snake_case__ = timm.create_model('levit_128s' , pretrained=UpperCAmelCase_ ) else: snake_case__ = timm.create_model('levit_128' , pretrained=UpperCAmelCase_ ) if hidden_sizes == 1_92: snake_case__ = timm.create_model('levit_192' , pretrained=UpperCAmelCase_ ) if hidden_sizes == 2_56: snake_case__ = timm.create_model('levit_256' , pretrained=UpperCAmelCase_ ) if hidden_sizes == 3_84: snake_case__ = timm.create_model('levit_384' , pretrained=UpperCAmelCase_ ) from_model.eval() snake_case__ = LevitForImageClassificationWithTeacher(UpperCAmelCase_ ).eval() snake_case__ = OrderedDict() snake_case__ = from_model.state_dict() snake_case__ = list(from_model.state_dict().keys() ) snake_case__ = list(our_model.state_dict().keys() ) print(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for i in range(len(UpperCAmelCase_ ) ): snake_case__ = weights[og_keys[i]] our_model.load_state_dict(UpperCAmelCase_ ) snake_case__ = torch.randn((2, 3, 2_24, 2_24) ) snake_case__ = from_model(UpperCAmelCase_ ) snake_case__ = our_model(UpperCAmelCase_ ).logits assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ ), "The model logits don't match the original one." snake_case__ = name print(UpperCAmelCase_ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) snake_case__ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'''Pushed {checkpoint_name}''' ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = True ) ->Any: snake_case__ = 'imagenet-1k-id2label.json' snake_case__ = 10_00 snake_case__ = (1, num_labels) snake_case__ = 'huggingface/label-files' snake_case__ = num_labels snake_case__ = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) snake_case__ = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = partial(UpperCAmelCase_ , num_labels=UpperCAmelCase_ , idalabel=UpperCAmelCase_ , labelaid=UpperCAmelCase_ ) snake_case__ = { 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } snake_case__ = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , UpperCAmelCase_ , names_to_config[model_name] , UpperCAmelCase_ , UpperCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, expected_shape if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) a__ : Optional[Any] = parser.parse_args() a__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
368
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ : int = 'src/diffusers' A_ : Optional[Any] = '.' # This is to make sure the diffusers module imported is the one in the repo. A_ : List[str] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) A_ : List[Any] = spec.loader.load_module() def UpperCamelCase (lowercase_: List[str] , lowercase_: List[Any] ) -> Union[str, Any]: return line.startswith(__SCREAMING_SNAKE_CASE ) or len(__SCREAMING_SNAKE_CASE ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , __SCREAMING_SNAKE_CASE ) is not None def UpperCamelCase (lowercase_: Optional[Any] ) -> str: A__ : Optional[int] = object_name.split(""".""" ) A__ : Dict = 0 # First let's find the module where our object lives. A__ : int = parts[i] while i < len(__SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , f"""{module}.py""" ) ): i += 1 if i < len(__SCREAMING_SNAKE_CASE ): A__ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(__SCREAMING_SNAKE_CASE ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__SCREAMING_SNAKE_CASE , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A__ : str = f.readlines() # Now let's find the class / func in the code! A__ : Any = "" A__ : Optional[Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__SCREAMING_SNAKE_CASE ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__SCREAMING_SNAKE_CASE ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A__ : Union[str, Any] = line_index while line_index < len(__SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , __SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Dict = lines[start_index:line_index] return "".join(__SCREAMING_SNAKE_CASE ) A_ : List[str] = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') A_ : List[str] = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') A_ : List[Any] = re.compile(r'<FILL\s+[^>]*>') def UpperCamelCase (lowercase_: str ) -> Any: A__ : str = code.split("""\n""" ) A__ : Union[str, Any] = 0 while idx < len(__SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__SCREAMING_SNAKE_CASE ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def UpperCamelCase (lowercase_: int ) -> List[str]: A__ : Optional[Any] = len(get_indent(__SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: A__ : Optional[Any] = f"""class Bla:\n{code}""" A__ : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__SCREAMING_SNAKE_CASE ) A__ : List[str] = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE ) A__ : Optional[Any] = style_docstrings_in_code(__SCREAMING_SNAKE_CASE ) return result[len("""class Bla:\n""" ) :] if has_indent else result def UpperCamelCase (lowercase_: str , lowercase_: Optional[Any]=False ) -> str: with open(__SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A__ : List[Any] = f.readlines() A__ : str = [] A__ : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__SCREAMING_SNAKE_CASE ): A__ : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A__ : Union[str, Any] = search.groups() A__ : int = find_code_in_diffusers(__SCREAMING_SNAKE_CASE ) A__ : List[Any] = get_indent(__SCREAMING_SNAKE_CASE ) A__ : Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 A__ : Dict = theoretical_indent A__ : Tuple = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A__ : str = True while line_index < len(__SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(__SCREAMING_SNAKE_CASE ): break A__ : Dict = lines[line_index] A__ : List[Any] = _should_continue(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and re.search(f"""^{indent}# End copy""" , __SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Optional[int] = lines[start_index:line_index] A__ : Optional[Any] = "".join(__SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies A__ : int = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(__SCREAMING_SNAKE_CASE ) is None] A__ : Dict = "\n".join(__SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(__SCREAMING_SNAKE_CASE ) > 0: A__ : Union[str, Any] = replace_pattern.replace("""with""" , """""" ).split(""",""" ) A__ : Optional[Any] = [_re_replace_pattern.search(__SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue A__ : Optional[Any] = pattern.groups() A__ : Optional[int] = re.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": A__ : List[Any] = re.sub(obja.lower() , obja.lower() , __SCREAMING_SNAKE_CASE ) A__ : Optional[int] = re.sub(obja.upper() , obja.upper() , __SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) A__ : Optional[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A__ : List[str] = lines[:start_index] + [theoretical_code] + lines[line_index:] A__ : List[str] = start_index + 1 if overwrite and len(__SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) return diffs def UpperCamelCase (lowercase_: List[str] = False ) -> Optional[Any]: A__ : List[str] = glob.glob(os.path.join(__SCREAMING_SNAKE_CASE , """**/*.py""" ) , recursive=__SCREAMING_SNAKE_CASE ) A__ : List[Any] = [] for filename in all_files: A__ : Tuple = is_copy_consistent(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__SCREAMING_SNAKE_CASE ) > 0: A__ : str = "\n".join(__SCREAMING_SNAKE_CASE ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A_ : Any = parser.parse_args() check_copies(args.fix_and_overwrite)
703
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A_ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
0
def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = len(UpperCamelCase_ ) for i in range(length - 1 ): snake_case = i for k in range(i + 1 ,UpperCamelCase_ ): if collection[k] < collection[least]: snake_case = k if least != i: snake_case , snake_case = (collection[i], collection[least]) return collection if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = input("Enter numbers separated by a comma:\n").strip() _SCREAMING_SNAKE_CASE : str = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
550
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co./facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co./models?filter=deit } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'deit' def __init__( self , __snake_case=7_6_8 , __snake_case=1_2 , __snake_case=1_2 , __snake_case=3_0_7_2 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1E-12 , __snake_case=2_2_4 , __snake_case=1_6 , __snake_case=3 , __snake_case=True , __snake_case=1_6 , **__snake_case , ): super().__init__(**__snake_case ) snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = layer_norm_eps snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = qkv_bias snake_case = encoder_stride class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = version.parse('1.11' ) @property def a_ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a_ ( self ): return 1E-4
550
1
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") __a = parser.parse_args() if args.model_type == "bert": __a = BertForMaskedLM.from_pretrained(args.model_name) __a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") __a = model.state_dict() __a = {} for w in ["word_embeddings", "position_embeddings"]: __a = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: __a = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] __a = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 __a = state_dict["""cls.predictions.decoder.weight"""] __a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: __a = state_dict[F'''cls.predictions.transform.dense.{w}'''] __a = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
689
def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations(a_ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations_with_dp_array( a_ , a_ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] A =sum( count_of_possible_combinations_with_dp_array(target - item , a_ ) for item in array ) A =answer return answer A =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(a_ , a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: A =[0] * (target + 1) A =1 for i in range(1 , target + 1 ): for j in range(a_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __a = 3 __a = 5 __a = [1, 2, 5] print(combination_sum_iv(n, array, target))
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
292
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase ( self )-> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self )-> Union[str, Any]: _A = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) _A = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler('sample_euler' ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = sd_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self )-> Optional[Any]: _A = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _A = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler('sample_euler' ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = sd_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def UpperCamelCase ( self )-> Optional[int]: _A = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _A = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = sd_pipe( [prompt] , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=_UpperCamelCase , ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
292
1
"""simple docstring""" import sys from collections import defaultdict class a : """simple docstring""" def __init__( self: Tuple ): """simple docstring""" A__ = [] def UpperCamelCase ( self: Dict , UpperCamelCase: Dict ): """simple docstring""" return self.node_position[vertex] def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: str , UpperCamelCase: List[str] ): """simple docstring""" A__ = pos def UpperCamelCase ( self: str , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple , UpperCamelCase: List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A__ = 2 * start + 1 else: A__ = 2 * start + 2 if heap[smallest_child] < heap[start]: A__ , A__ = heap[smallest_child], positions[smallest_child] A__ , A__ = ( heap[start], positions[start], ) A__ , A__ = temp, tempa A__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCamelCase ) self.top_to_bottom(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: List[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: Dict , UpperCamelCase: Dict ): """simple docstring""" A__ = position[index] while index != 0: A__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A__ = heap[parent] A__ = position[parent] self.set_position(position[parent] , UpperCamelCase ) else: A__ = val A__ = temp self.set_position(UpperCamelCase , UpperCamelCase ) break A__ = parent else: A__ = val A__ = temp self.set_position(UpperCamelCase , 0 ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: int , UpperCamelCase: List[str] ): """simple docstring""" A__ = len(UpperCamelCase ) // 2 - 1 for i in range(UpperCamelCase , -1 , -1 ): self.top_to_bottom(UpperCamelCase , UpperCamelCase , len(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Dict ): """simple docstring""" A__ = positions[0] A__ = sys.maxsize self.top_to_bottom(UpperCamelCase , 0 , len(UpperCamelCase ) , UpperCamelCase ) return temp def _snake_case ( UpperCAmelCase_ : int ): A__ = Heap() A__ = [0] * len(UpperCAmelCase_ ) A__ = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A__ = [] # Heap of Distance of vertices from their neighboring vertex A__ = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) A__ = [] A__ = 1 A__ = sys.maxsize for neighbor, distance in adjacency_list[0]: A__ = 0 A__ = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): A__ = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): A__ = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) A__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > SCREAMING_SNAKE_CASE_ : List[str] = int(input('Enter number of edges: ').strip()) SCREAMING_SNAKE_CASE_ : Any = defaultdict(list) for _ in range(edges_number): SCREAMING_SNAKE_CASE_ : Tuple = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
702
"""simple docstring""" import math import sys def _snake_case ( UpperCAmelCase_ : int ): if number != int(UpperCAmelCase_ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 A__ = [-1] * (number + 1) A__ = 0 for i in range(1 , number + 1 ): A__ = sys.maxsize A__ = int(math.sqrt(UpperCAmelCase_ ) ) for j in range(1 , root + 1 ): A__ = 1 + answers[i - (j**2)] A__ = min(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
500
0
import string from math import logaa def a_ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' _lowerCamelCase : Optional[int] =document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) _lowerCamelCase : int =document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def a_ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' _lowerCamelCase : int =corpus_without_punctuation.split('\n' ) _lowerCamelCase : List[str] =term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ )) def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return round(tf * idf , 3 )
464
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class A ( UpperCamelCase_ ): UpperCamelCase__ : List[str] =['pixel_values'] def __init__( self : Any , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = True , **lowercase_ : str , ) -> None: """simple docstring""" super().__init__(**lowercase_ ) _lowerCamelCase : Optional[int] =size if size is not None else {'shortest_edge': 224} _lowerCamelCase : List[Any] =get_size_dict(lowercase_ , default_to_square=lowercase_ ) _lowerCamelCase : str =crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCamelCase : str =get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name='crop_size' ) _lowerCamelCase : Dict =do_resize _lowerCamelCase : int =size _lowerCamelCase : Optional[Any] =resample _lowerCamelCase : Optional[int] =do_center_crop _lowerCamelCase : Tuple =crop_size _lowerCamelCase : Optional[int] =do_rescale _lowerCamelCase : Optional[Any] =rescale_factor _lowerCamelCase : Union[str, Any] =do_normalize _lowerCamelCase : Optional[int] =image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCamelCase : Any =image_std if image_std is not None else OPENAI_CLIP_STD _lowerCamelCase : Any =do_convert_rgb def lowerCamelCase ( self : int , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ) -> np.ndarray: """simple docstring""" _lowerCamelCase : int =get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowerCamelCase : Union[str, Any] =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : Union[str, Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ) -> np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] =get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : str , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ) -> str: """simple docstring""" return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : List[str] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" _lowerCamelCase : Union[str, Any] =do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] =size if size is not None else self.size _lowerCamelCase : Any =get_size_dict(lowercase_ , param_name='size' , default_to_square=lowercase_ ) _lowerCamelCase : str =resample if resample is not None else self.resample _lowerCamelCase : List[Any] =do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] =crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict =get_size_dict(lowercase_ , param_name='crop_size' , default_to_square=lowercase_ ) _lowerCamelCase : str =do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : List[str] =do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : Tuple =image_mean if image_mean is not None else self.image_mean _lowerCamelCase : int =image_std if image_std is not None else self.image_std _lowerCamelCase : Tuple =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCamelCase : Any =make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCamelCase : Tuple =[convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. _lowerCamelCase : Optional[Any] =[to_numpy_array(lowercase_ ) for image in images] if do_resize: _lowerCamelCase : Optional[Any] =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: _lowerCamelCase : Optional[int] =[self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: _lowerCamelCase : Optional[Any] =[self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: _lowerCamelCase : List[Any] =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] _lowerCamelCase : List[str] =[to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] _lowerCamelCase : Tuple ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
464
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : List[Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } lowercase : Dict = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } lowercase : Any = { """ctrl""": 2_5_6, } lowercase : Union[str, Any] = { """Pregnancy""": 1_6_8_6_2_9, """Christianity""": 7_6_7_5, """Explain""": 1_0_6_4_2_3, """Fitness""": 6_3_4_4_0, """Saving""": 6_3_1_6_3, """Ask""": 2_7_1_7_1, """Ass""": 9_5_9_8_5, """Joke""": 1_6_3_5_0_9, """Questions""": 4_5_6_2_2, """Thoughts""": 4_9_6_0_5, """Retail""": 5_2_3_4_2, """Feminism""": 1_6_4_3_3_8, """Writing""": 1_1_9_9_2, """Atheism""": 1_9_2_2_6_3, """Netflix""": 4_8_6_1_6, """Computing""": 3_9_6_3_9, """Opinion""": 4_3_2_1_3, """Alone""": 4_4_9_6_7, """Funny""": 5_8_9_1_7, """Gaming""": 4_0_3_5_8, """Human""": 4_0_8_8, """India""": 1_3_3_1, """Joker""": 7_7_1_3_8, """Diet""": 3_6_2_0_6, """Legal""": 1_1_8_5_9, """Norman""": 4_9_3_9, """Tip""": 7_2_6_8_9, """Weight""": 5_2_3_4_3, """Movies""": 4_6_2_7_3, """Running""": 2_3_4_2_5, """Science""": 2_0_9_0, """Horror""": 3_7_7_9_3, """Confession""": 6_0_5_7_2, """Finance""": 1_2_2_5_0, """Politics""": 1_6_3_6_0, """Scary""": 1_9_1_9_8_5, """Support""": 1_2_6_5_4, """Technologies""": 3_2_5_1_6, """Teenage""": 6_6_1_6_0, """Event""": 3_2_7_6_9, """Learned""": 6_7_4_6_0, """Notion""": 1_8_2_7_7_0, """Wikipedia""": 3_7_5_8_3, """Books""": 6_6_6_5, """Extract""": 7_6_0_5_0, """Confessions""": 1_0_2_7_0_1, """Conspiracy""": 7_5_9_3_2, """Links""": 6_3_6_7_4, """Narcissus""": 1_5_0_4_2_5, """Relationship""": 5_4_7_6_6, """Relationships""": 1_3_4_7_9_6, """Reviews""": 4_1_6_7_1, """News""": 4_2_5_6, """Translation""": 2_6_8_2_0, """multilingual""": 1_2_8_4_0_6, } def A_ ( A__ ) -> Optional[Any]: a__ : Tuple = set() a__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a__ : Any = char a__ : Union[str, Any] = set(__A ) return pairs class A__ ( __A ): """simple docstring""" __A : int = VOCAB_FILES_NAMES __A : Any = PRETRAINED_VOCAB_FILES_MAP __A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Dict = CONTROL_CODES def __init__( self , lowercase , lowercase , lowercase="<unk>" , **lowercase) -> List[str]: '''simple docstring''' super().__init__(unk_token=lowercase , **lowercase) with open(lowercase , encoding='utf-8') as vocab_handle: a__ : List[Any] = json.load(lowercase) a__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(lowercase , encoding='utf-8') as merges_handle: a__ : Tuple = merges_handle.read().split('\n')[1:-1] a__ : List[str] = [tuple(merge.split()) for merge in merges] a__ : Tuple = dict(zip(lowercase , range(len(lowercase)))) a__ : Dict = {} @property def __lowercase ( self) -> Dict: '''simple docstring''' return len(self.encoder) def __lowercase ( self) -> List[str]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def __lowercase ( self , lowercase) -> Union[str, Any]: '''simple docstring''' if token in self.cache: return self.cache[token] a__ : Dict = tuple(lowercase) a__ : Any = tuple(list(word[:-1]) + [word[-1] + '</w>']) a__ : Dict = get_pairs(lowercase) if not pairs: return token while True: a__ : List[Any] = min(lowercase , key=lambda lowercase: self.bpe_ranks.get(lowercase , float('inf'))) if bigram not in self.bpe_ranks: break a__ : Tuple = bigram a__ : Union[str, Any] = [] a__ : Dict = 0 while i < len(lowercase): try: a__ : List[Any] = word.index(lowercase , lowercase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) a__ : int = j if word[i] == first and i < len(lowercase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 a__ : int = tuple(lowercase) a__ : Optional[Any] = new_word if len(lowercase) == 1: break else: a__ : int = get_pairs(lowercase) a__ : List[str] = '''@@ '''.join(lowercase) a__ : Optional[Any] = word[:-4] a__ : Union[str, Any] = word return word def __lowercase ( self , lowercase) -> Any: '''simple docstring''' a__ : int = [] a__ : Any = re.findall(r'\S+\n?' , lowercase) for token in words: split_tokens.extend(list(self.bpe(lowercase).split(' '))) return split_tokens def __lowercase ( self , lowercase) -> Optional[int]: '''simple docstring''' return self.encoder.get(lowercase , self.encoder.get(self.unk_token)) def __lowercase ( self , lowercase) -> Optional[Any]: '''simple docstring''' return self.decoder.get(lowercase , self.unk_token) def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' a__ : Optional[Any] = ''' '''.join(lowercase).replace('@@ ' , '').strip() return out_string def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return a__ : Union[str, Any] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) a__ : Union[str, Any] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowercase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase , ensure_ascii=lowercase) + '\n') a__ : Dict = 0 with open(lowercase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') a__ : List[str] = token_index writer.write(' '.join(lowercase) + '\n') index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
708
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowercase : str = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ lowercase : Dict = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ lowercase : Any = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def __lowercase ( self , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase="auto" , lowercase=-1 , lowercase=0.9 , lowercase=5 , lowercase=500 , lowercase="gpt2-large" , lowercase=-1 , lowercase=1024 , lowercase=25 , lowercase=5 , lowercase=True , lowercase=25 , ) -> Tuple: '''simple docstring''' a__ : Dict = compute_mauve( p_text=lowercase , q_text=lowercase , p_features=lowercase , q_features=lowercase , p_tokens=lowercase , q_tokens=lowercase , num_buckets=lowercase , pca_max_data=lowercase , kmeans_explained_var=lowercase , kmeans_num_redo=lowercase , kmeans_max_iter=lowercase , featurize_model_name=lowercase , device_id=lowercase , max_text_length=lowercase , divergence_curve_discretization_size=lowercase , mauve_scaling_factor=lowercase , verbose=lowercase , seed=lowercase , ) return out
392
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co./junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co./junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co./junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co./junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co./junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co./junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' from __future__ import annotations from typing import Any def a_ ( UpperCamelCase_ ): create_state_space_tree(UpperCamelCase_ , [] , 0 ) def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if index == len(UpperCamelCase_ ): print(UpperCamelCase_ ) return create_state_space_tree(UpperCamelCase_ , UpperCamelCase_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(UpperCamelCase_ , UpperCamelCase_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
452
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''microsoft/focalnet-tiny''': '''https://huggingface.co./microsoft/focalnet-tiny/resolve/main/config.json''', } class a ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : str = "focalnet" def __init__( self , snake_case_=224 , snake_case_=4 , snake_case_=3 , snake_case_=96 , snake_case_=False , snake_case_=[192, 384, 768, 768] , snake_case_=[2, 2, 6, 2] , snake_case_=[2, 2, 2, 2] , snake_case_=[3, 3, 3, 3] , snake_case_="gelu" , snake_case_=4.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=False , snake_case_=1e-4 , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=0.02 , snake_case_=1e-5 , snake_case_=32 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> Any: super().__init__(**snake_case_ ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = use_conv_embed _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = focal_levels _UpperCAmelCase = focal_windows _UpperCAmelCase = hidden_act _UpperCAmelCase = mlp_ratio _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_layerscale _UpperCAmelCase = layerscale_value _UpperCAmelCase = use_post_layernorm _UpperCAmelCase = use_post_layernorm_in_modulation _UpperCAmelCase = normalize_modulator _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = encoder_stride _UpperCAmelCase = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names )
714
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : Optional[Any] = ["image_processor", "tokenizer"] A__ : List[Any] = "BlipImageProcessor" A__ : List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , snake_case_ , snake_case_ ) -> Any: _UpperCAmelCase = False super().__init__(snake_case_ , snake_case_ ) _UpperCAmelCase = self.image_processor def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) return text_encoding # add pixel_values _UpperCAmelCase = self.image_processor(snake_case_ , return_tensors=snake_case_ ) if text is not None: _UpperCAmelCase = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def __A ( self , *snake_case_ , **snake_case_ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __A ( self , *snake_case_ , **snake_case_ ) -> Optional[int]: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def __A ( self ) -> Any: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
579
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCamelCase_ : """simple docstring""" def __init__( self : str , _a : List[Any] , _a : Optional[int]=13 , _a : Optional[Any]=7 , _a : List[str]=False , _a : Dict=True , _a : Optional[Any]=False , _a : Tuple=True , _a : List[Any]=33 , _a : int=32 , _a : int=5 , _a : int=4 , _a : List[str]=37 , _a : str="gelu" , _a : Union[str, Any]=0.1 , _a : Any=0.1 , _a : str=512 , _a : List[str]=16 , _a : Dict=2 , _a : Any=0.02 , _a : int=3 , _a : str=4 , _a : Any=None , ) -> List[str]: __lowerCamelCase : Union[str, Any] = parent __lowerCamelCase : Optional[Any] = batch_size __lowerCamelCase : int = seq_length __lowerCamelCase : List[Any] = is_training __lowerCamelCase : List[str] = use_input_mask __lowerCamelCase : str = use_token_type_ids __lowerCamelCase : List[str] = use_labels __lowerCamelCase : str = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : Optional[int] = num_hidden_layers __lowerCamelCase : Optional[int] = num_attention_heads __lowerCamelCase : int = intermediate_size __lowerCamelCase : Any = hidden_act __lowerCamelCase : Any = hidden_dropout_prob __lowerCamelCase : Optional[Any] = attention_probs_dropout_prob __lowerCamelCase : List[str] = max_position_embeddings __lowerCamelCase : List[Any] = type_vocab_size __lowerCamelCase : Dict = type_sequence_label_size __lowerCamelCase : List[Any] = initializer_range __lowerCamelCase : Union[str, Any] = num_labels __lowerCamelCase : str = num_choices __lowerCamelCase : Tuple = scope def _lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : List[str] = None if self.use_input_mask: __lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : Tuple = None __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : Any = None if self.use_labels: __lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : str ) -> List[str]: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _lowercase ( self : str , _a : List[Any] , _a : str , _a : Optional[int] , _a : Any , _a : Tuple , _a : Optional[int] ) -> Any: __lowerCamelCase : List[str] = EsmModel(config=_a ) model.to(_a ) model.eval() __lowerCamelCase : List[str] = model(_a , attention_mask=_a ) __lowerCamelCase : Tuple = model(_a ) __lowerCamelCase : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase ( self : Any , _a : Optional[int] , _a : Any , _a : List[str] , _a : Dict , _a : List[str] , _a : int ) -> Optional[Any]: __lowerCamelCase : Optional[Any] = EsmForMaskedLM(config=_a ) model.to(_a ) model.eval() __lowerCamelCase : List[str] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : str , _a : str , _a : Union[str, Any] , _a : Dict , _a : List[Any] , _a : Any , _a : str ) -> Dict: __lowerCamelCase : str = self.num_labels __lowerCamelCase : Tuple = EsmForTokenClassification(config=_a ) model.to(_a ) model.eval() __lowerCamelCase : List[Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Dict ) -> Tuple: __lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) : List[str] = config_and_inputs __lowerCamelCase : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =False a_ =( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) a_ =() a_ =( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) a_ =True def _lowercase ( self : Any ) -> Tuple: __lowerCamelCase : Union[str, Any] = EsmModelTester(self ) __lowerCamelCase : Tuple = ConfigTester(self , config_class=_a , hidden_size=37 ) def _lowercase ( self : Optional[Any] ) -> Tuple: self.config_tester.run_common_tests() def _lowercase ( self : Any ) -> Tuple: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowercase ( self : Any ) -> Dict: __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase : Optional[Any] = type self.model_tester.create_and_check_model(*_a ) def _lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def _lowercase ( self : Tuple ) -> int: __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def _lowercase ( self : Optional[int] ) -> int: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = EsmModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowercase ( self : Any ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowerCamelCase : Union[str, Any] = EsmEmbeddings(config=_a ) __lowerCamelCase : int = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowerCamelCase : str = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowerCamelCase : Optional[Any] = create_position_ids_from_input_ids(_a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_a , _a ) ) ) def _lowercase ( self : List[Any] ) -> Dict: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()[0] __lowerCamelCase : int = EsmEmbeddings(config=_a ) __lowerCamelCase : Union[str, Any] = torch.empty(2 , 4 , 30 ) __lowerCamelCase : List[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowerCamelCase : Optional[Any] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowerCamelCase : Tuple = embeddings.create_position_ids_from_inputs_embeds(_a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_a , _a ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _lowercase ( self : str ) -> Tuple: pass @unittest.skip('Esm does not support embedding resizing' ) def _lowercase ( self : List[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowercase ( self : Optional[Any] ) -> List[str]: pass @require_torch class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @slow def _lowercase ( self : Union[str, Any] ) -> Tuple: with torch.no_grad(): __lowerCamelCase : List[str] = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() __lowerCamelCase : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase : List[Any] = model(_a )[0] __lowerCamelCase : Dict = 33 __lowerCamelCase : Tuple = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , _a ) __lowerCamelCase : Optional[int] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4 ) ) @slow def _lowercase ( self : int ) -> List[Any]: with torch.no_grad(): __lowerCamelCase : Optional[int] = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() __lowerCamelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowerCamelCase : List[str] = model(_a )[0] # compare the actual values for a slice. __lowerCamelCase : Optional[Any] = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
459
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase_ : """simple docstring""" @staticmethod def _lowercase ( *_a : Optional[Any] , **_a : Optional[Any] ) -> Tuple: pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" a_ =MODEL_FOR_OBJECT_DETECTION_MAPPING def _lowercase ( self : List[Any] , _a : int , _a : str , _a : Tuple ) -> List[Any]: __lowerCamelCase : List[str] = ObjectDetectionPipeline(model=_a , image_processor=_a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _lowercase ( self : Optional[int] , _a : int , _a : Optional[Any] ) -> Any: __lowerCamelCase : int = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { 'score': ANY(_a ), 'label': ANY(_a ), 'box': {'xmin': ANY(_a ), 'ymin': ANY(_a ), 'xmax': ANY(_a ), 'ymax': ANY(_a )}, } , ) import datasets __lowerCamelCase : Optional[int] = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __lowerCamelCase : List[str] = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __lowerCamelCase : Dict = object_detector(_a , threshold=0.0 ) self.assertEqual(len(_a ) , len(_a ) ) for outputs in batch_outputs: self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { 'score': ANY(_a ), 'label': ANY(_a ), 'box': {'xmin': ANY(_a ), 'ymin': ANY(_a ), 'xmax': ANY(_a ), 'ymax': ANY(_a )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def _lowercase ( self : Optional[Any] ) -> Dict: pass @require_torch def _lowercase ( self : int ) -> Optional[int]: __lowerCamelCase : Dict = 'hf-internal-testing/tiny-detr-mobilenetsv3' __lowerCamelCase : str = AutoModelForObjectDetection.from_pretrained(_a ) __lowerCamelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained(_a ) __lowerCamelCase : str = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) __lowerCamelCase : Tuple = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] , ) __lowerCamelCase : Optional[int] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] , ) @require_torch @slow def _lowercase ( self : Union[str, Any] ) -> Dict: __lowerCamelCase : Tuple = 'facebook/detr-resnet-50' __lowerCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(_a ) __lowerCamelCase : List[str] = AutoFeatureExtractor.from_pretrained(_a ) __lowerCamelCase : str = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) __lowerCamelCase : int = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) __lowerCamelCase : List[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def _lowercase ( self : Tuple ) -> Optional[Any]: __lowerCamelCase : Any = 'facebook/detr-resnet-50' __lowerCamelCase : List[str] = pipeline('object-detection' , model=_a ) __lowerCamelCase : int = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) __lowerCamelCase : List[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def _lowercase ( self : int ) -> Tuple: __lowerCamelCase : Optional[Any] = 0.9985 __lowerCamelCase : Optional[Any] = 'facebook/detr-resnet-50' __lowerCamelCase : Optional[int] = pipeline('object-detection' , model=_a ) __lowerCamelCase : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=_a ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) @require_torch @require_pytesseract @slow def _lowercase ( self : int ) -> Any: __lowerCamelCase : Optional[int] = 'Narsil/layoutlmv3-finetuned-funsd' __lowerCamelCase : Tuple = 0.9993 __lowerCamelCase : List[str] = pipeline('object-detection' , model=_a , threshold=_a ) __lowerCamelCase : Tuple = object_detector( 'https://huggingface.co./spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] , )
459
1
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _a ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): __A : int = parent __A : Union[str, Any] = batch_size __A : Dict = seq_length __A : str = is_training __A : Any = use_input_mask __A : Optional[int] = use_token_type_ids __A : List[str] = use_labels __A : Dict = vocab_size __A : List[str] = hidden_size __A : Optional[int] = num_hidden_layers __A : Any = num_attention_heads __A : Optional[int] = intermediate_size __A : List[Any] = hidden_act __A : Any = hidden_dropout_prob __A : str = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : List[str] = type_vocab_size __A : List[str] = type_sequence_label_size __A : int = initializer_range __A : Any = num_labels __A : str = num_choices __A : Tuple = relative_attention __A : Optional[Any] = position_biased_input __A : List[str] = pos_att_type __A : Optional[int] = scope def __UpperCAmelCase( self ): __A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : List[Any] = None if self.use_input_mask: __A : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __A : Optional[Any] = None if self.use_token_type_ids: __A : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Optional[Any] = None __A : Dict = None __A : List[str] = None if self.use_labels: __A : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __A : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase( self ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __UpperCAmelCase( self ): __A : Any = self.get_config() __A : Union[str, Any] = 300 return config def __UpperCAmelCase( self , __UpperCAmelCase ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : List[Any] = DebertaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] __A : List[str] = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] __A : List[str] = model(__UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : List[str] = DebertaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Any = self.num_labels __A : Optional[Any] = DebertaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Dict = self.num_labels __A : List[str] = DebertaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : Any = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : List[Any] = DebertaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase( self ): __A : Tuple = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : Dict = config_and_inputs __A : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Optional[int] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase_ : Optional[int] = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ : Any = True lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : Tuple = False def __UpperCAmelCase( self ): __A : Any = DebertaModelTester(self ) __A : Any = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __UpperCAmelCase( self ): self.config_tester.run_common_tests() def __UpperCAmelCase( self ): __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase ) @slow def __UpperCAmelCase( self ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : Optional[int] = DebertaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def __UpperCAmelCase( self ): pass @slow def __UpperCAmelCase( self ): __A : Tuple = DebertaModel.from_pretrained("microsoft/deberta-base" ) __A : Union[str, Any] = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __A : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __A : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] # compare the actual values for a slice. __A : str = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 ) , F"{output[:, 1:4, 1:4]}" )
387
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'spiece.model'} UpperCamelCase = { 'vocab_file': { 't5-small': 'https://huggingface.co./t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co./t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co./t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co./t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co./t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 UpperCamelCase = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } UpperCamelCase = '▁' class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Tuple = VOCAB_FILES_NAMES lowerCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase=True , **__UpperCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __A : Dict = [F"<extra_id_{i}>" for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __A : Any = len(set(filter(lambda __UpperCAmelCase : bool("extra_id" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( F"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) __A : Tuple = legacy __A : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=__UpperCAmelCase , **__UpperCAmelCase , ) __A : Optional[Any] = vocab_file __A : List[str] = extra_ids __A : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @staticmethod def __UpperCAmelCase( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __A : Union[str, Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , __UpperCAmelCase , ) return max_model_length @property def __UpperCAmelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def __UpperCAmelCase( self ): __A : List[str] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__UpperCAmelCase )) + [1] return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] def __UpperCAmelCase( self ): return list( set(filter(lambda __UpperCAmelCase : bool(re.search(r"<extra_id_\d+>" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def __UpperCAmelCase( self ): return [self._convert_token_to_id(__UpperCAmelCase ) for token in self.get_sentinel_tokens()] def __UpperCAmelCase( self , __UpperCAmelCase ): if len(__UpperCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None ): __A : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None ): __A : List[Any] = self._add_eos_if_not_present(__UpperCAmelCase ) if token_ids_a is None: return token_ids_a else: __A : str = self._add_eos_if_not_present(__UpperCAmelCase ) return token_ids_a + token_ids_a def __getstate__( self ): __A : Any = self.__dict__.copy() __A : List[str] = None return state def __setstate__( self , __UpperCAmelCase ): __A : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __A : Optional[int] = {} __A : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase( self , __UpperCAmelCase , **__UpperCAmelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __A : List[str] = SPIECE_UNDERLINE + text.replace(__UpperCAmelCase , " " ) return super().tokenize(__UpperCAmelCase , **__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase , **__UpperCAmelCase ): if not self.legacy: __A : Tuple = text.startswith(__UpperCAmelCase ) if is_first: __A : Optional[int] = text[1:] __A : Optional[Any] = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(__UpperCAmelCase ): __A : Tuple = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def __UpperCAmelCase( self , __UpperCAmelCase ): if token.startswith("<extra_id_" ): __A : Optional[Any] = re.match(r"<extra_id_(\d+)>" , __UpperCAmelCase ) __A : Optional[Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase ): if index < self.sp_model.get_piece_size(): __A : Union[str, Any] = self.sp_model.IdToPiece(__UpperCAmelCase ) else: __A : List[Any] = F"<extra_id_{self.vocab_size - 1 - index}>" return token def __UpperCAmelCase( self , __UpperCAmelCase ): __A : int = [] __A : List[Any] = "" __A : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token __A : Tuple = True __A : Any = [] else: current_sub_tokens.append(__UpperCAmelCase ) __A : Optional[int] = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None ): if not os.path.isdir(__UpperCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __A : Union[str, Any] = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: __A : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
387
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : Tuple=3 , _lowercase : Optional[int]=7 , _lowercase : Any=True , _lowercase : Optional[int]=True , _lowercase : Optional[int]=False , _lowercase : Tuple=True , _lowercase : Dict=99 , _lowercase : Any=32 , _lowercase : int=5 , _lowercase : Any=4 , _lowercase : int=37 , _lowercase : Tuple="gelu" , _lowercase : int=0.1 , _lowercase : List[Any]=0.1 , _lowercase : int=512 , _lowercase : Optional[int]=16 , _lowercase : Union[str, Any]=2 , _lowercase : List[Any]=0.02 , _lowercase : Optional[int]=3 , _lowercase : Dict=4 , _lowercase : Optional[int]=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope def __snake_case ( self : List[str]) -> Optional[Any]: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length]) A_ = None A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A_ = ids_tensor([self.batch_size] , self.num_choices) A_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : Optional[Any]) -> Union[str, Any]: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_lowercase , ) def __snake_case ( self : Optional[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int , _lowercase : Any , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : Optional[Any]) -> Any: A_ = FalconModel(config=_lowercase) model.to(_lowercase) model.eval() A_ = model(_lowercase , attention_mask=_lowercase) A_ = model(_lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __snake_case ( self : int , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : int , ) -> Optional[Any]: A_ = True A_ = FalconModel(_lowercase) model.to(_lowercase) model.eval() A_ = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , ) A_ = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , ) A_ = model(_lowercase , attention_mask=_lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __snake_case ( self : Optional[int] , _lowercase : List[Any] , _lowercase : int , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : int , _lowercase : Optional[int] , _lowercase : Optional[int] , ) -> Dict: A_ = FalconForCausalLM(config=_lowercase) model.to(_lowercase) model.eval() A_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __snake_case ( self : Dict , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : List[Any] , _lowercase : Optional[int] , ) -> str: A_ = True A_ = True A_ = FalconForCausalLM(config=_lowercase) model.to(_lowercase) model.eval() # first forward pass A_ = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , use_cache=_lowercase , ) A_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ = ids_tensor((self.batch_size, 3) , config.vocab_size) A_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and A_ = torch.cat([input_ids, next_tokens] , dim=-1) A_ = torch.cat([input_mask, next_mask] , dim=-1) A_ = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , output_hidden_states=_lowercase , )['hidden_states'][0] A_ = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )['hidden_states'][0] # select random slice A_ = ids_tensor((1,) , output_from_past.shape[-1]).item() A_ = output_from_no_past[:, -3:, random_slice_idx].detach() A_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3)) def __snake_case ( self : List[str]) -> Dict: A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase = (FalconForCausalLM,) if is_torch_available() else () _UpperCamelCase = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False def __snake_case ( self : Optional[int]) -> str: A_ = FalconModelTester(self) A_ = ConfigTester(self , config_class=_lowercase , hidden_size=37) def __snake_case ( self : Optional[int]) -> Any: self.config_tester.run_common_tests() def __snake_case ( self : str) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def __snake_case ( self : Any) -> Optional[int]: A_ , *A_ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: A_ = alibi self.model_tester.create_and_check_model(_lowercase , *_lowercase) def __snake_case ( self : List[str]) -> int: A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = 3 A_ = input_dict['input_ids'] A_ = input_ids.ne(1).to(_lowercase) A_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) A_ = FalconForSequenceClassification(_lowercase) model.to(_lowercase) model.eval() A_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def __snake_case ( self : int) -> Optional[int]: A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = 3 A_ = 'single_label_classification' A_ = input_dict['input_ids'] A_ = input_ids.ne(1).to(_lowercase) A_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) A_ = FalconForSequenceClassification(_lowercase) model.to(_lowercase) model.eval() A_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def __snake_case ( self : Dict) -> Optional[int]: A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = input_dict['input_ids'] A_ = FalconForCausalLM(_lowercase) model.to(_lowercase) model.eval() A_ = model(_lowercase , use_cache=_lowercase) A_ = input_ids.shape[0] A_ = model._convert_to_rw_cache(result.past_key_values) A_ = model._convert_cache_to_standard_format(_lowercase , _lowercase) for layer in range(len(_lowercase)): for tensor_idx in range(2): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx])) def __snake_case ( self : List[Any]) -> str: A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = 3 A_ = 'multi_label_classification' A_ = input_dict['input_ids'] A_ = input_ids.ne(1).to(_lowercase) A_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) A_ = FalconForSequenceClassification(_lowercase) model.to(_lowercase) model.eval() A_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def __snake_case ( self : int) -> Dict: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_lowercase , 'use_cache'): return A_ = model_class(_lowercase).to(_lowercase) if "use_cache" not in inputs: A_ = True A_ = model(**_lowercase) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return A_ = ( getattr(_lowercase , 'decoder_layers' , _lowercase) or getattr(_lowercase , 'num_decoder_layers' , _lowercase) or config.num_hidden_layers ) A_ = getattr(_lowercase , 'num_kv_heads' , config.num_attention_heads) A_ = getattr(_lowercase , 'd_model' , config.hidden_size) A_ = embed_dim // num_attention_heads A_ = outputs['past_key_values'] self.assertEqual(len(_lowercase) , _lowercase) A_ , A_ = inputs['input_ids'].shape for i in range(_lowercase): if config.new_decoder_architecture: A_ = config.num_attention_heads elif config.multi_query: A_ = 1 self.assertEqual(len(past_kv[0]) , 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self : List[str]) -> str: A_ = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b') A_ = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b') model.eval() model.to(_lowercase) A_ = tokenizer('My favorite food is' , return_tensors='pt').to(_lowercase) A_ = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) A_ = model.generate(**_lowercase , do_sample=_lowercase , max_new_tokens=19) A_ = tokenizer.batch_decode(_lowercase)[0] self.assertEqual(_lowercase , _lowercase) @slow def __snake_case ( self : Union[str, Any]) -> Union[str, Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: A_ = AutoTokenizer.from_pretrained(_lowercase) A_ = FalconForCausalLM.from_pretrained(_lowercase) model.eval() model.to(_lowercase) A_ = tokenizer('My favorite food is' , return_tensors='pt').to(_lowercase) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_lowercase , do_sample=_lowercase , max_new_tokens=4) model.generate(**_lowercase , do_sample=_lowercase , max_new_tokens=4) model.generate(**_lowercase , num_beams=2 , max_new_tokens=4) @slow def __snake_case ( self : Any) -> List[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: A_ = AutoTokenizer.from_pretrained(_lowercase) A_ = FalconForCausalLM.from_pretrained(_lowercase) model.eval() model.to(device=_lowercase) A_ = tokenizer('My favorite food is' , return_tensors='pt').to(_lowercase) # Test results are the same with and without cache A_ = model.generate(**_lowercase , do_sample=_lowercase , max_new_tokens=20 , use_cache=_lowercase) A_ = model.generate(**_lowercase , do_sample=_lowercase , max_new_tokens=20 , use_cache=_lowercase) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
366
'''simple docstring''' from PIL import Image def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Image: def brightness(SCREAMING_SNAKE_CASE_ ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE = change_brightness(img, 1_00) brigt_img.save("image_data/lena_brightness.png", format="png")
366
1
def _lowerCAmelCase( __A = 1000000 ): UpperCAmelCase = set(range(3 , __A , 2 ) ) primes.add(2 ) for p in range(3 , __A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , __A , __A ) ) ) UpperCAmelCase = [float(__A ) for n in range(limit + 1 )] for p in primes: for n in range(__A , limit + 1 , __A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"{solution() = }")
1
import glob import os import random from string import ascii_lowercase, digits import cva lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal) def _lowerCAmelCase( ): UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A ) print("Processing..." ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A ) for index, image in enumerate(__A ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase = random_chars(32 ) UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(__A )} with {file_name}" ) UpperCAmelCase = [] for anno in new_annos[index]: UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__A ) with open(F"/{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = [] UpperCAmelCase = [] for label_file in glob.glob(os.path.join(__A , "*.txt" ) ): UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__A ) as in_file: UpperCAmelCase = in_file.readlines() UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" ) UpperCAmelCase = [] for obj_list in obj_lists: UpperCAmelCase = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def _lowerCAmelCase( __A , __A , __A = 1 ): UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = [] for idx in range(len(__A ) ): UpperCAmelCase = [] UpperCAmelCase = img_list[idx] path_list.append(__A ) UpperCAmelCase = anno_list[idx] UpperCAmelCase = cva.imread(__A ) if flip_type == 1: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__A ) new_imgs_list.append(__A ) return new_imgs_list, new_annos_lists, path_list def _lowerCAmelCase( __A = 32 ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print("DONE ✅")
1
1
'''simple docstring''' from PIL import Image def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' def brightness(__magic_name__ ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)" ) return img.point(__magic_name__ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 a : List[str] = change_brightness(img, 1_00) brigt_img.save("image_data/lena_brightness.png", format="png")
679
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if n == 1 or not isinstance(__magic_name__ , __magic_name__ ): return 0 elif n == 2: return 1 else: UpperCAmelCase : Optional[int] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Union[str, Any] = 2 while digits < n: index += 1 UpperCAmelCase : Any = len(str(fibonacci(__magic_name__ ) ) ) return index def lowercase ( __magic_name__ = 1000 ): '''simple docstring''' return fibonacci_digits_index(__magic_name__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
679
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : def __init__( self , __magic_name__ , __magic_name__=3 , __magic_name__=3_2 , __magic_name__=3 , __magic_name__=1_0 , __magic_name__=[1_0, 2_0, 3_0, 4_0] , __magic_name__=[1, 1, 2, 1] , __magic_name__=True , __magic_name__=True , __magic_name__="relu" , __magic_name__=3 , __magic_name__=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = embeddings_size _lowerCAmelCase = hidden_sizes _lowerCAmelCase = depths _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_act _lowerCAmelCase = num_labels _lowerCAmelCase = scope _lowerCAmelCase = len(A__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TFResNetModel(config=A__ ) _lowerCAmelCase = model(A__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFResNetForImageClassification(A__ ) _lowerCAmelCase = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __magic_name__ ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): UpperCamelCase : str = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase : str = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase : Tuple = False UpperCamelCase : List[Any] = False UpperCamelCase : str = False UpperCamelCase : Tuple = False UpperCamelCase : Any = False def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TFResNetModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=A__ , has_text_modality=A__ ) def _lowerCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def _lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(A__ ) _lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def _lowerCamelCase ( self ): """simple docstring""" def check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ): _lowerCAmelCase = model_class(A__ ) _lowerCAmelCase = model(**self._prepare_for_class(A__ , A__ ) ) _lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(A__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase = layer_type _lowerCAmelCase = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(A__ , A__ , A__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFResNetModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def A__ ( ): """simple docstring""" _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=A__ , return_tensors='tf' ) # forward pass _lowerCAmelCase = model(**A__ ) # verify the logits _lowerCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A__ ) _lowerCAmelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , A__ , atol=1e-4 ) )
700
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer a__ : Dict = logging.getLogger(__name__) def A__ ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name', type=__lowerCamelCase, default='wikitext', help='Name of the training. Explore datasets at: hf.co/datasets.', ) parser.add_argument( '--dataset_config', type=__lowerCamelCase, default='wikitext-103-raw-v1', help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path', type=__lowerCamelCase, default='sayakpaul/unigram-tokenizer-wikitext', help='Tokenizer identifier. Can be a local filepath or a Hub identifier.', ) parser.add_argument( '--shard_size', type=__lowerCamelCase, default=1_0_0_0, help='Number of entries to go in a single shard.', ) parser.add_argument('--split', type=__lowerCamelCase, default='train', choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit', default=__lowerCamelCase, type=__lowerCamelCase, help='Limit the number of shards (used for debugging).', ) parser.add_argument( '--max_length', type=__lowerCamelCase, default=5_1_2, help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.', ) parser.add_argument( '--output_dir', default='tf-tpu', type=__lowerCamelCase, help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.', ) _lowerCAmelCase = parser.parse_args() return args def A__ ( __lowerCamelCase ): """simple docstring""" def fn(__lowerCamelCase ): return tokenizer(examples['text'] ) return fn def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = [] for i in range(len(tokenized_data['input_ids'] ) ): _lowerCAmelCase = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } _lowerCAmelCase = tf.train.Features(feature=__lowerCamelCase ) _lowerCAmelCase = tf.train.Example(features=__lowerCamelCase ) _lowerCAmelCase = example.SerializeToString() records.append(__lowerCamelCase ) return records def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = datasets.load_dataset(args.dataset_name, args.dataset_config, split=args.split ) if args.limit is not None: _lowerCAmelCase = min(len(__lowerCamelCase ), args.limit ) _lowerCAmelCase = dataset.select(range(__lowerCamelCase ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) _lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _lowerCAmelCase = os.path.join(args.output_dir, args.split ) if not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) else: _lowerCAmelCase = os.path.join(args.output_dir, args.split ) # Tokenize the whole dataset at once. _lowerCAmelCase = tokenize_function(__lowerCamelCase ) _lowerCAmelCase = dataset.map(__lowerCamelCase, batched=__lowerCamelCase, num_proc=4, remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__lowerCamelCase ): # Concatenate all texts. _lowerCAmelCase = {k: sum(examples[k], [] ) for k in examples.keys()} _lowerCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _lowerCAmelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _lowerCAmelCase = { k: [t[i : i + args.max_length] for i in range(0, __lowerCamelCase, args.max_length )] for k, t in concatenated_examples.items() } return result _lowerCAmelCase = dataset_tokenized.map(__lowerCamelCase, batched=__lowerCamelCase, batch_size=1_0_0_0, num_proc=4 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 for shard in range(0, len(__lowerCamelCase ), args.shard_size ): _lowerCAmelCase = grouped_dataset[shard : shard + args.shard_size] _lowerCAmelCase = len(dataset_snapshot['input_ids'] ) _lowerCAmelCase = os.path.join(__lowerCamelCase, F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _lowerCAmelCase = get_serialized_examples(__lowerCamelCase ) with tf.io.TFRecordWriter(__lowerCamelCase ) as out_file: for i in range(len(__lowerCamelCase ) ): _lowerCAmelCase = serialized_examples[i] out_file.write(__lowerCamelCase ) print('Wrote file {} containing {} records'.format(__lowerCamelCase, __lowerCamelCase ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''', 'w' ) as f: print(F'''Total {args.split} records: {total_records}''', file=__lowerCamelCase ) if __name__ == "__main__": a__ : str = parse_args() main(args)
309
0
from cva import destroyAllWindows, imread, imshow, waitKey def __UpperCamelCase (lowerCAmelCase : List[str] ) -> List[Any]: A = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): A = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image _UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative _UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
699
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( UpperCamelCase_ ): def __init__( self : Union[str, Any] , a__ : int , a__ : List[Any]=768 ): '''simple docstring''' super().__init__(a__ ) lowerCAmelCase__ : int = proj_size lowerCAmelCase__ : str = CLIPVisionModel(a__ ) lowerCAmelCase__ : int = PaintByExampleMapper(a__ ) lowerCAmelCase__ : Optional[int] = nn.LayerNorm(config.hidden_size ) lowerCAmelCase__ : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling lowerCAmelCase__ : Dict = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _A ( self : Tuple , a__ : int , a__ : Optional[Any]=False ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.model(pixel_values=a__ ) lowerCAmelCase__ : Any = clip_output.pooler_output lowerCAmelCase__ : Union[str, Any] = self.mapper(latent_states[:, None] ) lowerCAmelCase__ : List[Any] = self.final_layer_norm(a__ ) lowerCAmelCase__ : Optional[int] = self.proj_out(a__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase ( nn.Module ): def __init__( self : Optional[Any] , a__ : Optional[Any] ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Optional[Any] = (config.num_hidden_layers + 1) // 5 lowerCAmelCase__ : str = config.hidden_size lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : int = nn.ModuleList( [ BasicTransformerBlock(a__ , a__ , a__ , activation_fn="gelu" , attention_bias=a__ ) for _ in range(a__ ) ] ) def _A ( self : int , a__ : Union[str, Any] ): '''simple docstring''' for block in self.blocks: lowerCAmelCase__ : List[Any] = block(a__ ) return hidden_states
378
0
"""simple docstring""" __magic_name__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __magic_name__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __magic_name__ = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert len(str(UpperCamelCase_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __SCREAMING_SNAKE_CASE = year // 100 __SCREAMING_SNAKE_CASE = (5 * (century % 4) + 2) % 7 __SCREAMING_SNAKE_CASE = year % 100 __SCREAMING_SNAKE_CASE = centurian % 12 __SCREAMING_SNAKE_CASE = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __SCREAMING_SNAKE_CASE = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __SCREAMING_SNAKE_CASE = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
248
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __magic_name__ = threading.Lock() __magic_name__ = None __magic_name__ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } __magic_name__ = logging.WARNING __magic_name__ = True def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = os.getenv("""TRANSFORMERS_VERBOSITY""" , UpperCamelCase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def _lowerCAmelCase ( ): return __name__.split(""".""" )[0] def _lowerCAmelCase ( ): return logging.getLogger(_get_library_name() ) def _lowerCAmelCase ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return __SCREAMING_SNAKE_CASE = logging.StreamHandler() # Set sys.stderr as stream. __SCREAMING_SNAKE_CASE = sys.stderr.flush # Apply our default configuration to the library root logger. __SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) __SCREAMING_SNAKE_CASE = False def _lowerCAmelCase ( ): global _default_handler with _lock: if not _default_handler: return __SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) __SCREAMING_SNAKE_CASE = None def _lowerCAmelCase ( ): return log_levels def _lowerCAmelCase ( UpperCamelCase_ = None ): if name is None: __SCREAMING_SNAKE_CASE = _get_library_name() _configure_library_root_logger() return logging.getLogger(UpperCamelCase_ ) def _lowerCAmelCase ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _lowerCAmelCase ( UpperCamelCase_ ): _configure_library_root_logger() _get_library_root_logger().setLevel(UpperCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(UpperCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(UpperCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(UpperCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(UpperCamelCase_ ) def _lowerCAmelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _lowerCAmelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _lowerCAmelCase ( UpperCamelCase_ ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(UpperCamelCase_ ) def _lowerCAmelCase ( ): _configure_library_root_logger() __SCREAMING_SNAKE_CASE = False def _lowerCAmelCase ( ): _configure_library_root_logger() __SCREAMING_SNAKE_CASE = True def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: __SCREAMING_SNAKE_CASE = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(UpperCamelCase_ ) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(UpperCamelCase_ ) def _lowerCAmelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , UpperCamelCase_ ) if no_advisory_warnings: return self.warning(*UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = warning_advice @functools.lru_cache(UpperCamelCase_ ) def _lowerCAmelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): self.warning(*UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = warning_once class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): # pylint: disable=unused-argument __SCREAMING_SNAKE_CASE = args[0] if args else None def __iter__( self): return iter(self._iterator) def __getattr__( self , lowerCAmelCase__): def empty_fn(*lowerCAmelCase__ , **lowerCAmelCase__): # pylint: disable=unused-argument return return empty_fn def __enter__( self): return self def __exit__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): return class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __call__( self , *lowerCAmelCase__ , **lowerCAmelCase__): if _tqdm_active: return tqdm_lib.tqdm(*lowerCAmelCase__ , **lowerCAmelCase__) else: return EmptyTqdm(*lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __magic_name__ = _tqdm_cls() def _lowerCAmelCase ( ): global _tqdm_active return bool(_tqdm_active ) def _lowerCAmelCase ( ): global _tqdm_active __SCREAMING_SNAKE_CASE = True hf_hub_utils.enable_progress_bars() def _lowerCAmelCase ( ): global _tqdm_active __SCREAMING_SNAKE_CASE = False hf_hub_utils.disable_progress_bars()
248
1
from __future__ import annotations import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: _A = F"{num}: Invalid input, please enter a positive integer." raise ValueError(_SCREAMING_SNAKE_CASE ) _A = [True] * (num + 1) _A = [] _A = 2 _A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ): if sieve[i] is True: _A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
27
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : List[Any] = "http://www.mocksite.com/file1.txt" __A : List[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowerCamelCase: '''simple docstring''' __magic_name__ = 200 __magic_name__ = {'Content-Length': '100'} __magic_name__ = {} def lowerCAmelCase__ ( self , **snake_case_ ): return [bytes(snake_case_ , 'utf-8' )] def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import requests monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE ) _A = URL if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = url elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [url] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': url} _A = 'dummy' _A = 'downloads' _A = tmp_path _A = DownloadConfig( cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.download(_SCREAMING_SNAKE_CASE ) _A = urls for downloaded_paths in [downloaded_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [downloaded_paths] _A = [urls] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() _A = downloaded_paths.values() _A = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _A = Path(_SCREAMING_SNAKE_CASE ) _A = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _A = downloaded_path.read_text() assert content == CONTENT _A = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _A = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ) if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = filename elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [filename] elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = {'train': filename} _A = 'dummy' _A = xz_file.parent _A = 'extracted' _A = DownloadConfig( cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , ) _A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) _A = dl_manager.extract(_SCREAMING_SNAKE_CASE ) _A = paths for extracted_paths in [extracted_paths]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = [extracted_paths] _A = [paths] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() _A = extracted_paths.values() _A = paths.values() assert extracted_paths for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] _A = Path(_SCREAMING_SNAKE_CASE ) _A = extracted_path.parts assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _A = extracted_path.read_text() _A = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): _A = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = request.getfixturevalue(_SCREAMING_SNAKE_CASE ) _A = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
1
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : Any = logging.get_logger(__name__) UpperCamelCase_ : Any = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co./snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class _lowercase ( lowerCAmelCase ): _a : Optional[Any] = '''efficientformer''' def __init__( self : List[str] , a : List[int] = [3, 2, 6, 4] , a : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , a : List[bool] = [True, True, True, True] , a : int = 4_4_8 , a : int = 3_2 , a : int = 4 , a : int = 7 , a : int = 5 , a : int = 8 , a : int = 4 , a : float = 0.0 , a : int = 1_6 , a : int = 3 , a : int = 3 , a : int = 3 , a : int = 2 , a : int = 1 , a : float = 0.0 , a : int = 1 , a : bool = True , a : bool = True , a : float = 1e-5 , a : str = "gelu" , a : float = 0.0_2 , a : float = 1e-12 , a : int = 2_2_4 , a : float = 1e-05 , **a : List[Any] , ): """simple docstring""" super().__init__(**a ) __snake_case : Union[str, Any] =hidden_act __snake_case : str =hidden_dropout_prob __snake_case : Optional[int] =hidden_sizes __snake_case : Optional[int] =num_hidden_layers __snake_case : Optional[Any] =num_attention_heads __snake_case : str =initializer_range __snake_case : Optional[int] =layer_norm_eps __snake_case : Any =patch_size __snake_case : List[str] =num_channels __snake_case : List[Any] =depths __snake_case : Optional[Any] =mlp_expansion_ratio __snake_case : Union[str, Any] =downsamples __snake_case : int =dim __snake_case : Tuple =key_dim __snake_case : List[Any] =attention_ratio __snake_case : Optional[int] =resolution __snake_case : str =pool_size __snake_case : int =downsample_patch_size __snake_case : List[Any] =downsample_stride __snake_case : Optional[Any] =downsample_pad __snake_case : Optional[int] =drop_path_rate __snake_case : Tuple =num_metaad_blocks __snake_case : int =distillation __snake_case : int =use_layer_scale __snake_case : Any =layer_scale_init_value __snake_case : List[Any] =image_size __snake_case : Tuple =batch_norm_eps
497
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase_ : int = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") UpperCamelCase_ : Optional[int] = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) UpperCamelCase_ : List[Any] = """|""".join(sys.argv[1:]) UpperCamelCase_ : List[str] = re.compile(rF'''^({joined_dirs}).*?\.py$''') UpperCamelCase_ : str = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
497
1
import math import qiskit def __lowerCamelCase ( _lowerCAmelCase = 1 , _lowerCAmelCase = 1 , _lowerCAmelCase = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers _UpperCAmelCase = qiskit.QuantumRegister(4 , "qr" ) _UpperCAmelCase = qiskit.ClassicalRegister(2 , "cr" ) # list the entries _UpperCAmelCase = [input_a, input_a, carry_in] _UpperCAmelCase = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits _UpperCAmelCase = qiskit.Aer.get_backend("aer_simulator" ) _UpperCAmelCase = qiskit.execute(__lowercase , __lowercase , shots=1_000 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
684
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def UpperCAmelCase_ ( __lowercase : int ) -> Optional[Any]: '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=__lowercase ) _UpperCAmelCase = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__lowercase ) EnvironmentCommand.register_subcommand(__lowercase ) TestCommand.register_subcommand(__lowercase ) RunBeamCommand.register_subcommand(__lowercase ) DummyDataCommand.register_subcommand(__lowercase ) # Parse args _UpperCAmelCase , _UpperCAmelCase = parser.parse_known_args() if not hasattr(__lowercase , "func" ): parser.print_help() exit(1 ) _UpperCAmelCase = parse_unknown_args(__lowercase ) # Run _UpperCAmelCase = args.func(__lowercase , **__lowercase ) service.run() if __name__ == "__main__": main()
236
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "microsoft/focalnet-tiny": "https://huggingface.co./microsoft/focalnet-tiny/resolve/main/config.json", } class __lowerCAmelCase ( A , A ): UpperCamelCase = '''focalnet''' def __init__( self : str , A : Any=2_24 , A : Optional[Any]=4 , A : List[Any]=3 , A : int=96 , A : Any=False , A : Union[str, Any]=[1_92, 3_84, 7_68, 7_68] , A : Optional[int]=[2, 2, 6, 2] , A : Any=[2, 2, 2, 2] , A : Dict=[3, 3, 3, 3] , A : List[str]="gelu" , A : Dict=4.0 , A : List[str]=0.0 , A : List[Any]=0.1 , A : Optional[int]=False , A : Union[str, Any]=1E-4 , A : Any=False , A : Dict=False , A : Dict=False , A : List[Any]=0.0_2 , A : Union[str, Any]=1E-5 , A : Optional[Any]=32 , A : Union[str, Any]=None , A : Dict=None , **A : Optional[Any] , ) -> int: """simple docstring""" super().__init__(**A) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = use_conv_embed _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = focal_levels _UpperCAmelCase = focal_windows _UpperCAmelCase = hidden_act _UpperCAmelCase = mlp_ratio _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_layerscale _UpperCAmelCase = layerscale_value _UpperCAmelCase = use_post_layernorm _UpperCAmelCase = use_post_layernorm_in_modulation _UpperCAmelCase = normalize_modulator _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = encoder_stride _UpperCAmelCase = ['stem'] + [F"stage{idx}" for idx in range(1 , len(self.depths) + 1)] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names)
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class UpperCamelCase : def __init__( self , snake_case__ , snake_case__ , snake_case__ = True , snake_case__ = False ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = scheduler _SCREAMING_SNAKE_CASE : List[Any] = optimizers if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) else [optimizers] _SCREAMING_SNAKE_CASE : List[Any] = split_batches _SCREAMING_SNAKE_CASE : Optional[int] = step_with_optimizer _SCREAMING_SNAKE_CASE : Union[str, Any] = GradientState() def __SCREAMING_SNAKE_CASE ( self , *snake_case__ , **snake_case__ ): """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(SCREAMING_SNAKE_CASE_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) else: self.scheduler.step(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return self.scheduler.get_last_lr() def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return self.scheduler.state_dict() def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" self.scheduler.load_state_dict(SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return self.scheduler.get_lr() def __SCREAMING_SNAKE_CASE ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.scheduler.print_lr(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
572
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __UpperCamelCase ( A ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __magic_name__ =''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class _A ( __UpperCamelCase ): @staticmethod def _a (SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=SCREAMING_SNAKE_CASE_ , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , ) -> Dict: '''simple docstring''' UpperCamelCase__ = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F"Loading model {model_type}" ) UpperCamelCase__ = model_type UpperCamelCase__ = tf_checkpoint UpperCamelCase__ = pytorch_dump_output UpperCamelCase__ = config UpperCamelCase__ = finetuning_task_name def _a (self ) -> Tuple: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCamelCase__ = self._tf_checkpoint UpperCamelCase__ = '''''' else: UpperCamelCase__ = self._tf_checkpoint UpperCamelCase__ = '''''' convert_transfo_xl_checkpoint_to_pytorch( SCREAMING_SNAKE_CASE_ , self._config , self._pytorch_dump_output , SCREAMING_SNAKE_CASE_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
415
0
def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowerCamelCase : Tuple = str(bin(UpperCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase : List[str] = str(bin(UpperCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase : Union[str, Any] = max(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase ) , b_binary.zfill(UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
715
def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __lowerCamelCase : str = 6 __lowerCamelCase : Optional[int] = 1 __lowerCamelCase : Optional[int] = 1_901 __lowerCamelCase : Optional[Any] = 0 while year < 2_001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __lowerCamelCase : Tuple = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __lowerCamelCase : str = day - 29 else: if day > days_per_month[month - 1]: month += 1 __lowerCamelCase : Any = day - days_per_month[month - 2] if month > 12: year += 1 __lowerCamelCase : Optional[Any] = 1 if year < 2_001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
458
0
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer lowercase = logging.get_logger(__name__) lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co./Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co./Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co./Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } lowercase = { '''Salesforce/codegen-350M-mono''': 2_0_4_8, } class __A( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = CodeGenTokenizer def __init__( self : str , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[Any]="<|endoftext|>" , __UpperCamelCase : Optional[Any]="<|endoftext|>" , __UpperCamelCase : Optional[Any]="<|endoftext|>" , __UpperCamelCase : str=False , **__UpperCamelCase : List[Any] , ): super().__init__( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if kwargs.pop("""add_bos_token""" , SCREAMING_SNAKE_CASE__ ): lowerCamelCase_ = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n""" F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , SCREAMING_SNAKE_CASE__ ) != add_prefix_space: lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE__ , pre_tok_state.pop("""type""" ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase_ = add_prefix_space def lowercase__ ( self : Optional[int] , *__UpperCamelCase : List[str] , **__UpperCamelCase : int ): lowerCamelCase_ = kwargs.get("""is_split_into_words""" , SCREAMING_SNAKE_CASE__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowercase__ ( self : Optional[int] , *__UpperCamelCase : str , **__UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = kwargs.get("""is_split_into_words""" , SCREAMING_SNAKE_CASE__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): lowerCamelCase_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , __UpperCamelCase : bool = False , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[List[str]] = None , **__UpperCamelCase : Any , ): lowerCamelCase_ = super().decode( token_ids=SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if truncate_before_pattern is not None and len(SCREAMING_SNAKE_CASE__ ) > 0: lowerCamelCase_ = self.truncate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return decoded_text def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Any ): def find_re(__UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict ): lowerCamelCase_ = pattern.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return m.start() if m else -1 lowerCamelCase_ = [re.compile(SCREAMING_SNAKE_CASE__ , re.MULTILINE ) for pattern in truncate_before_pattern] lowerCamelCase_ = list(re.finditer("""^print""" , SCREAMING_SNAKE_CASE__ , re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE__ ) > 1: lowerCamelCase_ = completion[: prints[1].start()] lowerCamelCase_ = list(re.finditer("""^def""" , SCREAMING_SNAKE_CASE__ , re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE__ ) > 1: lowerCamelCase_ = completion[: defs[1].start()] lowerCamelCase_ = 0 lowerCamelCase_ = [ pos for pos in [find_re(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for terminal in terminals] if pos != -1 ] if len(SCREAMING_SNAKE_CASE__ ) > 0: return completion[: min(SCREAMING_SNAKE_CASE__ )] else: return completion
272
import collections import importlib.util import os import re from pathlib import Path _lowercase : List[Any] ='''src/transformers''' # Matches is_xxx_available() _lowercase : List[str] =re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _lowercase : Any =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowercase : Optional[int] =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _lowercase : int =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _lowercase : Tuple =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _lowercase : List[Any] =re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _lowercase : List[Any] =re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _lowercase : List[str] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _lowercase : Any =re.compile(R'''^\s*try:''') # Catches a line with else: _lowercase : Optional[int] =re.compile(R'''^\s*else:''') def A__ ( lowercase: int ) -> Optional[Any]: if _re_test_backend.search(lowercase ) is None: return None A : List[str] =[b[0] for b in _re_backend.findall(lowercase )] backends.sort() return "_and_".join(lowercase ) def A__ ( lowercase: Tuple ) -> int: with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f: A : str =f.readlines() A : List[str] =0 while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase ): return None # First grab the objects without a specific backend in _import_structure A : Union[str, Any] =[] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: A : Union[str, Any] =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase ): A : List[str] =_re_one_line_import_struct.search(lowercase ).groups()[0] A : Optional[int] =re.findall('\[([^\]]+)\]', lowercase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue A : int =_re_import_struct_key_value.search(lowercase ) if single_line_import_search is not None: A : List[str] =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0] objects.extend(lowercase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 A : Optional[int] ={'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. A : Dict =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : int =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : str =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): A : List[Any] =lines[line_index] if _re_import_struct_add_one.search(lowercase ) is not None: objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase ) is not None: A : List[str] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' ) A : Optional[Any] =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_between_brackets.search(lowercase ) is not None: A : int =_re_between_brackets.search(lowercase ).groups()[0].split(', ' ) A : List[str] =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_quote_object.search(lowercase ) is not None: objects.append(_re_quote_object.search(lowercase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 A : Optional[Any] =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A : int =[] while ( line_index < len(lowercase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): A : List[str] =lines[line_index] A : Optional[int] =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 A : Dict ={'none': objects} # Let's continue with backend-specific objects while line_index < len(lowercase ): # If the line is an if is_backend_available, we grab all objects associated. A : Optional[Any] =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : str =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[Any] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): A : List[str] =lines[line_index] A : Optional[Any] =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 A : Any =objects else: line_index += 1 return import_dict_objects, type_hint_objects def A__ ( lowercase: Dict, lowercase: str ) -> int: def find_duplicates(lowercase: int ): return [k for k, v in collections.Counter(lowercase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A : Dict =[] for key in import_dict_objects.keys(): A : Optional[Any] =find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) A : str =find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A : Tuple ='base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A__ ( ) -> int: A : List[str] =[] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: A : Optional[int] =os.path.join(lowercase, '__init__.py' ) A : str =parse_init(lowercase ) if objects is not None: A : Union[str, Any] =analyze_results(*lowercase ) if len(lowercase ) > 0: A : Optional[int] =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(lowercase ) ) if len(lowercase ) > 0: raise ValueError('\n\n'.join(lowercase ) ) def A__ ( ) -> Dict: A : List[Any] =[] for path, directories, files in os.walk(lowercase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowercase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0: continue A : List[Any] =str((Path(lowercase ) / folder).relative_to(lowercase ) ) A : Union[str, Any] =short_path.replace(os.path.sep, '.' ) submodules.append(lowercase ) for fname in files: if fname == "__init__.py": continue A : int =str((Path(lowercase ) / fname).relative_to(lowercase ) ) A : str =short_path.replace('.py', '' ).replace(os.path.sep, '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowercase ) return submodules _lowercase : Dict =[ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def A__ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. A : Optional[Any] =importlib.util.spec_from_file_location( 'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A : List[Any] =spec.loader.load_module() A : Union[str, Any] =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase ) > 0: A : List[Any] ='\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
305
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __snake_case : def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=True , _A=True , _A=99 , _A=32 , _A=5 , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=16 , _A=2 , _A=0.0_2 , _A=3 , _A=4 , _A=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = self.vocab_size - 1 def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase__ ( self , _A , _A , _A , _A , *_A): SCREAMING_SNAKE_CASE_ = OpenAIGPTModel(config=_A) model.to(_A) model.eval() SCREAMING_SNAKE_CASE_ = model(_A , token_type_ids=_A , head_mask=_A) SCREAMING_SNAKE_CASE_ = model(_A , token_type_ids=_A) SCREAMING_SNAKE_CASE_ = model(_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCAmelCase__ ( self , _A , _A , _A , _A , *_A): SCREAMING_SNAKE_CASE_ = OpenAIGPTLMHeadModel(_A) model.to(_A) model.eval() SCREAMING_SNAKE_CASE_ = model(_A , token_type_ids=_A , labels=_A) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCAmelCase__ ( self , _A , _A , _A , _A , *_A): SCREAMING_SNAKE_CASE_ = OpenAIGPTDoubleHeadsModel(_A) model.to(_A) model.eval() SCREAMING_SNAKE_CASE_ = model(_A , token_type_ids=_A , labels=_A) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCAmelCase__ ( self , _A , _A , _A , _A , *_A): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = OpenAIGPTForSequenceClassification(_A) model.to(_A) model.eval() SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ = model(_A , token_type_ids=_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ) = config_and_inputs SCREAMING_SNAKE_CASE_ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __snake_case ( A_ , A_ , A_ , unittest.TestCase ): __lowerCAmelCase : Dict = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __lowerCAmelCase : Dict = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __lowerCAmelCase : List[Any] = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase__ ( self , _A , _A , _A , _A , _A): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase__ ( self , _A , _A , _A=False): SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(_A , _A , return_labels=_A) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": SCREAMING_SNAKE_CASE_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_A , ) SCREAMING_SNAKE_CASE_ = inputs_dict["""labels"""] SCREAMING_SNAKE_CASE_ = inputs_dict["""labels"""] SCREAMING_SNAKE_CASE_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_A , ) SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A) return inputs_dict def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = OpenAIGPTModelTester(self) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , n_embd=37) def lowerCAmelCase__ ( self): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_A) @slow def lowerCAmelCase__ ( self): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = OpenAIGPTModel.from_pretrained(_A) self.assertIsNotNone(_A) @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt') model.to(_A) SCREAMING_SNAKE_CASE_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_A) # the president is SCREAMING_SNAKE_CASE_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the SCREAMING_SNAKE_CASE_ = model.generate(_A , do_sample=_A) self.assertListEqual(output_ids[0].tolist() , _A)
708
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase__ : int = Lock() def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your right neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left SCREAMING_SNAKE_CASE_ = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your left neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right SCREAMING_SNAKE_CASE_ = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # after all swaps are performed, send the values back to main result_pipe[1].send(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop SCREAMING_SNAKE_CASE_ = Pipe() SCREAMING_SNAKE_CASE_ = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) SCREAMING_SNAKE_CASE_ = temp_rs SCREAMING_SNAKE_CASE_ = temp_rr for i in range(1 , len(_SCREAMING_SNAKE_CASE ) - 1 ): SCREAMING_SNAKE_CASE_ = Pipe() SCREAMING_SNAKE_CASE_ = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) SCREAMING_SNAKE_CASE_ = temp_rs SCREAMING_SNAKE_CASE_ = temp_rr process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=( len(_SCREAMING_SNAKE_CASE ) - 1, arr[len(_SCREAMING_SNAKE_CASE ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_SCREAMING_SNAKE_CASE ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE_ = result_pipe[p][0].recv() process_array_[p].join() return arr def _UpperCAmelCase ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = odd_even_transposition(_SCREAMING_SNAKE_CASE ) print('Sorted List\n' ) print(*_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
620
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : Optional[Any] = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
633
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Optional[Any]: '''simple docstring''' a : Any = [] a : List[str] = set({"(", "[", "{"} ) a : int = set({")", "]", "}"} ) a : int = {"{": "}", "[": "]", "(": ")"} for i in range(len(_lowercase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowercase ) == 0 or (len(_lowercase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowercase ) == 0 def _SCREAMING_SNAKE_CASE ( ) ->Tuple: '''simple docstring''' a : Any = input("Enter sequence of brackets: " ) if is_balanced(_lowercase ): print(_lowercase , "is balanced" ) else: print(_lowercase , "is not balanced" ) if __name__ == "__main__": main()
633
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/xglm-564M""": """https://huggingface.co./facebook/xglm-564M/resolve/main/config.json""", # See all XGLM models at https://huggingface.co./models?filter=xglm } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Optional[Any] = 'xglm' _UpperCamelCase : str = ['past_key_values'] _UpperCamelCase : Union[str, Any] = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , a : List[Any]=256_008 , a : List[str]=2_048 , a : List[str]=1_024 , a : int=4_096 , a : int=24 , a : List[str]=16 , a : Dict="gelu" , a : Optional[int]=0.1 , a : Optional[Any]=0.1 , a : Optional[Any]=0.0 , a : int=0.0 , a : Optional[int]=0.02 , a : Union[str, Any]=True , a : List[Any]=True , a : Any=2 , a : Dict=1 , a : str=0 , a : Tuple=2 , **a : Optional[Any] , )-> List[Any]: """simple docstring""" lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = ffn_dim lowercase__ = num_layers lowercase__ = attention_heads lowercase__ = activation_function lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = layerdrop lowercase__ = init_std lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_cache super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , decoder_start_token_id=a , **a , )
45
class SCREAMING_SNAKE_CASE : # Public class to implement a graph def __init__( self : int , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = row lowercase__ = col lowercase__ = graph def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int , a : int , a : list[list[bool]] )-> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> int: # And finally, count all islands. """simple docstring""" lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(a , a , a ) count += 1 return count
45
1
A__ = 8.3144598 def _lowerCamelCase ( a_ : float , a_ : float): if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''') if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''') else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example A__ = 300 A__ = 28 A__ = rms_speed_of_molecule(temperature, molar_mass) print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
166
import argparse import hashlib # hashlib is only used inside the Test class import struct class _lowerCAmelCase : def __init__( self : Any , __snake_case : int ): lowerCamelCase :Union[str, Any] = data lowerCamelCase :Optional[int] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def snake_case ( __snake_case : List[str] , __snake_case : List[Any] ): return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) lowerCamelCase :List[Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def snake_case ( self : Optional[Any] ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def snake_case ( self : Optional[Any] , __snake_case : str ): lowerCamelCase :Union[str, Any] = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): lowerCamelCase :int = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def snake_case ( self : int ): lowerCamelCase :Optional[Any] = self.padding() lowerCamelCase :str = self.split_blocks() for block in self.blocks: lowerCamelCase :int = self.expand_block(__snake_case ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowerCamelCase :int = (b & c) | ((~b) & d) lowerCamelCase :Any = 0X5a_82_79_99 elif 20 <= i < 40: lowerCamelCase :Optional[Any] = b ^ c ^ d lowerCamelCase :Optional[Any] = 0X6e_d9_eb_a1 elif 40 <= i < 60: lowerCamelCase :List[Any] = (b & c) | (b & d) | (c & d) lowerCamelCase :List[str] = 0X8f_1b_bc_dc elif 60 <= i < 80: lowerCamelCase :Optional[Any] = b ^ c ^ d lowerCamelCase :Dict = 0Xca_62_c1_d6 lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :Any = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) lowerCamelCase :List[str] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def _lowerCamelCase ( ): lowerCamelCase :Any = B'''Test String''' assert SHAaHash(a_).final_hash() == hashlib.shaa(a_).hexdigest() # noqa: S324 def _lowerCamelCase ( ): lowerCamelCase :str = argparse.ArgumentParser(description='''Process some strings or files''') parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''') lowerCamelCase :Optional[Any] = parser.parse_args() lowerCamelCase :Union[str, Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''') as f: lowerCamelCase :Tuple = f.read() else: lowerCamelCase :Optional[Any] = bytes(a_ , '''utf-8''') print(SHAaHash(a_).final_hash()) if __name__ == "__main__": main() import doctest doctest.testmod()
166
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : int = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
459
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __lowerCamelCase : List[str] = logging.get_logger(__name__) class UpperCAmelCase ( _lowercase ): def __init__(self : Any , A__ : int , A__ : int , A__ : float , **A__ : int ) -> List[str]: lowercase = feature_size lowercase = sampling_rate lowercase = padding_value lowercase = kwargs.pop("padding_side" , "right" ) lowercase = kwargs.pop("return_attention_mask" , A__ ) super().__init__(**A__ ) def UpperCAmelCase__ (self : Tuple , A__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , A__ : Union[bool, str, PaddingStrategy] = True , A__ : Optional[int] = None , A__ : bool = False , A__ : Optional[int] = None , A__ : Optional[bool] = None , A__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(A__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowercase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) lowercase = processed_features[self.model_input_names[0]] lowercase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A__ ) == 0: if return_attention_mask: lowercase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowercase = required_input[0] if isinstance(A__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowercase = 0 while len(required_input[index] ) == 0: index += 1 if index < len(A__ ): lowercase = required_input[index][0] if return_tensors is None: if is_tf_tensor(A__ ): lowercase = "tf" elif is_torch_tensor(A__ ): lowercase = "pt" elif isinstance(A__ , (int, float, list, tuple, np.ndarray) ): lowercase = "np" else: raise ValueError( f'type of {first_element} unknown: {type(A__ )}. ' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowercase = to_numpy(A__ ) else: lowercase = [to_numpy(A__ ) for v in value] # Convert padding_strategy in PaddingStrategy lowercase = self._get_padding_strategies(padding=A__ , max_length=A__ ) lowercase = processed_features[self.model_input_names[0]] lowercase = len(A__ ) if not all(len(A__ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) lowercase = [] for i in range(A__ ): lowercase = {k: v[i] for k, v in processed_features.items()} # truncation lowercase = self._truncate( A__ , max_length=A__ , pad_to_multiple_of=A__ , truncation=A__ , ) truncated_inputs.append(A__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowercase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowercase = PaddingStrategy.MAX_LENGTH lowercase = {} for i in range(A__ ): # padding lowercase = self._pad( truncated_inputs[i] , max_length=A__ , padding_strategy=A__ , pad_to_multiple_of=A__ , return_attention_mask=A__ , ) for key, value in outputs.items(): if key not in batch_outputs: lowercase = [] if value.dtype is np.dtype(np.floataa ): lowercase = value.astype(np.floataa ) batch_outputs[key].append(A__ ) return BatchFeature(A__ , tensor_type=A__ ) def UpperCAmelCase__ (self : Union[str, Any] , A__ : Union[Dict[str, np.ndarray], BatchFeature] , A__ : Optional[int] = None , A__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , A__ : Optional[int] = None , A__ : Optional[bool] = None , ) -> dict: lowercase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowercase = len(A__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowercase = np.ones(len(A__ ) , dtype=np.intaa ) if needs_to_be_padded: lowercase = max_length - len(A__ ) if self.padding_side == "right": if return_attention_mask: lowercase = np.pad( processed_features["attention_mask"] , (0, difference) ) lowercase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowercase = np.pad( A__ , A__ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowercase = np.pad( processed_features["attention_mask"] , (difference, 0) ) lowercase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowercase = np.pad( A__ , A__ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCAmelCase__ (self : Dict , A__ : Union[Dict[str, np.ndarray], BatchFeature] , A__ : Optional[int] = None , A__ : Optional[int] = None , A__ : Optional[bool] = None , ) -> str: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) lowercase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase = len(A__ ) > max_length if needs_to_be_truncated: lowercase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowercase = processed_features["attention_mask"][:max_length] return processed_features def UpperCAmelCase__ (self : int , A__ : Optional[Any]=False , A__ : Dict=None ) -> Optional[int]: # Get padding strategy if padding is not False: if padding is True: lowercase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A__ , A__ ): lowercase = PaddingStrategy(A__ ) elif isinstance(A__ , A__ ): lowercase = padding else: lowercase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
459
1
from __future__ import annotations import math def lowerCAmelCase__ ( UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] )-> str: if len(lowerCamelCase_ ) != 2 or len(a[0] ) != 2 or len(lowerCamelCase_ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) A__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCAmelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] )-> List[str]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase_ ) ) ] def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] )-> List[str]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase_ ) ) ] def lowerCAmelCase__ ( UpperCamelCase_ : Optional[Any] )-> Any: if len(lowerCamelCase_ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) A__ = len(lowerCamelCase_ ) A__ = matrix_length // 2 A__ = [[a[i][j] for j in range(lowerCamelCase_ , lowerCamelCase_ )] for i in range(lowerCamelCase_ )] A__ = [ [a[i][j] for j in range(lowerCamelCase_ , lowerCamelCase_ )] for i in range(lowerCamelCase_ , lowerCamelCase_ ) ] A__ = [[a[i][j] for j in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ )] A__ = [[a[i][j] for j in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ , lowerCamelCase_ )] return top_left, top_right, bot_left, bot_right def lowerCAmelCase__ ( UpperCamelCase_ : Any )-> Any: return len(lowerCamelCase_ ), len(matrix[0] ) def lowerCAmelCase__ ( UpperCamelCase_ : List[Any] )-> int: print('''\n'''.join(str(lowerCamelCase_ ) for line in matrix ) ) def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int )-> Any: if matrix_dimensions(lowerCamelCase_ ) == (2, 2): return default_matrix_multiplication(lowerCamelCase_ , lowerCamelCase_ ) A__ = split_matrix(lowerCamelCase_ ) A__ = split_matrix(lowerCamelCase_ ) A__ = actual_strassen(lowerCamelCase_ , matrix_subtraction(lowerCamelCase_ , lowerCamelCase_ ) ) A__ = actual_strassen(matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) A__ = actual_strassen(matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) A__ = actual_strassen(lowerCamelCase_ , matrix_subtraction(lowerCamelCase_ , lowerCamelCase_ ) ) A__ = actual_strassen(matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) , matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) ) A__ = actual_strassen(matrix_subtraction(lowerCamelCase_ , lowerCamelCase_ ) , matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) ) A__ = actual_strassen(matrix_subtraction(lowerCamelCase_ , lowerCamelCase_ ) , matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) ) A__ = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) , lowerCamelCase_ ) A__ = matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) A__ = matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) A__ = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) , lowerCamelCase_ ) # construct the new matrix from our 4 quadrants A__ = [] for i in range(len(lowerCamelCase_ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowerCamelCase_ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCAmelCase__ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] )-> Union[str, Any]: if matrix_dimensions(lowerCamelCase_ )[1] != matrix_dimensions(lowerCamelCase_ )[0]: A__ = ( '''Unable to multiply these matrices, please check the dimensions.\n''' f"Matrix A: {matrixa}\n" f"Matrix B: {matrixa}" ) raise Exception(lowerCamelCase_ ) A__ = matrix_dimensions(lowerCamelCase_ ) A__ = matrix_dimensions(lowerCamelCase_ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] A__ = max(*lowerCamelCase_ , *lowerCamelCase_ ) A__ = int(math.pow(2 , math.ceil(math.loga(lowerCamelCase_ ) ) ) ) A__ = matrixa A__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowerCamelCase_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) A__ = actual_strassen(lowerCamelCase_ , lowerCamelCase_ ) # Removing the additional zeros for i in range(0 , lowerCamelCase_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase_ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _lowercase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _lowercase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
632
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case__ ( lowerCamelCase_ ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case__ ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case__ ( ): A : List[Any] = '''mock-s3-bucket''' A : Union[str, Any] = F's3://{mock_bucket}' A : str = extract_path_from_uri(lowerCamelCase_ ) assert dataset_path.startswith('''s3://''' ) is False A : Tuple = '''./local/path''' A : Tuple = extract_path_from_uri(lowerCamelCase_ ) assert dataset_path == new_dataset_path def snake_case__ ( lowerCamelCase_ ): A : int = is_remote_filesystem(lowerCamelCase_ ) assert is_remote is True A : Dict = fsspec.filesystem('''file''' ) A : Tuple = is_remote_filesystem(lowerCamelCase_ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , lowerCamelCase_ ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): A : List[str] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} A : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: A : int = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) A : Dict = fsspec.filesystem(compression_fs_class.protocol , fo=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) A : str = os.path.basename(lowerCamelCase_ ) A : str = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' ) as f, open(lowerCamelCase_ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): A : Union[str, Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} A : int = compressed_file_paths[protocol] A : List[str] = '''dataset.jsonl''' A : List[str] = F'{protocol}://{member_file_path}::{compressed_file_path}' A , *A : List[Any] = fsspec.get_fs_token_paths(lowerCamelCase_ ) assert fs.isfile(lowerCamelCase_ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): A : List[Any] = hf_api.dataset_info(lowerCamelCase_ , token=lowerCamelCase_ ) A : List[str] = HfFileSystem(repo_info=lowerCamelCase_ , token=lowerCamelCase_ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(lowerCamelCase_ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case__ ( ): A : Tuple = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCamelCase_ , lowerCamelCase_ , clobber=lowerCamelCase_ ) with pytest.warns(lowerCamelCase_ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCamelCase_ ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
542
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _snake_case = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co./allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co./allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co./allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co./allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co./allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co./allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co./allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co./allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co./allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co./allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _snake_case = { '''allenai/longformer-base-4096''': 4_096, '''allenai/longformer-large-4096''': 4_096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4_096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4_096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowerCamelCase ( ) -> Any: UpperCamelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowercase ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(_lowercase ) for n in cs] return dict(zip(_lowercase , _lowercase ) ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : int =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[str] =["input_ids", "attention_mask"] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str="replace" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE__ : int="</s>" , SCREAMING_SNAKE_CASE__ : Any="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="<mask>" , SCREAMING_SNAKE_CASE__ : str=False , **SCREAMING_SNAKE_CASE__ : List[Any] , ): """simple docstring""" UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as merges_handle: UpperCamelCase = merges_handle.read().split('\n' )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" return len(self.encoder ) def __lowerCAmelCase ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: return token while True: UpperCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: UpperCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: UpperCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = ' '.join(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = word return word def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE__ ): UpperCamelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE__ ).split(' ' ) ) return bpe_tokens def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" return self.decoder.get(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" UpperCamelCase = ''.join(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '\n' ) UpperCamelCase = 0 with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE__ ) + '\n' ) index += 1 return vocab_file, merge_file def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , **SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" UpperCamelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE__ ) > 0 and not text[0].isspace()): UpperCamelCase = ' ' + text return (text, kwargs)
700
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCamelCase = b.T UpperCamelCase = np.sum(np.square(_lowercase ) , axis=1 ) UpperCamelCase = np.sum(np.square(_lowercase ) , axis=0 ) UpperCamelCase = np.matmul(_lowercase , _lowercase ) UpperCamelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: UpperCamelCase = x.reshape(-1 , 3 ) UpperCamelCase = squared_euclidean_distance(_lowercase , _lowercase ) return np.argmin(_lowercase , axis=1 ) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =["pixel_values"] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Union[List[List[int]], np.ndarray]] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = size if size is not None else {'height': 2_56, 'width': 2_56} UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = np.array(SCREAMING_SNAKE_CASE__ ) if clusters is not None else None UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = do_normalize UpperCamelCase = do_color_quantize def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ): """simple docstring""" UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , ): """simple docstring""" UpperCamelCase = rescale(image=SCREAMING_SNAKE_CASE__ , scale=1 / 127.5 , data_format=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = image - 1 return image def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[List[List[int]], np.ndarray]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : Any , ): """simple docstring""" UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCamelCase = clusters if clusters is not None else self.clusters UpperCamelCase = np.array(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE__ ) for image in images] if do_color_quantize: UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCamelCase = np.array(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = color_quantize(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCamelCase = images.shape[0] UpperCamelCase = images.reshape(SCREAMING_SNAKE_CASE__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCamelCase = list(SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] UpperCamelCase = {'input_ids': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
170
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Iterable[str] , SCREAMING_SNAKE_CASE_ : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = iter(SCREAMING_SNAKE_CASE_ ) while True: SCREAMING_SNAKE_CASE_ : Tuple = tuple(itertools.islice(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not chunk: return yield chunk def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE_ : List[Any] = "" if len(SCREAMING_SNAKE_CASE_ ) < 2: return dirty for i in range(len(SCREAMING_SNAKE_CASE_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(SCREAMING_SNAKE_CASE_ ) & 1: clean += "X" return clean def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str ) -> list[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE_ : Tuple = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(SCREAMING_SNAKE_CASE_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(SCREAMING_SNAKE_CASE_ ) return table def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = generate_table(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : int = prepare_input(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : List[str] = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(SCREAMING_SNAKE_CASE_ , 2 ): SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = divmod(table.index(SCREAMING_SNAKE_CASE_ ) , 5 ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[Any] = divmod(table.index(SCREAMING_SNAKE_CASE_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = generate_table(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : int = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(SCREAMING_SNAKE_CASE_ , 2 ): SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = divmod(table.index(SCREAMING_SNAKE_CASE_ ) , 5 ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = divmod(table.index(SCREAMING_SNAKE_CASE_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
421
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig snake_case_ = logging.get_logger(__name__) # General docstring snake_case_ = 'RegNetConfig' # Base docstring snake_case_ = 'facebook/regnet-y-040' snake_case_ = [1, 1_0_8_8, 7, 7] # Image classification docstring snake_case_ = 'facebook/regnet-y-040' snake_case_ = 'tabby, tabby cat' snake_case_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co./models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self , lowercase__ , lowercase__ = 3 , lowercase__ = 1 , lowercase__ = 1 , lowercase__ = "relu" , **lowercase__ , ): """simple docstring""" super().__init__(**lowercase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE_ : List[str] = tf.keras.layers.ConvaD( filters=lowercase__ , kernel_size=lowercase__ , strides=lowercase__ , padding="VALID" , groups=lowercase__ , use_bias=lowercase__ , name="convolution" , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ACTaFN[activation] if activation is not None else tf.identity def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.convolution(self.padding(lowercase__ ) ) SCREAMING_SNAKE_CASE_ : Tuple = self.normalization(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.activation(lowercase__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self , lowercase__ , **lowercase__ ): """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ : Any = config.num_channels SCREAMING_SNAKE_CASE_ : Dict = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = shape_list(lowercase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) SCREAMING_SNAKE_CASE_ : Any = tf.transpose(lowercase__ , perm=(0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ : Any = self.embedder(lowercase__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self , lowercase__ , lowercase__ = 2 , **lowercase__ ): """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = tf.keras.layers.ConvaD( filters=lowercase__ , kernel_size=1 , strides=lowercase__ , use_bias=lowercase__ , name="convolution" ) SCREAMING_SNAKE_CASE_ : List[str] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def __lowerCamelCase ( self , lowercase__ , lowercase__ = False ): """simple docstring""" return self.normalization(self.convolution(lowercase__ ) , training=lowercase__ ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self , lowercase__ , lowercase__ , **lowercase__ ): """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase__ , name="pooler" ) SCREAMING_SNAKE_CASE_ : List[str] = [ tf.keras.layers.ConvaD(filters=lowercase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowercase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.pooler(lowercase__ ) for layer_module in self.attention: SCREAMING_SNAKE_CASE_ : Any = layer_module(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 , **lowercase__ ): """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE_ : int = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ( TFRegNetShortCut(lowercase__ , stride=lowercase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. SCREAMING_SNAKE_CASE_ : int = [ TFRegNetConvLayer(lowercase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowercase__ , stride=lowercase__ , groups=lowercase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowercase__ , kernel_size=1 , activation=lowercase__ , name="layer.2" ), ] SCREAMING_SNAKE_CASE_ : Dict = ACTaFN[config.hidden_act] def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE_ : List[Any] = layer_module(lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = self.shortcut(lowercase__ ) hidden_state += residual SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.activation(lowercase__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 , **lowercase__ ): """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ : int = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE_ : Any = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE_ : str = ( TFRegNetShortCut(lowercase__ , stride=lowercase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) SCREAMING_SNAKE_CASE_ : Tuple = [ TFRegNetConvLayer(lowercase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowercase__ , stride=lowercase__ , groups=lowercase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowercase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowercase__ , kernel_size=1 , activation=lowercase__ , name="layer.3" ), ] SCREAMING_SNAKE_CASE_ : Any = ACTaFN[config.hidden_act] def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE_ : str = layer_module(lowercase__ ) SCREAMING_SNAKE_CASE_ : Any = self.shortcut(lowercase__ ) hidden_state += residual SCREAMING_SNAKE_CASE_ : Optional[int] = self.activation(lowercase__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 2 , lowercase__ = 2 , **lowercase__ ): """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer SCREAMING_SNAKE_CASE_ : str = [ # downsampling is done in the first layer with stride of 2 layer(lowercase__ , lowercase__ , lowercase__ , stride=lowercase__ , name="layers.0" ), *[layer(lowercase__ , lowercase__ , lowercase__ , name=F"layers.{i+1}" ) for i in range(depth - 1 )], ] def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" for layer_module in self.layers: SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_module(lowercase__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self , lowercase__ , **lowercase__ ): """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ : str = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) SCREAMING_SNAKE_CASE_ : List[str] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase__ , lowercase__ , lowercase__ , depth=lowercase__ , name=F"stages.{i+1}" ) ) def __lowerCamelCase ( self , lowercase__ , lowercase__ = False , lowercase__ = True ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE_ : Any = stage_module(lowercase__ ) if output_hidden_states: SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase__ , hidden_states=lowercase__ ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): _A = RegNetConfig def __init__( self , lowercase__ , **lowercase__ ): """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = config SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFRegNetEmbeddings(lowercase__ , name="embedder" ) SCREAMING_SNAKE_CASE_ : List[Any] = TFRegNetEncoder(lowercase__ , name="encoder" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase__ , name="pooler" ) @unpack_inputs def __lowerCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : Any = self.embedder(lowercase__ , training=lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.encoder( lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ , training=lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = encoder_outputs[0] SCREAMING_SNAKE_CASE_ : int = self.pooler(lowercase__ ) # Change to NCHW output format have uniformity in the modules SCREAMING_SNAKE_CASE_ : Dict = tf.transpose(lowercase__ , perm=(0, 3, 1, 2) ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.transpose(lowercase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: SCREAMING_SNAKE_CASE_ : str = tuple([tf.transpose(lowercase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase__ , pooler_output=lowercase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): _A = RegNetConfig _A = "regnet" _A = "pixel_values" @property def __lowerCamelCase ( self ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} snake_case_ = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' snake_case_ = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.",_UpperCAmelCase,) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__( self , lowercase__ , *lowercase__ , **lowercase__ ): """simple docstring""" super().__init__(lowercase__ , *lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = TFRegNetMainLayer(lowercase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=False , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : Optional[int] = self.regnet( pixel_values=lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ , training=lowercase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ",_UpperCAmelCase,) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase,_UpperCAmelCase ): def __init__( self , lowercase__ , *lowercase__ , **lowercase__ ): """simple docstring""" super().__init__(lowercase__ , *lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE_ : int = TFRegNetMainLayer(lowercase__ , name="regnet" ) # classification head SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCamelCase ( self , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__=False , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : str = self.regnet( lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ , training=lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_ : Any = self.classifier[0](lowercase__ ) SCREAMING_SNAKE_CASE_ : str = self.classifier[1](lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = None if labels is None else self.hf_compute_loss(labels=lowercase__ , logits=lowercase__ ) if not return_dict: SCREAMING_SNAKE_CASE_ : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase__ , logits=lowercase__ , hidden_states=outputs.hidden_states )
421
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co./facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Dict ="convnextv2" def __init__( self :int , _lowercase :List[Any]=3 , _lowercase :Union[str, Any]=4 , _lowercase :int=4 , _lowercase :Tuple=None , _lowercase :Dict=None , _lowercase :Dict="gelu" , _lowercase :Union[str, Any]=0.02 , _lowercase :Optional[int]=1E-1_2 , _lowercase :Dict=0.0 , _lowercase :int=224 , _lowercase :Optional[int]=None , _lowercase :Dict=None , **_lowercase :int , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = num_channels UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_stages UpperCAmelCase_ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes UpperCAmelCase_ = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = image_size UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(self.depths) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
712
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def A ( ) -> Optional[int]: '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class a_ ( nn.Module ): def __init__( self :Dict) -> Any: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :str , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( unittest.TestCase ): def __a ( self :Any) -> int: UpperCAmelCase_ = [] @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :List[str]): nonlocal batch_sizes batch_sizes.append(_lowercase) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [128, 64, 32, 16, 8]) def __a ( self :Union[str, Any]) -> Union[str, Any]: UpperCAmelCase_ = [] @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :Optional[int] , _lowercase :str): nonlocal batch_sizes batch_sizes.append(_lowercase) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCAmelCase_ , UpperCAmelCase_ = mock_training_loop_function('''hello''') self.assertListEqual(_lowercase , [128, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def __a ( self :Optional[Any]) -> str: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(_lowercase :Optional[Any]): pass with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def __a ( self :Any) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(_lowercase :Tuple): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def __a ( self :str) -> Dict: @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :List[Any] , _lowercase :Union[str, Any] , _lowercase :Tuple): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase) as cm: mock_training_loop_function(128 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def __a ( self :Optional[int]) -> Any: @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(_lowercase :List[str]): raise ValueError('''Oops, we had an error!''') with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def __a ( self :List[Any]) -> Union[str, Any]: UpperCAmelCase_ = torch.cuda.memory_allocated() UpperCAmelCase_ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase) UpperCAmelCase_ = release_memory(_lowercase) self.assertEqual(torch.cuda.memory_allocated() , _lowercase)
561
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any]=28_123 )-> List[str]: _lowerCamelCase = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _lowerCamelCase = set() _lowerCamelCase = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(snake_case ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int , snake_case : Tuple )-> Dict: _lowerCamelCase = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _lowerCamelCase = [] _lowerCamelCase = list(range(snake_case ) ) # Find permutation while factorials: _lowerCamelCase = factorials.pop() _lowerCamelCase , _lowerCamelCase = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
650
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _lowerCamelCase ( __A : Optional[int] ) -> str: return 1 / (1 + np.exp(-z )) def _lowerCamelCase ( __A : Tuple , __A : List[Any] ) -> Optional[int]: return (-y * np.log(__A ) - (1 - y) * np.log(1 - h )).mean() def _lowerCamelCase ( __A : Tuple , __A : List[Any] , __A : int ) -> Any: _UpperCAmelCase : int = np.dot(__A , __A ) return np.sum(y * scores - np.log(1 + np.exp(__A ) ) ) def _lowerCamelCase ( __A : List[Any] , __A : Union[str, Any] , __A : str , __A : Dict=70_000 ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = np.zeros(x.shape[1] ) for iterations in range(__A ): _UpperCAmelCase : List[Any] = np.dot(__A , __A ) _UpperCAmelCase : Union[str, Any] = sigmoid_function(__A ) _UpperCAmelCase : Optional[Any] = np.dot(x.T , h - y ) / y.size _UpperCAmelCase : Optional[Any] = theta - alpha * gradient # updating the weights _UpperCAmelCase : List[Any] = np.dot(__A , __A ) _UpperCAmelCase : Any = sigmoid_function(__A ) _UpperCAmelCase : Union[str, Any] = cost_function(__A , __A ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": SCREAMING_SNAKE_CASE = datasets.load_iris() SCREAMING_SNAKE_CASE = iris.data[:, :2] SCREAMING_SNAKE_CASE = (iris.target != 0) * 1 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = logistic_reg(alpha, x, y, max_iterations=70000) print('theta: ', theta) # printing the theta i.e our weights vector def _lowerCamelCase ( __A : Any ) -> int: return sigmoid_function( np.dot(__A , __A ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = (x[:, 0].min(), x[:, 0].max()) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = (x[:, 1].min(), x[:, 1].max()) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) SCREAMING_SNAKE_CASE = np.c_[xxa.ravel(), xxa.ravel()] SCREAMING_SNAKE_CASE = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
186
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( __A : int , __A : Optional[Any] , __A : int ) -> int: # Initialise PyTorch model _UpperCAmelCase : Dict = RemBertConfig.from_json_file(__A ) print('''Building PyTorch model from configuration: {}'''.format(str(__A ) ) ) _UpperCAmelCase : int = RemBertModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__A , __A , __A ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(__A ) ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
186
1
'''simple docstring''' def UpperCAmelCase ( A : int ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCAmelCase_ : Tuple = int(input('Enter number: ').strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
527
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase ( A : dict , A : str , A : set , A : set , A : dict , A : dict , A : PriorityQueue , A : dict , A : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue SCREAMING_SNAKE_CASE : str = cst_fwd.get(A , np.inf ) SCREAMING_SNAKE_CASE : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) SCREAMING_SNAKE_CASE : Tuple = new_cost_f SCREAMING_SNAKE_CASE : List[str] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: SCREAMING_SNAKE_CASE : Union[str, Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase ( A : str , A : str , A : dict , A : dict ): SCREAMING_SNAKE_CASE : Dict = -1 SCREAMING_SNAKE_CASE : Optional[int] = set() SCREAMING_SNAKE_CASE : Optional[Any] = set() SCREAMING_SNAKE_CASE : Any = {source: 0} SCREAMING_SNAKE_CASE : Tuple = {destination: 0} SCREAMING_SNAKE_CASE : Union[str, Any] = {source: None} SCREAMING_SNAKE_CASE : Optional[int] = {destination: None} SCREAMING_SNAKE_CASE : PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE : PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE : List[str] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = queue_forward.get() visited_forward.add(A ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = queue_backward.get() visited_backward.add(A ) SCREAMING_SNAKE_CASE : Tuple = pass_and_relaxation( A , A , A , A , A , A , A , A , A , ) SCREAMING_SNAKE_CASE : Optional[int] = pass_and_relaxation( A , A , A , A , A , A , A , A , A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: SCREAMING_SNAKE_CASE : int = shortest_distance return shortest_path_distance lowerCAmelCase_ : int = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } lowerCAmelCase_ : str = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
527
1
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Dict = RoFormerTokenizer A_ : Optional[Any] = RoFormerTokenizerFast A_ : Optional[Any] = True A_ : List[str] = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' super().setUp() def _SCREAMING_SNAKE_CASE ( self : Optional[int], **_lowerCamelCase : Any ): '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''', **_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict, **_lowerCamelCase : Optional[int] ): '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''', **_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = '''永和服装饰品有限公司,今天天气非常好''' __A = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = self.get_tokenizer() __A , __A = self.get_chinese_input_output_texts() __A = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, output_text.split() ) __A = tokens + [tokenizer.unk_token] __A = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ), _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = self.get_rust_tokenizer() __A , __A = self.get_chinese_input_output_texts() __A = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, output_text.split() ) __A = tokens + [tokenizer.unk_token] __A = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ), _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' pass
215
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" def get_matched_characters(__UpperCamelCase , __UpperCamelCase ) -> str: __A = [] __A = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __A = int(max(0 , i - limit ) ) __A = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__UpperCamelCase ) __A = f'{_stra[0:_stra.index(__UpperCamelCase )]} {_stra[_stra.index(__UpperCamelCase ) + 1:]}' return "".join(__UpperCamelCase ) # matching characters __A = get_matched_characters(__UpperCamelCase , __UpperCamelCase ) __A = get_matched_characters(__UpperCamelCase , __UpperCamelCase ) __A = len(__UpperCamelCase ) # transposition __A = ( len([(ca, ca) for ca, ca in zip(__UpperCamelCase , __UpperCamelCase ) if ca != ca] ) // 2 ) if not match_count: __A = 0.0 else: __A = ( 1 / 3 * ( match_count / len(__UpperCamelCase ) + match_count / len(__UpperCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __A = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
215
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase__ : Union[str, Any] = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[int] = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co./facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co./facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co./facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co./facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co./facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co./facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """dpr""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase="absolute" , lowercase = 0 , **lowercase , ): super().__init__(pad_token_id=lowercase , **lowercase ) _lowerCamelCase : int = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Tuple = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : Dict = projection_dim _lowerCamelCase : int = position_embedding_type
630
0
'''simple docstring''' import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : List[Any] = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) SCREAMING_SNAKE_CASE : List[str] = '''CIDAS/clipseg-rd64-refined''' SCREAMING_SNAKE_CASE : Tuple = '''image_segmenter''' SCREAMING_SNAKE_CASE : Optional[int] = CLIPSegForImageSegmentation SCREAMING_SNAKE_CASE : Dict = ['''image''', '''text'''] SCREAMING_SNAKE_CASE : List[Any] = ['''image'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' with torch.no_grad(): lowerCAmelCase = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = outputs.cpu().detach().numpy() lowerCAmelCase = 0 lowerCAmelCase = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
714
'''simple docstring''' _UpperCamelCase : Optional[int] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _UpperCamelCase : str = [{"type": "code", "content": INSTALL_CONTENT}] _UpperCamelCase : Any = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
514
0
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase__ ( ): __UpperCAmelCase : Union[str, Any] = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" ) __UpperCAmelCase : Any = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(__lowerCamelCase ) DownloadCommand.register_subcommand(__lowerCamelCase ) EnvironmentCommand.register_subcommand(__lowerCamelCase ) RunCommand.register_subcommand(__lowerCamelCase ) ServeCommand.register_subcommand(__lowerCamelCase ) UserCommands.register_subcommand(__lowerCamelCase ) AddNewModelCommand.register_subcommand(__lowerCamelCase ) AddNewModelLikeCommand.register_subcommand(__lowerCamelCase ) LfsCommands.register_subcommand(__lowerCamelCase ) PTtoTFCommand.register_subcommand(__lowerCamelCase ) # Let's go __UpperCAmelCase : Optional[Any] = parser.parse_args() if not hasattr(__lowerCamelCase , """func""" ): parser.print_help() exit(1 ) # Run __UpperCAmelCase : Tuple = args.func(__lowerCamelCase ) service.run() if __name__ == "__main__": main()
63
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ :List[Any] = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ :List[str] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ :Dict = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ :List[str] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase__ :Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
150
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case_ ( _a , unittest.TestCase ): """simple docstring""" __UpperCAmelCase =RoCBertTokenizer __UpperCAmelCase =None __UpperCAmelCase =False __UpperCAmelCase =True __UpperCAmelCase =filter_non_english def A__ ( self ): super().setUp() __lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __lowerCAmelCase = {} __lowerCAmelCase = {} for i, value in enumerate(_A ): __lowerCAmelCase = i __lowerCAmelCase = i __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(_A , _A , ensure_ascii=_A ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(_A , _A , ensure_ascii=_A ) def A__ ( self ): __lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __lowerCAmelCase = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(_A , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_A ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_A ) , [5, 6, 2, 5, 7, 8] ) def A__ ( self ): __lowerCAmelCase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def A__ ( self ): __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A__ ( self ): __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def A__ ( self ): __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A__ ( self ): __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A__ ( self ): __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A__ ( self ): __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A__ ( self ): __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A__ ( self ): __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=_A , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def A__ ( self ): __lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowerCAmelCase = {} for i, token in enumerate(_A ): __lowerCAmelCase = i __lowerCAmelCase = RoCBertWordpieceTokenizer(vocab=_A , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def A__ ( self ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def A__ ( self ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def A__ ( self ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def A__ ( self ): __lowerCAmelCase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_A ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __lowerCAmelCase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_A ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def A__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __lowerCAmelCase = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __lowerCAmelCase = tokenizer_r.encode_plus( _A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , ) __lowerCAmelCase = tokenizer_r.do_lower_case if hasattr(_A , 'do_lower_case' ) else False __lowerCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def A__ ( self ): __lowerCAmelCase = ['的', '人', '有'] __lowerCAmelCase = ''.join(_A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = True __lowerCAmelCase = self.tokenizer_class.from_pretrained(_A , **_A ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __lowerCAmelCase = tokenizer_p.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = tokenizer_r.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(_A ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = False __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(_A , **_A ) __lowerCAmelCase = tokenizer_r.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = tokenizer_p.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(_A ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that only the first Chinese character is not preceded by "##". __lowerCAmelCase = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_A ) ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A ) @slow def A__ ( self ): __lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __lowerCAmelCase = tokenizer.encode('你好' , add_special_tokens=_A ) __lowerCAmelCase = tokenizer.encode('你是谁' , add_special_tokens=_A ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_A ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A__ ( self ): __lowerCAmelCase = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = '你好,你是谁' __lowerCAmelCase = tokenizer.tokenize(_A ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(_A ) __lowerCAmelCase = tokenizer.convert_tokens_to_shape_ids(_A ) __lowerCAmelCase = tokenizer.convert_tokens_to_pronunciation_ids(_A ) __lowerCAmelCase = tokenizer.prepare_for_model( _A , _A , _A , add_special_tokens=_A ) __lowerCAmelCase = tokenizer.encode_plus(_A , add_special_tokens=_A ) self.assertEqual(_A , _A )
102
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class snake_case_ : """simple docstring""" def __init__( self , _A , _A=None , _A=None , _A=None , _A="resnet50" , _A=3 , _A=3_2 , _A=3 , _A=True , _A=True , ): __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def A__ ( self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def A__ ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def A__ ( self , _A , _A ): __lowerCAmelCase = TimmBackbone(config=_A ) model.to(_A ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def A__ ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase, __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class snake_case_ ( _a , _a , _a , unittest.TestCase ): """simple docstring""" __UpperCAmelCase =(TimmBackbone,) if is_torch_available() else () __UpperCAmelCase ={"""feature-extraction""": TimmBackbone} if is_torch_available() else {} __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False def A__ ( self ): __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A ) def A__ ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ): __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(_A , use_timm_backbone=_A ) __lowerCAmelCase = AutoBackbone.from_pretrained(_A ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(_A , use_timm_backbone=_A , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(_A , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def A__ ( self ): pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def A__ ( self ): pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def A__ ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def A__ ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def A__ ( self ): pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def A__ ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def A__ ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def A__ ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def A__ ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def A__ ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def A__ ( self ): pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def A__ ( self ): pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def A__ ( self ): pass @unittest.skip('Safetensors is not supported by timm.' ) def A__ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A__ ( self ): pass def A__ ( self ): __lowerCAmelCase, __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def A__ ( self ): __lowerCAmelCase, __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(_A ) model.to(_A ) __lowerCAmelCase = self._prepare_for_class(_A , _A ) __lowerCAmelCase = model(**_A ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_A ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def A__ ( self ): __lowerCAmelCase, __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(**_A ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(_A ) __lowerCAmelCase = None __lowerCAmelCase = model_class(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(**_A ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(_A ) __lowerCAmelCase = False __lowerCAmelCase = model_class(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(**_A )
102
1
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _UpperCamelCase ( UpperCamelCase ) -> Tuple: """simple docstring""" __UpperCAmelCase : int = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def _UpperCamelCase ( UpperCamelCase ) -> List[Any]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Any = emb.weight.shape __UpperCAmelCase : Dict = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = emb.weight.data return lin_layer def _UpperCamelCase ( UpperCamelCase ) -> Dict: """simple docstring""" __UpperCAmelCase : Tuple = torch.load(UpperCamelCase , map_location="cpu" ) __UpperCAmelCase : Tuple = Namespace(**checkpoint["cfg"]["model"] ) __UpperCAmelCase : str = checkpoint["model"] remove_ignore_keys_(UpperCamelCase ) __UpperCAmelCase : int = state_dict["decoder.embed_tokens.weight"].shape[0] __UpperCAmelCase : Optional[int] = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} __UpperCAmelCase : Any = XGLMConfig( vocab_size=UpperCamelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __UpperCAmelCase : Union[str, Any] = XGLMForCausalLM(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) print(UpperCamelCase ) __UpperCAmelCase : int = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") A = parser.parse_args() A = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
77
def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> float: '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate _lowercase : str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _lowercase : str = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
322
0
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowercase_ = logging.get_logger(__name__) lowercase_ = {} lowercase_ = {} lowercase_ = {} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , ) -> Dict: lowercase__ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) lowercase__ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) lowercase__ = format_type def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple: lowercase__ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowercase__ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: lowercase_ = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: lowercase_ = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: lowercase_ = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __UpperCamelCase (_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Formatter: lowercase__ = get_format_type_from_alias(_SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
45
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Tuple = 'ClapFeatureExtractor' _UpperCamelCase : Union[str, Any] = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : List[Any] , a : int , a : str )-> Any: """simple docstring""" super().__init__(a , a ) def __call__( self : Any , a : Tuple=None , a : Optional[int]=None , a : int=None , **a : Optional[int] )-> Union[str, Any]: """simple docstring""" lowercase__ = kwargs.pop('sampling_rate' , a ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: lowercase__ = self.tokenizer(a , return_tensors=a , **a ) if audios is not None: lowercase__ = self.feature_extractor( a , sampling_rate=a , return_tensors=a , **a ) if text is not None and audios is not None: lowercase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def SCREAMING_SNAKE_CASE_ ( self : str , *a : Dict , **a : int )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , *a : int , **a : Dict )-> Dict: """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
45
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) a_ = _symbol_database.Default() a_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) a_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: a_ = None a_ = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" a_ = 45 a_ = 1_581 a_ = 1_517 a_ = 1_570 a_ = 1_584 a_ = 1_793 a_ = 1_795 a_ = 1_916 a_ = 1_864 a_ = 1_905 a_ = 1_919 a_ = 2_429 a_ = 2_208 a_ = 2_418 a_ = 2_323 a_ = 2_407 # @@protoc_insertion_point(module_scope)
685
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co./docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co./docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co./docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __lowerCAmelCase : def __init__( self , __UpperCAmelCase = "cpu" , __UpperCAmelCase = "openai/clip-vit-large-patch14" ): '''simple docstring''' __lowerCamelCase = device __lowerCamelCase = CLIPTokenizerFast.from_pretrained(lowerCAmelCase_ ) __lowerCamelCase = [0.48_145_466, 0.4_578_275, 0.40_821_073] __lowerCamelCase = [0.26_862_954, 0.26_130_258, 0.27_577_711] __lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __lowerCamelCase = torchvision.transforms.Resize(224 ) __lowerCamelCase = torchvision.transforms.CenterCrop(224 ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.resize(lowerCAmelCase_ ) __lowerCamelCase = self.center_crop(lowerCAmelCase_ ) __lowerCamelCase = self.normalize(lowerCAmelCase_ ) return images def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.tokenizer(text=lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCamelCase = self.preprocess_img(lowerCAmelCase_ ) __lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase=10 , __UpperCAmelCase=0.01 , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="image" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , ): '''simple docstring''' super().__init__() __lowerCamelCase = None __lowerCamelCase = device if device else get_device() if vqgan: __lowerCamelCase = vqgan else: __lowerCamelCase = load_vqgan(self.device , conf_path=lowerCAmelCase_ , ckpt_path=lowerCAmelCase_ ) self.vqgan.eval() if clip: __lowerCamelCase = clip else: __lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __lowerCamelCase = ProcessorGradientFlow(device=self.device ) __lowerCamelCase = iterations __lowerCamelCase = lr __lowerCamelCase = log __lowerCamelCase = make_grid __lowerCamelCase = return_val __lowerCamelCase = quantize __lowerCamelCase = self.vqgan.decoder.z_shape def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=5 , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = [] if output_path is None: __lowerCamelCase = '''./animation.gif''' if input_path is None: __lowerCamelCase = self.save_path __lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(lowerCAmelCase_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(lowerCAmelCase_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __lowerCamelCase = total_duration / len(lowerCAmelCase_ ) __lowerCamelCase = [frame_duration] * len(lowerCAmelCase_ ) if extend_frames: __lowerCamelCase = 1.5 __lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(lowerCAmelCase_ ) ) imageio.mimsave(lowerCAmelCase_ , lowerCAmelCase_ , duration=lowerCAmelCase_ ) print(F"""gif saved to {output_path}""" ) def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __lowerCamelCase = preprocess(Image.open(lowerCAmelCase_ ) , target_image_size=256 ).to(self.device ) __lowerCamelCase = preprocess_vqgan(lowerCAmelCase_ ) __lowerCamelCase ,*__lowerCamelCase = self.vqgan.encode(lowerCAmelCase_ ) return z def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.latent.detach().requires_grad_() __lowerCamelCase = base_latent + transform_vector if self.quantize: __lowerCamelCase ,*__lowerCamelCase = self.vqgan.quantize(lowerCAmelCase_ ) else: __lowerCamelCase = trans_latent return self.vqgan.decode(lowerCAmelCase_ ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = self.clip_preprocessor(text=lowerCAmelCase_ , images=lowerCAmelCase_ , return_tensors='''pt''' , padding=lowerCAmelCase_ ) __lowerCamelCase = self.clip(**lowerCAmelCase_ ) __lowerCamelCase = clip_outputs.logits_per_image if weights is not None: __lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , lowerCAmelCase_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , lowerCAmelCase_ , weights=neg_prompts['''weights'''] ) else: __lowerCamelCase = torch.tensor([1] , device=self.device ) __lowerCamelCase = -torch.log(lowerCAmelCase_ ) + torch.log(lowerCAmelCase_ ) return loss def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = torch.randn_like(self.latent , requires_grad=lowerCAmelCase_ , device=self.device ) __lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __lowerCamelCase = self._add_vector(lowerCAmelCase_ ) __lowerCamelCase = loop_post_process(lowerCAmelCase_ ) __lowerCamelCase = self._get_CLIP_loss(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) print('''CLIP loss''' , lowerCAmelCase_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=lowerCAmelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' wandb.init(reinit=lowerCAmelCase_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __lowerCamelCase = Image.open(lowerCAmelCase_ ) __lowerCamelCase = image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(lowerCAmelCase_ ) ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' if not prompts: return [] __lowerCamelCase = [] __lowerCamelCase = [] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(lowerCAmelCase_ , (tuple, list) ): __lowerCamelCase = prompt[0] __lowerCamelCase = float(prompt[1] ) elif ":" in prompt: __lowerCamelCase ,__lowerCamelCase = prompt.split(''':''' ) __lowerCamelCase = float(lowerCAmelCase_ ) else: __lowerCamelCase = prompt __lowerCamelCase = 1.0 processed_prompts.append(lowerCAmelCase_ ) weights.append(lowerCAmelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCAmelCase_ , device=self.device ), } def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=None , ): '''simple docstring''' if image_path: __lowerCamelCase = self._get_latent(lowerCAmelCase_ ) else: __lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." __lowerCamelCase = self.process_prompts(lowerCAmelCase_ ) __lowerCamelCase = self.process_prompts(lowerCAmelCase_ ) if save_final and save_path is None: __lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) else: __lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(lowerCAmelCase_ ) __lowerCamelCase = save_path __lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(lowerCAmelCase_ ) ) __lowerCamelCase = loop_post_process(lowerCAmelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ): if show_intermediate: show_pil(lowerCAmelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({'''Image''': wandb.Image(lowerCAmelCase_ )} ) if show_final: show_pil(lowerCAmelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F"""iter_{iter:03d}_final.png""" ) )
719
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = 8 # DPR tok __lowerCamelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __lowerCamelCase = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) __lowerCamelCase = os.path.join(__UpperCAmelCase , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok __lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __lowerCamelCase = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) __lowerCamelCase = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def lowerCamelCase ( self ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def lowerCamelCase ( self ): '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def lowerCamelCase ( self ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def lowerCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_dummy_dataset() __lowerCamelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: __lowerCamelCase = dataset __lowerCamelCase = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.get_dummy_dataset() __lowerCamelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: __lowerCamelCase = os.path.join(self.tmpdirname , '''dataset''' ) __lowerCamelCase = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset __lowerCamelCase = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: __lowerCamelCase = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase ) , ) return retriever def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) __lowerCamelCase = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) __lowerCamelCase = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) __lowerCamelCase = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__UpperCAmelCase , open(__UpperCAmelCase , '''wb''' ) ) __lowerCamelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) __lowerCamelCase = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 1 __lowerCamelCase = self.get_dummy_canonical_hf_index_retriever() __lowerCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: __lowerCamelCase = self.get_dummy_dataset() retriever.save_pretrained(__UpperCAmelCase ) __lowerCamelCase = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __lowerCamelCase = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 1 __lowerCamelCase = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) __lowerCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) __lowerCamelCase = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __lowerCamelCase = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 1 __lowerCamelCase = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) __lowerCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) __lowerCamelCase = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __lowerCamelCase = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 1 __lowerCamelCase = self.get_dummy_legacy_index_retriever() __lowerCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) __lowerCamelCase = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __lowerCamelCase = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase ( self ): '''simple docstring''' import torch __lowerCamelCase = 1 __lowerCamelCase = self.get_dummy_canonical_hf_index_retriever() __lowerCamelCase = [[5, 7], [10, 11]] __lowerCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __lowerCamelCase = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , np.ndarray ) __lowerCamelCase = retriever( __UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase , return_tensors='''pt''' , ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_dpr_ctx_encoder_tokenizer() __lowerCamelCase = 1 __lowerCamelCase = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) retriever.set_ctx_encoder_tokenizer(__UpperCAmelCase ) __lowerCamelCase = [[5, 7], [10, 11]] __lowerCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __lowerCamelCase = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase ) self.assertEqual( len(__UpperCAmelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __UpperCAmelCase ) # check for doc token related keys in dictionary.
622
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __lowerCamelCase ( self : int): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =ort.SessionOptions() __lowercase =False return options def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =load_image( 'https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png') __lowercase =load_image( 'https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png') __lowercase =OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase ='A red cat sitting on a park bench' __lowercase =np.random.RandomState(0) __lowercase =pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_lowerCAmelCase , output_type='np' , ) __lowercase =output.images __lowercase =images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =load_image( 'https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png') __lowercase =load_image( 'https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png') __lowercase =LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx') __lowercase =OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase ='A red cat sitting on a park bench' __lowercase =np.random.RandomState(0) __lowercase =pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_lowerCAmelCase , output_type='np' , ) __lowercase =output.images __lowercase =images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
474
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowerCamelCase = logging.getLogger(__name__) lowerCamelCase = tf.data.AUTOTUNE def _A ( ): """simple docstring""" __lowercase =argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=_lowerCAmelCase , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=_lowerCAmelCase , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=_lowerCAmelCase , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=_lowerCAmelCase , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=_lowerCAmelCase , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=_lowerCAmelCase , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=_lowerCAmelCase , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=_lowerCAmelCase , default=2**18 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=_lowerCAmelCase , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=_lowerCAmelCase , default=1e-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=_lowerCAmelCase , default=1e-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=_lowerCAmelCase , default=512 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=_lowerCAmelCase , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=_lowerCAmelCase , help='Model ID to upload to on the Hugging Face Hub.' ) __lowercase =parser.parse_args() return args def _A ( _lowerCAmelCase ): """simple docstring""" try: if args.tpu_name: __lowercase =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: __lowercase =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(_lowerCAmelCase ) tf.tpu.experimental.initialize_tpu_system(_lowerCAmelCase ) return tpu def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =0 for file in file_list: __lowercase =file.split('/' )[-1] __lowercase =re.search(r'-\d+-(\d+)\.tfrecord' , _lowerCAmelCase ).group(1 ) __lowercase =int(_lowerCAmelCase ) num_samples += sample_count return num_samples def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" __lowercase =count_samples(_lowerCAmelCase ) __lowercase =tf.data.Dataset.from_tensor_slices(_lowerCAmelCase ) if shuffle: __lowercase =dataset.shuffle(len(_lowerCAmelCase ) ) __lowercase =tf.data.TFRecordDataset(_lowerCAmelCase , num_parallel_reads=_lowerCAmelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here __lowercase =dataset.apply(tf.data.experimental.assert_cardinality(_lowerCAmelCase ) ) __lowercase =dataset.map(_lowerCAmelCase , num_parallel_calls=_lowerCAmelCase ) if shuffle: assert shuffle_buffer_size is not None __lowercase =dataset.shuffle(args.shuffle_buffer_size ) __lowercase =dataset.batch(_lowerCAmelCase , drop_remainder=_lowerCAmelCase ) __lowercase =dataset.map(_lowerCAmelCase , num_parallel_calls=_lowerCAmelCase ) __lowercase =dataset.prefetch(_lowerCAmelCase ) return dataset def _A ( _lowerCAmelCase ): """simple docstring""" if not args.no_tpu: __lowercase =initialize_tpu(_lowerCAmelCase ) __lowercase =tf.distribute.TPUStrategy(_lowerCAmelCase ) else: __lowercase =tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) __lowercase =AutoTokenizer.from_pretrained(args.tokenizer ) __lowercase =AutoConfig.from_pretrained(args.pretrained_model_config ) __lowercase =tokenizer.vocab_size __lowercase =tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) __lowercase =tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) __lowercase =count_samples(_lowerCAmelCase ) __lowercase =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) __lowercase =steps_per_epoch * args.num_epochs with strategy.scope(): __lowercase =TFAutoModelForMaskedLM.from_config(_lowerCAmelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built __lowercase , __lowercase =create_optimizer( num_train_steps=_lowerCAmelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_lowerCAmelCase , metrics=['accuracy'] ) def decode_fn(_lowerCAmelCase ): __lowercase ={ 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_lowerCAmelCase , _lowerCAmelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. __lowercase =DataCollatorForLanguageModeling( tokenizer=_lowerCAmelCase , mlm_probability=args.mlm_probability , mlm=_lowerCAmelCase , return_tensors='tf' ) def mask_with_collator(_lowerCAmelCase ): # TF really needs an isin() function __lowercase =( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) __lowercase , __lowercase =data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(_lowerCAmelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_lowerCAmelCase , ) return batch __lowercase =args.per_replica_batch_size * strategy.num_replicas_in_sync __lowercase =prepare_dataset( _lowerCAmelCase , decode_fn=_lowerCAmelCase , mask_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , shuffle=_lowerCAmelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) __lowercase =prepare_dataset( _lowerCAmelCase , decode_fn=_lowerCAmelCase , mask_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , shuffle=_lowerCAmelCase , ) __lowercase =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_lowerCAmelCase ) ) model.fit( _lowerCAmelCase , validation_data=_lowerCAmelCase , epochs=args.num_epochs , callbacks=_lowerCAmelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowerCamelCase = parse_args() main(args)
474
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co./facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class snake_case_ ( lowercase_ ,lowercase_ ): __lowerCAmelCase = '''convnextv2''' def __init__( self , a_=3 , a_=4 , a_=4 , a_=None , a_=None , a_="gelu" , a_=0.02 , a_=1e-12 , a_=0.0 , a_=2_2_4 , a_=None , a_=None , **a_ , ): super().__init__(**a_ ) a_ : int = num_channels a_ : List[str] = patch_size a_ : Optional[Any] = num_stages a_ : Dict = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes a_ : str = [3, 3, 9, 3] if depths is None else depths a_ : Any = hidden_act a_ : List[Any] = initializer_range a_ : Tuple = layer_norm_eps a_ : Optional[int] = drop_path_rate a_ : Tuple = image_size a_ : List[str] = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] a_ , a_ : Optional[int] = get_aligned_output_features_output_indices( out_features=a_ , out_indices=a_ , stage_names=self.stage_names )
720
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """facebook/blenderbot_small-90M""": """https://huggingface.co./facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co./models?filter=blenderbot_small } class snake_case_ ( a_ ): __lowerCAmelCase = "blenderbot-small" __lowerCAmelCase = ["past_key_values"] __lowerCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , a_=5_0_2_6_5 , a_=5_1_2 , a_=8 , a_=2_0_4_8 , a_=1_6 , a_=8 , a_=2_0_4_8 , a_=1_6 , a_=0.0 , a_=0.0 , a_=True , a_=True , a_="gelu" , a_=5_1_2 , a_=0.1 , a_=0.0 , a_=0.0 , a_=0.02 , a_=1 , a_=False , a_=0 , a_=1 , a_=2 , a_=2 , **a_ , ): a_ : int = vocab_size a_ : Any = max_position_embeddings a_ : Optional[int] = d_model a_ : Tuple = encoder_ffn_dim a_ : List[Any] = encoder_layers a_ : Optional[int] = encoder_attention_heads a_ : Optional[int] = decoder_ffn_dim a_ : List[str] = decoder_layers a_ : Dict = decoder_attention_heads a_ : List[str] = dropout a_ : List[Any] = attention_dropout a_ : List[str] = activation_dropout a_ : Optional[Any] = activation_function a_ : List[Any] = init_std a_ : int = encoder_layerdrop a_ : Optional[int] = decoder_layerdrop a_ : List[str] = use_cache a_ : Optional[int] = encoder_layers a_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , forced_eos_token_id=a_ , **a_ , ) class snake_case_ ( a_ ): @property def snake_case_ ( self ): if self.task in ["default", "seq2seq-lm"]: a_ : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: a_ : Tuple = {0: "batch"} a_ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: a_ : List[str] = {0: "batch", 1: "decoder_sequence"} a_ : Optional[int] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. a_ : Dict = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: a_ , a_ : Optional[int] = self.num_layers for i in range(a_ ): a_ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} a_ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} else: a_ : List[str] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def snake_case_ ( self ): if self.task in ["default", "seq2seq-lm"]: a_ : List[Any] = super().outputs else: a_ : Tuple = super(a_ , self ).outputs if self.use_past: a_ , a_ : Dict = self.num_layers for i in range(a_ ): a_ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} a_ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ): a_ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) # Generate decoder inputs a_ : Optional[int] = seq_length if not self.use_past else 1 a_ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) a_ : int = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} a_ : Tuple = dict(**a_ , **a_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch a_ , a_ : Optional[int] = common_inputs["input_ids"].shape a_ : str = common_inputs["decoder_input_ids"].shape[1] a_ , a_ : Dict = self.num_attention_heads a_ : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a_ : Optional[Any] = decoder_seq_length + 3 a_ : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a_ : Dict = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(a_ , a_ )] , dim=1 ) a_ : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a_ , a_ : Tuple = self.num_layers a_ : str = min(a_ , a_ ) a_ : Dict = max(a_ , a_ ) - min_num_layers a_ : Union[str, Any] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(a_ ): common_inputs["past_key_values"].append( ( torch.zeros(a_ ), torch.zeros(a_ ), torch.zeros(a_ ), torch.zeros(a_ ), ) ) # TODO: test this. a_ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(a_ , a_ ): common_inputs["past_key_values"].append((torch.zeros(a_ ), torch.zeros(a_ )) ) return common_inputs def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ): a_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch a_ , a_ : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values a_ : int = seqlen + 2 a_ , a_ : Optional[int] = self.num_layers a_ , a_ : Optional[int] = self.num_attention_heads a_ : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a_ : str = common_inputs["attention_mask"].dtype a_ : Tuple = torch.cat( [common_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) a_ : Optional[int] = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(a_ ) ] return common_inputs def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a_ : Optional[Any] = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a_ : Tuple = tokenizer.num_special_tokens_to_add(a_ ) a_ : Union[str, Any] = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a_ ) # Generate dummy inputs according to compute batch and sequence a_ : Union[str, Any] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size a_ : str = dict(tokenizer(a_ , return_tensors=a_ ) ) return common_inputs def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ): if self.task in ["default", "seq2seq-lm"]: a_ : List[str] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) elif self.task == "causal-lm": a_ : List[Any] = self._generate_dummy_inputs_for_causal_lm( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) else: a_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) return common_inputs def snake_case_ ( self , a_ , a_ , a_ , a_ ): if self.task in ["default", "seq2seq-lm"]: a_ : Optional[int] = super()._flatten_past_key_values_(a_ , a_ , a_ , a_ ) else: a_ : int = super(a_ , self )._flatten_past_key_values_( a_ , a_ , a_ , a_ )
370
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : str = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co./caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "swin2sr" lowerCamelCase__ = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Any=180 , __lowerCamelCase : str=[6, 6, 6, 6, 6, 6] , __lowerCamelCase : Dict=[6, 6, 6, 6, 6, 6] , __lowerCamelCase : Optional[Any]=8 , __lowerCamelCase : Any=2.0 , __lowerCamelCase : int=True , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Optional[int]=1e-5 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : List[str]=1.0 , __lowerCamelCase : Union[str, Any]="1conv" , __lowerCamelCase : List[Any]="pixelshuffle" , **__lowerCamelCase : Optional[Any] , ): super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = use_absolute_embeddings SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = upscale SCREAMING_SNAKE_CASE = img_range SCREAMING_SNAKE_CASE = resi_connection SCREAMING_SNAKE_CASE = upsampler
16
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[int] = { 'facebook/xglm-564M': 'https://huggingface.co./facebook/xglm-564M/resolve/main/config.json', # See all XGLM models at https://huggingface.co./models?filter=xglm } class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:Optional[int] = 'xglm' SCREAMING_SNAKE_CASE:Dict = ['past_key_values'] SCREAMING_SNAKE_CASE:Any = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self , _a=25_6008 , _a=2048 , _a=1024 , _a=4096 , _a=24 , _a=16 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.02 , _a=True , _a=True , _a=2 , _a=1 , _a=0 , _a=2 , **_a , ): """simple docstring""" a__ = vocab_size a__ = max_position_embeddings a__ = d_model a__ = ffn_dim a__ = num_layers a__ = attention_heads a__ = activation_function a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = layerdrop a__ = init_std a__ = scale_embedding # scale factor will be sqrt(d_model) if True a__ = use_cache super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , **_a , )
720
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A : str = 16 __A : Union[str, Any] = 32 def lowerCAmelCase_ ( a : str ): return int(x / 2**20 ) class _UpperCamelCase : '''simple docstring''' def __enter__( self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero a__ = torch.cuda.memory_allocated() return self def __exit__( self , *_a ): """simple docstring""" gc.collect() torch.cuda.empty_cache() a__ = torch.cuda.memory_allocated() a__ = torch.cuda.max_memory_allocated() a__ = bamb(self.end - self.begin ) a__ = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCAmelCase_ ( a : Accelerator , a : int = 16 , a : str = "bert-base-cased" , a : int = 320 , a : int = 160 , ): a__ = AutoTokenizer.from_pretrained(a ) a__ = load_dataset( 'glue' , 'mrpc' , split={'train': f'''train[:{n_train}]''', 'validation': f'''validation[:{n_val}]'''} ) def tokenize_function(a : Any ): # max_length=None => use the model max length (it's actually the default) a__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a , max_length=a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ = datasets.map( a , batched=a , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(a , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. a__ = DataLoader( tokenized_datasets['train'] , shuffle=a , collate_fn=a , batch_size=a ) a__ = DataLoader( tokenized_datasets['validation'] , shuffle=a , collate_fn=a , batch_size=a ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( a : Optional[int] , a : Optional[Any] ): # Initialize accelerator a__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ = config['lr'] a__ = int(config['num_epochs'] ) a__ = int(config['seed'] ) a__ = int(config['batch_size'] ) a__ = args.model_name_or_path set_seed(a ) a__ , a__ = get_dataloaders(a , a , a , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ = AutoModelForSequenceClassification.from_pretrained(a , return_dict=a ) # Instantiate optimizer a__ = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ = optimizer_cls(params=model.parameters() , lr=a ) if accelerator.state.deepspeed_plugin is not None: a__ = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: a__ = 1 a__ = (len(a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ = get_linear_schedule_with_warmup( optimizer=a , num_warmup_steps=0 , num_training_steps=a , ) else: a__ = DummyScheduler(a , total_num_steps=a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ = accelerator.prepare( a , a , a , a , a ) # We need to keep track of how many total steps we have iterated over a__ = 0 # We also need to keep track of the stating epoch so files are named properly a__ = 0 # Now we train the model a__ = {} for epoch in range(a , a ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(a ): a__ = model(**a ) a__ = outputs.loss a__ = loss / gradient_accumulation_steps accelerator.backward(a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) a__ = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(a , a ) def lowerCAmelCase_ ( ): a__ = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=a , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=a , ) parser.add_argument( '--output_dir' , type=a , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=a , default=a , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=a , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=a , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=a , default=1 , help='Number of train epochs.' , ) a__ = parser.parse_args() a__ = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(a , a ) if __name__ == "__main__": main()
126
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : int = { """configuration_vision_text_dual_encoder""": ["""VisionTextDualEncoderConfig"""], """processing_vision_text_dual_encoder""": ["""VisionTextDualEncoderProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ["""VisionTextDualEncoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ["""FlaxVisionTextDualEncoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ["""TFVisionTextDualEncoderModel"""] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
676
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Tuple = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co./huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co./models?filter=informer } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Union[str, Any] ='informer' lowercase : Union[str, Any] ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = "student_t", lowerCAmelCase = "nll", lowerCAmelCase = 1, lowerCAmelCase = None, lowerCAmelCase = "mean", lowerCAmelCase = 0, lowerCAmelCase = 0, lowerCAmelCase = 0, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 64, lowerCAmelCase = 32, lowerCAmelCase = 32, lowerCAmelCase = 2, lowerCAmelCase = 2, lowerCAmelCase = 2, lowerCAmelCase = 2, lowerCAmelCase = True, lowerCAmelCase = "gelu", lowerCAmelCase = 0.0_5, lowerCAmelCase = 0.1, lowerCAmelCase = 0.1, lowerCAmelCase = 0.1, lowerCAmelCase = 0.1, lowerCAmelCase = 100, lowerCAmelCase = 0.0_2, lowerCAmelCase=True, lowerCAmelCase = "prob", lowerCAmelCase = 5, lowerCAmelCase = True, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =prediction_length lowerCamelCase_ =context_length or prediction_length lowerCamelCase_ =distribution_output lowerCamelCase_ =loss lowerCamelCase_ =input_size lowerCamelCase_ =num_time_features lowerCamelCase_ =lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCamelCase_ =scaling lowerCamelCase_ =num_dynamic_real_features lowerCamelCase_ =num_static_real_features lowerCamelCase_ =num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowerCamelCase_ =cardinality else: lowerCamelCase_ =[0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowerCamelCase_ =embedding_dimension else: lowerCamelCase_ =[min(50, (cat + 1) // 2 ) for cat in self.cardinality] lowerCamelCase_ =num_parallel_samples # Transformer architecture configuration lowerCamelCase_ =input_size * len(self.lags_sequence ) + self._number_of_features lowerCamelCase_ =d_model lowerCamelCase_ =encoder_attention_heads lowerCamelCase_ =decoder_attention_heads lowerCamelCase_ =encoder_ffn_dim lowerCamelCase_ =decoder_ffn_dim lowerCamelCase_ =encoder_layers lowerCamelCase_ =decoder_layers lowerCamelCase_ =dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =activation_dropout lowerCamelCase_ =encoder_layerdrop lowerCamelCase_ =decoder_layerdrop lowerCamelCase_ =activation_function lowerCamelCase_ =init_std lowerCamelCase_ =use_cache # Informer lowerCamelCase_ =attention_type lowerCamelCase_ =sampling_factor lowerCamelCase_ =distil super().__init__(is_encoder_decoder=lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
676
1
def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> int: '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(_UpperCamelCase , int(b / 2 ) ) * actual_power(_UpperCamelCase , int(b / 2 ) ) else: return a * actual_power(_UpperCamelCase , int(b / 2 ) ) * actual_power(_UpperCamelCase , int(b / 2 ) ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> float: '''simple docstring''' if b < 0: return 1 / actual_power(_UpperCamelCase , _UpperCamelCase ) return actual_power(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": print(power(-2, -3))
242
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure)
242
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.json'} _snake_case : List[str] = { 'vocab_file': { 'mgp-str': 'https://huggingface.co./alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _snake_case : Optional[int] = {'mgp-str': 27} class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict="[GO]" , lowerCAmelCase_ : List[Any]="[GO]" , lowerCAmelCase_ : List[str]="[s]" , lowerCAmelCase_ : Dict="[GO]" , **lowerCAmelCase_ : Optional[Any] ) -> List[Any]: super().__init__( unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle: __lowerCAmelCase = json.load(lowerCAmelCase_ ) __lowerCAmelCase = {v: k for k, v in self.vocab.items()} @property def lowercase ( self : str ) -> Any: return len(self.vocab ) def lowercase ( self : Optional[Any] ) -> List[Any]: return dict(self.vocab , **self.added_tokens_encoder ) def lowercase ( self : Dict , lowerCAmelCase_ : Optional[int] ) -> str: __lowerCAmelCase = [] for s in text: char_tokens.extend(lowerCAmelCase_ ) return char_tokens def lowercase ( self : str , lowerCAmelCase_ : str ) -> Optional[int]: return self.vocab.get(lowerCAmelCase_ , self.vocab.get(self.unk_token ) ) def lowercase ( self : Dict , lowerCAmelCase_ : Any ) -> Dict: return self.decoder.get(lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '\n' ) return (vocab_file,)
53
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCAmelCase : Any = logging.get_logger(__name__) class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[Any] = ["audio_values", "audio_mask"] def __init__( self , A=20_48 , A=1 , A=[16, 16] , A=1_28 , A=4_41_00 , A=86 , A=20_48 , A=0.0 , **A , ) -> Dict: '''simple docstring''' super().__init__( feature_size=A , sampling_rate=A , padding_value=A , **A , ) lowerCamelCase = spectrogram_length lowerCamelCase = num_channels lowerCamelCase = patch_size lowerCamelCase = feature_size // self.patch_size[1] lowerCamelCase = n_fft lowerCamelCase = sampling_rate // hop_length_to_sampling_rate lowerCamelCase = sampling_rate lowerCamelCase = padding_value lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=A , norm="""slaney""" , mel_scale="""slaney""" , ).T def __A ( self , A ) -> np.ndarray: '''simple docstring''' lowerCamelCase = spectrogram( A , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = log_spec - 20.0 lowerCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , A , A = None , A = True , A = None , A = False , A = False , **A , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): lowerCamelCase = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , A ): lowerCamelCase = [np.asarray(A , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase = np.array(A ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase = padded_audio_features * self.padding_value for i in range(len(A ) ): lowerCamelCase = audio_features[i] lowerCamelCase = feature # return as BatchFeature if return_attention_mask: lowerCamelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: lowerCamelCase = {"""audio_values""": padded_audio_features} lowerCamelCase = BatchFeature(data=A , tensor_type=A ) return encoded_inputs
457
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" A__ = [[1, 2, 4], [1, 2, 3, 4]] A__ = DisjunctiveConstraint(__lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , __lowerCAmelCase ) ) with self.assertRaises(__lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowerCAmelCase ): DisjunctiveConstraint(__lowerCAmelCase ) # fails here def a_ ( self : int ) -> Optional[Any]: """simple docstring""" A__ = [[1, 2, 3], [1, 2, 4]] A__ = DisjunctiveConstraint(__lowerCAmelCase ) A__ , A__ , A__ = dc.update(1 ) A__ = stepped is True and completed is False and reset is False self.assertTrue(__lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A__ , A__ , A__ = dc.update(2 ) A__ = stepped is True and completed is False and reset is False self.assertTrue(__lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A__ , A__ , A__ = dc.update(3 ) A__ = stepped is True and completed is True and reset is False self.assertTrue(__lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a_ ( self : Union[str, Any] ) -> int: """simple docstring""" A__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] A__ = DisjunctiveConstraint(__lowerCAmelCase ) A__ , A__ , A__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A__ , A__ , A__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A__ , A__ , A__ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) A__ , A__ , A__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() A__ , A__ , A__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) A__ , A__ , A__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) A__ , A__ , A__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
247
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A : Dict = datasets.logging.get_logger(__name__) A : Optional[Any] = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' A : int = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' A : Union[str, Any] = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def __lowerCamelCase ( __a :Dict , __a :int , __a :int=False , __a :Optional[Any]=False , __a :int=True , __a :Optional[int]=False , __a :Dict="dummy_doc" ) -> Any: """simple docstring""" A__ = {doc: key_lines} A__ = {doc: sys_lines} A__ = {} A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ , A__ = reader.get_doc_mentions(__a , key_doc_lines[doc] , __a ) key_singletons_num += singletons_num if NP_only or min_span: A__ = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) A__ , A__ = reader.get_doc_mentions(__a , sys_doc_lines[doc] , __a ) sys_singletons_num += singletons_num if NP_only or min_span: A__ = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) if remove_nested: A__ , A__ = reader.remove_nested_coref_mentions(__a , __a ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters A__ , A__ = reader.remove_nested_coref_mentions(__a , __a ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters A__ = reader.get_mention_assignments(__a , __a ) A__ = reader.get_mention_assignments(__a , __a ) A__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( """Number of resulting singleton clusters in the key """ F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' """files, respectively""" ) return doc_coref_infos def __lowerCamelCase ( __a :Any , __a :Union[str, Any] , __a :List[str] , __a :Dict , __a :str , __a :Tuple , __a :Union[str, Any] ) -> Optional[int]: """simple docstring""" A__ = get_coref_infos(__a , __a , __a , __a , __a , __a ) A__ = {} A__ = 0 A__ = 0 for name, metric in metrics: A__ , A__ , A__ = evaluator.evaluate_documents(__a , __a , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , F'Recall: {recall * 1_0_0:.2f}' , F' Precision: {precision * 1_0_0:.2f}' , F' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: A__ = (conll / 3) * 1_0_0 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"""conll_score""": conll} ) return output_scores def __lowerCamelCase ( __a :int ) -> List[Any]: """simple docstring""" A__ = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: A__ = line.split()[5] if not parse_col == "-": A__ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A (datasets.Metric ): '''simple docstring''' def a_ ( self : int ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def a_ ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : int=False ) -> Optional[int]: """simple docstring""" A__ = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: A__ = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" A__ = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
247
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
610
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase ) -> tuple[int, int]: """simple docstring""" try: lowerCAmelCase_ : Tuple = float(__UpperCamelCase ) except ValueError: raise ValueError("Please enter a valid number" ) lowerCAmelCase_ : Dict = decimal - int(__UpperCamelCase ) if fractional_part == 0: return int(__UpperCamelCase ), 1 else: lowerCAmelCase_ : Optional[int] = len(str(__UpperCamelCase ).split("." )[1] ) lowerCAmelCase_ : List[Any] = int(decimal * (10**number_of_frac_digits) ) lowerCAmelCase_ : List[str] = 10**number_of_frac_digits lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = denominator, numerator while True: lowerCAmelCase_ : List[Any] = dividend % divisor if remainder == 0: break lowerCAmelCase_ , lowerCAmelCase_ : List[str] = divisor, remainder lowerCAmelCase_ , lowerCAmelCase_ : str = numerator / divisor, denominator / divisor return int(__UpperCamelCase ), int(__UpperCamelCase ) if __name__ == "__main__": print(F"""{decimal_to_fraction(2) = }""") print(F"""{decimal_to_fraction(89.0) = }""") print(F"""{decimal_to_fraction('67') = }""") print(F"""{decimal_to_fraction('45.0') = }""") print(F"""{decimal_to_fraction(1.5) = }""") print(F"""{decimal_to_fraction('6.25') = }""") print(F"""{decimal_to_fraction('78td') = }""")
610
1
from __future__ import annotations import math def A__ ( __lowerCamelCase ): """simple docstring""" if num <= 0: _lowerCAmelCase = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(__lowerCamelCase ) _lowerCAmelCase = [True] * (num + 1) _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(__lowerCamelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__lowerCamelCase ) # Set multiples of start be False for i in range(start * start, num + 1, __lowerCamelCase ): if sieve[i] is True: _lowerCAmelCase = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(__lowerCamelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
703
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ ( _UpperCamelCase ,unittest.TestCase ): UpperCamelCase : List[Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def _lowerCamelCase ( self , __magic_name__=0 ): """simple docstring""" _lowerCAmelCase = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__magic_name__ ) ) _lowerCAmelCase = np.random.RandomState(__magic_name__ ) _lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__magic_name__ ) # warmup pass to apply optimizations _lowerCAmelCase = pipe(**self.get_dummy_inputs() ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ ( unittest.TestCase ): @property def _lowerCamelCase ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = ort.SessionOptions() _lowerCAmelCase = False return options def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = load_image( 'https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _lowerCAmelCase = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = 'A fantasy landscape, trending on artstation' _lowerCAmelCase = np.random.RandomState(0 ) _lowerCAmelCase = pipe( prompt=__magic_name__ , image=__magic_name__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__magic_name__ , output_type='np' , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _lowerCAmelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = load_image( 'https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _lowerCAmelCase = init_image.resize((7_6_8, 5_1_2) ) _lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = 'A fantasy landscape, trending on artstation' _lowerCAmelCase = np.random.RandomState(0 ) _lowerCAmelCase = pipe( prompt=__magic_name__ , image=__magic_name__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__magic_name__ , output_type='np' , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _lowerCAmelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
309
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] ): _lowerCAmelCase = UniSpeechSatForSequenceClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) _lowerCAmelCase = downstream_dict["""projector.weight"""] _lowerCAmelCase = downstream_dict["""projector.bias"""] _lowerCAmelCase = downstream_dict["""model.post_net.linear.weight"""] _lowerCAmelCase = downstream_dict["""model.post_net.linear.bias"""] return model def A (__lowerCamelCase :int , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any ): _lowerCAmelCase = UniSpeechSatForAudioFrameClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) _lowerCAmelCase = downstream_dict["""model.linear.weight"""] _lowerCAmelCase = downstream_dict["""model.linear.bias"""] return model def A (__lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[str] ): _lowerCAmelCase = UniSpeechSatForXVector.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) _lowerCAmelCase = downstream_dict["""connector.weight"""] _lowerCAmelCase = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _lowerCAmelCase = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] _lowerCAmelCase = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] _lowerCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] _lowerCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] _lowerCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] _lowerCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] _lowerCAmelCase = downstream_dict["""objective.W"""] return model @torch.no_grad() def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Dict ): _lowerCAmelCase = torch.load(__lowerCamelCase , map_location="""cpu""" ) _lowerCAmelCase = checkpoint["""Downstream"""] _lowerCAmelCase = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( __lowerCamelCase , return_attention_mask=__lowerCamelCase , do_normalize=__lowerCamelCase ) _lowerCAmelCase = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): _lowerCAmelCase = convert_classification(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): _lowerCAmelCase = convert_diarization(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForXVector""" ): _lowerCAmelCase = convert_xvector(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: _lowerCAmelCase = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") _lowercase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
5
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self :List[str] , UpperCamelCase__ :Dict=0.01 , UpperCamelCase__ :Union[str, Any]=1_000 ): _a = p_stop _a = max_length def __iter__( self :Dict ): _a = 0 _a = False while not stop and count < self.max_length: yield count count += 1 _a = random.random() < self.p_stop class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Tuple , UpperCamelCase__ :Tuple , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :str=False , UpperCamelCase__ :int=True ): _a = [ BatchSamplerShard(UpperCamelCase__ , 2 , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) for i in range(2 ) ] _a = [list(UpperCamelCase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(UpperCamelCase__ ) for shard in batch_sampler_shards] , [len(UpperCamelCase__ ) for e in expected] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): # Check the shards when the dataset is a round multiple of total batch size. _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): # Check the shards when the dataset is a round multiple of batch size. _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): # Check the shards when the dataset is a round multiple of total batch size. _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): # Check the shards when the dataset is a round multiple of batch size. _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :int ): _a = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _a = [BatchSamplerShard(UpperCamelCase__ , 2 , UpperCamelCase__ , even_batches=UpperCamelCase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :int , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :Any , UpperCamelCase__ :str=False , UpperCamelCase__ :Optional[Any]=2 , UpperCamelCase__ :int=False ): random.seed(UpperCamelCase__ ) _a = list(UpperCamelCase__ ) _a = [ IterableDatasetShard( UpperCamelCase__ , batch_size=UpperCamelCase__ , drop_last=UpperCamelCase__ , num_processes=UpperCamelCase__ , process_index=UpperCamelCase__ , split_batches=UpperCamelCase__ , ) for i in range(UpperCamelCase__ ) ] _a = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(UpperCamelCase__ ) iterable_dataset_lists.append(list(UpperCamelCase__ ) ) _a = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _a = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) self.assertTrue(len(UpperCamelCase__ ) % shard_batch_size == 0 ) _a = [] for idx in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(UpperCamelCase__ ) < len(UpperCamelCase__ ): reference += reference self.assertListEqual(UpperCamelCase__ , reference[: len(UpperCamelCase__ )] ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = 42 _a = RandomIterableDataset() self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Edge case with a very small dataset _a = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = SkipBatchSampler(UpperCamelCase__ , 2 ) self.assertListEqual(list(UpperCamelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = DataLoader(list(range(16 ) ) , batch_size=4 ) _a = skip_first_batches(UpperCamelCase__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): Accelerator() _a = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
388
0
"""simple docstring""" lowercase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowercase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCAmelCase ( A : dict[int, list[int]] , A : int , A : list[bool] ): '''simple docstring''' _UpperCAmelCase = True _UpperCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(A , A , A ) order.append(A ) return order def UpperCAmelCase ( A : dict[int, list[int]] , A : int , A : list[bool] ): '''simple docstring''' _UpperCAmelCase = True _UpperCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(A , A , A ) return component def UpperCAmelCase ( A : dict[int, list[int]] ): '''simple docstring''' _UpperCAmelCase = len(A ) * [False] _UpperCAmelCase = {vert: [] for vert in range(len(A ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(A ) _UpperCAmelCase = [] for i, was_visited in enumerate(A ): if not was_visited: order += topology_sort(A , A , A ) _UpperCAmelCase = [] _UpperCAmelCase = len(A ) * [False] for i in range(len(A ) ): _UpperCAmelCase = order[len(A ) - i - 1] if not visited[vert]: _UpperCAmelCase = find_components(A , A , A ) components_list.append(A ) return components_list
24
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co./microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co./models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _snake_case : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _snake_case : Optional[Any] = 128_022 _snake_case : Optional[Any] = 128_028 @require_sentencepiece class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = MaMaaaTokenizer __UpperCAmelCase : Tuple = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Dict = True def __snake_case ( self : Union[str, Any] ) -> int: super().setUp() __snake_case : Optional[Any] = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __snake_case : List[Any] = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __snake_case : Dict = Path(self.tmpdirname ) save_json(lowerCamelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCamelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __snake_case : Any = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : Optional[Any] , **lowerCamelCase : Dict ) -> Tuple: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __snake_case ( self : Any , lowerCamelCase : str ) -> List[Any]: return ( "This is a test", "This is a test", ) def __snake_case ( self : Tuple ) -> Optional[Any]: __snake_case : Dict = "</s>" __snake_case : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def __snake_case ( self : str ) -> str: __snake_case : Tuple = self.get_tokenizer() __snake_case : str = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCamelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __snake_case ( self : Dict ) -> str: pass def __snake_case ( self : Any ) -> Any: __snake_case : Any = self.get_tokenizer() __snake_case : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [2, 3, 4, 5, 6] , ) __snake_case : Dict = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) __snake_case : Optional[Any] = tokenizer.convert_tokens_to_string(lowerCamelCase ) self.assertEqual(lowerCamelCase , "This is a test" ) @slow def __snake_case ( self : Optional[int] ) -> Optional[Any]: # fmt: off __snake_case : List[str] = {"input_ids": [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class a (unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = "facebook/m2m100_418M" __UpperCAmelCase : Optional[Any] = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] __UpperCAmelCase : Dict = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off __UpperCAmelCase : Optional[Any] = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def __snake_case ( cls : Tuple ) -> int: __snake_case : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) __snake_case : Optional[Any] = 1 return cls def __snake_case ( self : Optional[Any] ) -> Dict: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128063 ) def __snake_case ( self : Tuple ) -> List[str]: __snake_case : List[str] = self.tokenizer.get_vocab() self.assertEqual(len(lowerCamelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCamelCase ) def __snake_case ( self : Tuple ) -> int: __snake_case : str = "en" __snake_case : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase ) def __snake_case ( self : Dict ) -> str: self.assertIn(lowerCamelCase , self.tokenizer.all_special_ids ) # fmt: off __snake_case : Any = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on __snake_case : Any = self.tokenizer.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) __snake_case : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase ) def __snake_case ( self : int ) -> int: __snake_case : Dict = tempfile.mkdtemp() __snake_case : Optional[Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCamelCase ) __snake_case : Optional[Any] = MaMaaaTokenizer.from_pretrained(lowerCamelCase ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCamelCase ) @require_torch def __snake_case ( self : List[str] ) -> str: __snake_case : Tuple = "en" __snake_case : List[str] = "fr" __snake_case : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase , return_tensors="pt" ) __snake_case : Union[str, Any] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __snake_case : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __snake_case ( self : str ) -> List[str]: __snake_case : Any = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __snake_case : Tuple = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __snake_case ( self : Optional[Any] ) -> int: __snake_case : Optional[Any] = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __snake_case : Dict = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __snake_case ( self : List[str] ) -> List[Any]: __snake_case : List[Any] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCamelCase ) , { # en_XX, A, test, EOS "input_ids": [[128022, 58, 4183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128006, } , )
81
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : str = (UniPCMultistepScheduler,) __SCREAMING_SNAKE_CASE : Dict = (("""num_inference_steps""", 25),) def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Any ): _UpperCAmelCase = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__UpperCamelCase ) return config def UpperCAmelCase__ ( self : int , __UpperCamelCase : Any=0 , **__UpperCamelCase : Any ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase = sample, sample for t in range(__UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any]=0 , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Dict=None , **__UpperCamelCase : Optional[Any] ): if scheduler is None: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , "set_timesteps" ): _UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _UpperCAmelCase = scheduler.timesteps[5] _UpperCAmelCase = scheduler.timesteps[6] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self : Union[str, Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 _UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : str ): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): self.check_over_configs(thresholding=__UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , ) def UpperCAmelCase__ ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) _UpperCAmelCase = self.full_loop( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) assert not torch.isnan(__UpperCamelCase ).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self : Optional[int] ): self.check_over_configs(lower_order_final=__UpperCamelCase ) self.check_over_configs(lower_order_final=__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__UpperCamelCase , time_step=0 ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(thresholding=__UpperCamelCase , dynamic_thresholding_ratio=0 ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Optional[Any] ): for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
684
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _SCREAMING_SNAKE_CASE ( ): _lowercase = HfArgumentParser(lowerCamelCase__ ) _lowercase = parser.parse_args_into_dataclasses()[0] _lowercase = TensorFlowBenchmark(args=lowerCamelCase__ ) try: _lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: _lowercase = "Arg --no_{0} is no longer used, please use --no-{0} instead." _lowercase = " ".join(str(lowerCamelCase__ ).split(""" """ )[:-1] ) _lowercase = "" _lowercase = eval(str(lowerCamelCase__ ).split(""" """ )[-1] ) _lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: _lowercase = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
710
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __a ( unittest.TestCase ): def __init__( self : Dict , lowercase__ : Optional[int] , lowercase__ : Optional[Any]=7 , lowercase__ : Dict=3 , lowercase__ : Optional[int]=18 , lowercase__ : Any=30 , lowercase__ : Tuple=4_00 , lowercase__ : Dict=True , lowercase__ : List[str]=None , lowercase__ : Tuple=True , lowercase__ : Optional[int]=None , lowercase__ : Any=True , lowercase__ : Union[str, Any]=[0.5, 0.5, 0.5] , lowercase__ : Tuple=[0.5, 0.5, 0.5] , lowercase__ : Optional[Any]=False , ) ->str: """simple docstring""" _lowercase = size if size is not None else {"""height""": 20, """width""": 20} _lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowercase = parent _lowercase = batch_size _lowercase = num_channels _lowercase = image_size _lowercase = min_resolution _lowercase = max_resolution _lowercase = do_resize _lowercase = size _lowercase = do_center_crop _lowercase = crop_size _lowercase = do_normalize _lowercase = image_mean _lowercase = image_std _lowercase = do_reduce_labels def _UpperCAmelCase ( self : Union[str, Any]) ->str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _SCREAMING_SNAKE_CASE ( ): _lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _lowercase = Image.open(dataset[0]["""file"""] ) _lowercase = Image.open(dataset[1]["""file"""] ) return image, map def _SCREAMING_SNAKE_CASE ( ): _lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _lowercase = Image.open(ds[0]["""file"""] ) _lowercase = Image.open(ds[1]["""file"""] ) _lowercase = Image.open(ds[2]["""file"""] ) _lowercase = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __a ( _snake_case ,unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = BeitImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : Any) ->str: """simple docstring""" _lowercase = BeitImageProcessingTester(self) @property def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : Optional[int]) ->Any: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , """do_resize""")) self.assertTrue(hasattr(lowercase__ , """size""")) self.assertTrue(hasattr(lowercase__ , """do_center_crop""")) self.assertTrue(hasattr(lowercase__ , """center_crop""")) self.assertTrue(hasattr(lowercase__ , """do_normalize""")) self.assertTrue(hasattr(lowercase__ , """image_mean""")) self.assertTrue(hasattr(lowercase__ , """image_std""")) def _UpperCAmelCase ( self : Optional[Any]) ->str: """simple docstring""" _lowercase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) self.assertEqual(image_processor.do_reduce_labels , lowercase__) _lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowercase__) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) self.assertEqual(image_processor.do_reduce_labels , lowercase__) def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" pass def _UpperCAmelCase ( self : List[str]) ->int: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : str) ->int: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : Dict) ->Union[str, Any]: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : Dict) ->Any: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__) _lowercase = [] for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input _lowercase = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test batched _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test not batched input (PIL images) _lowercase , _lowercase = prepare_semantic_single_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test batched input (PIL images) _lowercase , _lowercase = prepare_semantic_batch_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) def _UpperCAmelCase ( self : Dict) ->Optional[Any]: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _lowercase , _lowercase = prepare_semantic_single_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 1_50) _lowercase = True _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55)
572
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType SCREAMING_SNAKE_CASE : Union[str, Any] = get_logger(__name__) def UpperCamelCase ( _a , _a , _a , _a , _a=0 ) -> List[Any]: '''simple docstring''' os.makedirs(_a , exist_ok=_a ) with FSDP.state_dict_type( _a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ :Union[str, Any] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ :List[Any] = f"{MODEL_NAME}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}.bin" lowercase_ :Tuple = os.path.join(_a , _a ) if accelerator.process_index == 0: logger.info(f"Saving model to {output_model_file}" ) torch.save(_a , _a ) logger.info(f"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ :int = ( f"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) lowercase_ :str = os.path.join(_a , _a ) logger.info(f"Saving model to {output_model_file}" ) torch.save(_a , _a ) logger.info(f"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ :int = os.path.join(_a , f"{MODEL_NAME}_{model_index}" ) os.makedirs(_a , exist_ok=_a ) logger.info(f"Saving model to {ckpt_dir}" ) lowercase_ :Any = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=_a , storage_writer=dist_cp.FileSystemWriter(_a ) , planner=DefaultSavePlanner() , ) logger.info(f"Model saved to {ckpt_dir}" ) def UpperCamelCase ( _a , _a , _a , _a , _a=0 ) -> int: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return lowercase_ :Any = f"{MODEL_NAME}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}.bin" lowercase_ :Optional[Any] = os.path.join(_a , _a ) logger.info(f"Loading model from {input_model_file}" ) lowercase_ :Optional[Any] = torch.load(_a ) logger.info(f"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ :Tuple = ( f"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) lowercase_ :List[Any] = os.path.join(_a , _a ) logger.info(f"Loading model from {input_model_file}" ) lowercase_ :List[Any] = torch.load(_a ) logger.info(f"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ :List[Any] = ( os.path.join(_a , f"{MODEL_NAME}_{model_index}" ) if f"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(f"Loading model from {ckpt_dir}" ) lowercase_ :Tuple = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=_a , storage_reader=dist_cp.FileSystemReader(_a ) , planner=DefaultLoadPlanner() , ) lowercase_ :List[Any] = state_dict['''model'''] logger.info(f"Model loaded from {ckpt_dir}" ) model.load_state_dict(_a ) def UpperCamelCase ( _a , _a , _a , _a , _a , _a=0 ) -> Optional[Any]: '''simple docstring''' os.makedirs(_a , exist_ok=_a ) with FSDP.state_dict_type( _a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ :Optional[Any] = FSDP.optim_state_dict(_a , _a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase_ :Union[str, Any] = ( f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) lowercase_ :Optional[Any] = os.path.join(_a , _a ) logger.info(f"Saving Optimizer state to {output_optimizer_file}" ) torch.save(_a , _a ) logger.info(f"Optimizer state saved in {output_optimizer_file}" ) else: lowercase_ :Optional[Any] = os.path.join(_a , f"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(_a , exist_ok=_a ) logger.info(f"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(_a ) , planner=DefaultSavePlanner() , ) logger.info(f"Optimizer state saved in {ckpt_dir}" ) def UpperCamelCase ( _a , _a , _a , _a , _a , _a=0 ) -> Optional[Any]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ :List[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase_ :Any = ( f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) lowercase_ :Any = os.path.join(_a , _a ) logger.info(f"Loading Optimizer state from {input_optimizer_file}" ) lowercase_ :Any = torch.load(_a ) logger.info(f"Optimizer state loaded from {input_optimizer_file}" ) else: lowercase_ :Union[str, Any] = ( os.path.join(_a , f"{OPTIMIZER_NAME}_{optimizer_index}" ) if f"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(f"Loading Optimizer from {ckpt_dir}" ) lowercase_ :Optional[Any] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(_a ) , ) lowercase_ :List[Any] = optim_state['''optimizer'''] logger.info(f"Optimizer loaded from {ckpt_dir}" ) lowercase_ :List[str] = FSDP.optim_state_dict_to_load(_a , _a , _a ) optimizer.load_state_dict(_a )
257
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed SCREAMING_SNAKE_CASE : str = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCamelCase ( _a ) -> int: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCamelCase ( _a , _a ) -> Any: '''simple docstring''' if args.student_type == "roberta": lowercase_ :List[str] = False elif args.student_type == "gpt2": lowercase_ :Optional[int] = False def UpperCamelCase ( _a , _a ) -> str: '''simple docstring''' if args.student_type == "roberta": lowercase_ :int = False def UpperCamelCase ( ) -> int: '''simple docstring''' lowercase_ :Optional[int] = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=_a , required=_a , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=_a , required=_a , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=_a , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=_a , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=_a , required=_a , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=_a , type=_a , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=_a , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=_a , required=_a , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=_a , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=_a , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=_a , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=_a , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=_a , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=_a , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=_a , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=_a , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=_a , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=_a , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=_a , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=_a , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=_a , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=_a , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=_a , default=5_0 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=_a , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=_a , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=_a , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=_a , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=_a , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=_a , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_a , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=_a , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=_a , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=_a , default=5_6 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=_a , default=5_0_0 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=_a , default=4_0_0_0 , help='''Checkpoint interval.''' ) lowercase_ :Union[str, Any] = parser.parse_args() sanity_checks(_a ) # ARGS # init_gpu_params(_a ) set_seed(_a ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(f"Param: {args}" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(_a ) , _a , indent=4 ) git_log(args.dump_path ) lowercase_ , lowercase_ , lowercase_ :Dict = MODEL_CLASSES[args.student_type] lowercase_ , lowercase_ , lowercase_ :Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowercase_ :Union[str, Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowercase_ :Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowercase_ :List[str] = tokenizer.all_special_tokens.index(_a ) lowercase_ :Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(f"Special tokens {special_tok_ids}" ) lowercase_ :Dict = special_tok_ids lowercase_ :List[str] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"Loading data from {args.data_file}" ) with open(args.data_file , '''rb''' ) as fp: lowercase_ :Tuple = pickle.load(_a ) if args.mlm: logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , '''rb''' ) as fp: lowercase_ :List[Any] = pickle.load(_a ) lowercase_ :Tuple = np.maximum(_a , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowercase_ :List[Any] = 0.0 # do not predict special tokens lowercase_ :Dict = torch.from_numpy(_a ) else: lowercase_ :Tuple = None lowercase_ :List[Any] = LmSeqsDataset(params=_a , data=_a ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"Loading student config from {args.student_config}" ) lowercase_ :Union[str, Any] = student_config_class.from_pretrained(args.student_config ) lowercase_ :int = True if args.student_pretrained_weights is not None: logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}" ) lowercase_ :List[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=_a ) else: lowercase_ :Dict = student_model_class(_a ) if args.n_gpu > 0: student.to(f"cuda:{args.local_rank}" ) logger.info('''Student loaded.''' ) # TEACHER # lowercase_ :int = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_a ) if args.n_gpu > 0: teacher.to(f"cuda:{args.local_rank}" ) logger.info(f"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_a , _a ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_a , _a ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowercase_ :Tuple = Distiller( params=_a , dataset=_a , token_probs=_a , student=_a , teacher=_a ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
257
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class snake_case__ ( unittest.TestCase): '''simple docstring''' def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=4_00 , a__=True , a__=32 , a__=True , ) -> List[Any]: '''simple docstring''' __snake_case :List[Any] = parent __snake_case :Dict = batch_size __snake_case :Optional[Any] = num_channels __snake_case :Dict = image_size __snake_case :Dict = min_resolution __snake_case :Dict = max_resolution __snake_case :List[Any] = do_resize __snake_case :Dict = size_divisor __snake_case :Union[str, Any] = do_rescale def __lowercase ( self ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class snake_case__ ( lowercase_ , unittest.TestCase): '''simple docstring''' lowerCamelCase : Tuple = GLPNImageProcessor if is_vision_available() else None def __lowercase ( self ) -> Tuple: '''simple docstring''' __snake_case :Dict = GLPNImageProcessingTester(self ) @property def __lowercase ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , """do_resize""" ) ) self.assertTrue(hasattr(a__ , """size_divisor""" ) ) self.assertTrue(hasattr(a__ , """resample""" ) ) self.assertTrue(hasattr(a__ , """do_rescale""" ) ) def __lowercase ( self ) -> str: '''simple docstring''' pass def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __lowercase ( self ) -> Tuple: '''simple docstring''' __snake_case :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case :int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case :List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
291
1
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase = logging.get_logger(__name__) enable_full_determinism() class _lowerCamelCase ( _a , _a , unittest.TestCase ): """simple docstring""" snake_case = UNetaDModel snake_case = """sample""" @property def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Dict = 4 A_ : List[str] = 3 A_ : List[str] = (32, 32) A_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) A_ : List[Any] = torch.tensor([10] ).to(snake_case_ ) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self )->int: '''simple docstring''' return (3, 32, 32) @property def _snake_case ( self )->Tuple: '''simple docstring''' return (3, 32, 32) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : List[str] = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } A_ : Dict = self.dummy_input return init_dict, inputs_dict class _lowerCamelCase ( _a , _a , unittest.TestCase ): """simple docstring""" snake_case = UNetaDModel snake_case = """sample""" @property def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : str = 4 A_ : Optional[Any] = 4 A_ : Optional[int] = (32, 32) A_ : Dict = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) A_ : str = torch.tensor([10] ).to(snake_case_ ) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self )->Optional[int]: '''simple docstring''' return (4, 32, 32) @property def _snake_case ( self )->Union[str, Any]: '''simple docstring''' return (4, 32, 32) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : int = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } A_ : int = self.dummy_input return init_dict, inputs_dict def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[str] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(snake_case_ ) A_ : List[str] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=snake_case_ ) model.to(snake_case_ ) A_ : Union[str, Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Optional[Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=snake_case_ ) model_accelerate.to(snake_case_ ) model_accelerate.eval() A_ : List[Any] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) A_ : Any = noise.to(snake_case_ ) A_ : List[str] = torch.tensor([10] * noise.shape[0] ).to(snake_case_ ) A_ : Tuple = model_accelerate(snake_case_ , snake_case_ )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() A_ : int = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=snake_case_ , low_cpu_mem_usage=snake_case_ ) model_normal_load.to(snake_case_ ) model_normal_load.eval() A_ : Union[str, Any] = model_normal_load(snake_case_ , snake_case_ )["""sample"""] assert torch_all_close(snake_case_ , snake_case_ , rtol=1e-3 ) def _snake_case ( self )->str: '''simple docstring''' A_ : str = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(snake_case_ ) A_ : Dict = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) A_ : Tuple = noise.to(snake_case_ ) A_ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(snake_case_ ) with torch.no_grad(): A_ : List[Any] = model(snake_case_ , snake_case_ ).sample A_ : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A_ : Dict = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1e-3 ) ) class _lowerCamelCase ( _a , _a , unittest.TestCase ): """simple docstring""" snake_case = UNetaDModel snake_case = """sample""" @property def _snake_case ( self , _SCREAMING_SNAKE_CASE=(32, 32) )->Tuple: '''simple docstring''' A_ : Any = 4 A_ : int = 3 A_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) A_ : List[Any] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=snake_case_ ) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self )->Union[str, Any]: '''simple docstring''' return (3, 32, 32) @property def _snake_case ( self )->Union[str, Any]: '''simple docstring''' return (3, 32, 32) def _snake_case ( self )->str: '''simple docstring''' A_ : List[Any] = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict @slow def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(snake_case_ ) A_ : Optional[Any] = self.dummy_input A_ : Union[str, Any] = floats_tensor((4, 3) + (256, 256) ).to(snake_case_ ) A_ : Any = noise A_ : str = model(**snake_case_ ) assert image is not None, "Make sure output is not None" @slow def _snake_case ( self )->int: '''simple docstring''' A_ : List[Any] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(snake_case_ ) A_ : Optional[int] = 4 A_ : Any = 3 A_ : Any = (256, 256) A_ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(snake_case_ ) A_ : Optional[int] = torch.tensor(batch_size * [1e-4] ).to(snake_case_ ) with torch.no_grad(): A_ : Any = model(snake_case_ , snake_case_ ).sample A_ : int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A_ : Optional[Any] = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0980.7129, -2_0028.8535, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1e-2 ) ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Dict = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(snake_case_ ) A_ : Union[str, Any] = 4 A_ : Optional[Any] = 3 A_ : str = (32, 32) A_ : int = torch.ones((batch_size, num_channels) + sizes ).to(snake_case_ ) A_ : Dict = torch.tensor(batch_size * [1e-4] ).to(snake_case_ ) with torch.no_grad(): A_ : Optional[Any] = model(snake_case_ , snake_case_ ).sample A_ : Optional[int] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A_ : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1e-2 ) ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' pass
590
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _UpperCAmelCase ( _lowerCamelCase : NDArray[floataa] , _lowerCamelCase : NDArray[floataa] , _lowerCamelCase : list[int] , _lowerCamelCase : int , ) -> list[float]: _lowerCAmelCase , _lowerCAmelCase : Dict = coefficient_matrix.shape _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = constant_matrix.shape if rowsa != colsa: _lowerCAmelCase : Any = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_lowerCamelCase ) if colsa != 1: _lowerCAmelCase : List[str] = f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_lowerCamelCase ) if rowsa != rowsa: _lowerCAmelCase : Tuple = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != rowsa: _lowerCAmelCase : int = ( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(_lowerCamelCase )} and {rowsa}' ) raise ValueError(_lowerCamelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) _lowerCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _lowerCAmelCase , _lowerCAmelCase : Any = table.shape strictly_diagonally_dominant(_lowerCamelCase ) # Iterates the whole matrix for given number of times for _ in range(_lowerCamelCase ): _lowerCAmelCase : int = [] for row in range(_lowerCamelCase ): _lowerCAmelCase : Any = 0 for col in range(_lowerCamelCase ): if col == row: _lowerCAmelCase : List[Any] = table[row][col] elif col == cols - 1: _lowerCAmelCase : Tuple = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _lowerCAmelCase : str = (temp + val) / denom new_val.append(_lowerCamelCase ) _lowerCAmelCase : int = new_val return [float(_lowerCamelCase ) for i in new_val] def _UpperCAmelCase ( _lowerCamelCase : NDArray[floataa] ) -> bool: _lowerCAmelCase , _lowerCAmelCase : str = table.shape _lowerCAmelCase : int = True for i in range(0 , _lowerCamelCase ): _lowerCAmelCase : Any = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
384
0
"""simple docstring""" a_ = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} a_ = ["a", "b", "c", "d", "e"] def UpperCAmelCase_ ( __a : str , __a : Optional[Any] , __a : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = start # add current to visited visited.append(UpperCamelCase__ ) _lowerCamelCase : Union[str, Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _lowerCamelCase : int = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # if all neighbors visited add current to sort sort.append(UpperCamelCase__ ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): for vertice in vertices: if vertice not in visited: _lowerCamelCase : int = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # return sort return sort if __name__ == "__main__": a_ = topological_sort("""a""", [], []) print(sort)
703
"""simple docstring""" import numpy as np def UpperCAmelCase_ ( __a : np.array ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' from __future__ import annotations lowerCAmelCase : Optional[Any] = [] def A_( A : List[Any] , A : Dict , A : List[str]): for i in range(len(__lowerCamelCase)): if board[row][i] == 1: return False for i in range(len(__lowerCamelCase)): if board[i][column] == 1: return False for i, j in zip(range(__lowerCamelCase , -1 , -1) , range(__lowerCamelCase , -1 , -1)): if board[i][j] == 1: return False for i, j in zip(range(__lowerCamelCase , -1 , -1) , range(__lowerCamelCase , len(__lowerCamelCase))): if board[i][j] == 1: return False return True def A_( A : Dict , A : int): if row >= len(__lowerCamelCase): solution.append(__lowerCamelCase) printboard(__lowerCamelCase) print() return True for i in range(len(__lowerCamelCase)): if is_safe(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase): UpperCamelCase = 1 solve(__lowerCamelCase , row + 1) UpperCamelCase = 0 return False def A_( A : List[str]): for i in range(len(__lowerCamelCase)): for j in range(len(__lowerCamelCase)): if board[i][j] == 1: print('Q' , end=' ') else: print('.' , end=' ') print() # n=int(input("The no. of queens")) lowerCAmelCase : Any = 8 lowerCAmelCase : Tuple = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
3
from math import factorial, radians def __A ( __lowerCamelCase , __lowerCamelCase = 18 , __lowerCamelCase = 10 ) -> float: a = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians a = radians(__lowerCamelCase ) a = angle_in_radians a = 3 a = -1 for _ in range(__lowerCamelCase ): result += (b * (angle_in_radians**a)) / factorial(__lowerCamelCase ) a = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": __import__("doctest").testmod()
468
0
from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> list[int]: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) __lowerCAmelCase : List[Any] = [] for num in range(len(SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase : str = 0 while 2 * i * i <= odd_composites[num]: __lowerCAmelCase : Tuple = odd_composites[num] - 2 * i * i if is_prime(SCREAMING_SNAKE_CASE ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(SCREAMING_SNAKE_CASE ) == n: return list_nums return [] def _SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
240
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _UpperCAmelCase = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co./models?filter=upernet ] # General docstring _UpperCAmelCase = 'UperNetConfig' class snake_case_ ( nn.Module ): def __init__( self : List[str] , _snake_case : int , _snake_case : int , _snake_case : Union[int, Tuple[int, int]] , _snake_case : Union[int, Tuple[int, int], str] = 0 , _snake_case : bool = False , _snake_case : Union[int, Tuple[int, int]] = 1 , )->None: '''simple docstring''' super().__init__() __lowerCAmelCase : Tuple = nn.Convad( in_channels=_snake_case , out_channels=_snake_case , kernel_size=_snake_case , padding=_snake_case , bias=_snake_case , dilation=_snake_case , ) __lowerCAmelCase : Any = nn.BatchNormad(_snake_case ) __lowerCAmelCase : Union[str, Any] = nn.ReLU() def UpperCAmelCase__ ( self : Tuple , _snake_case : torch.Tensor )->torch.Tensor: '''simple docstring''' __lowerCAmelCase : List[str] = self.conv(_snake_case ) __lowerCAmelCase : Any = self.batch_norm(_snake_case ) __lowerCAmelCase : List[Any] = self.activation(_snake_case ) return output class snake_case_ ( nn.Module ): def __init__( self : Dict , _snake_case : int , _snake_case : int , _snake_case : int )->None: '''simple docstring''' super().__init__() __lowerCAmelCase : int = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case , _snake_case , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : List[str] , _snake_case : torch.Tensor )->torch.Tensor: '''simple docstring''' __lowerCAmelCase : List[Any] = input for layer in self.layers: __lowerCAmelCase : List[Any] = layer(_snake_case ) return hidden_state class snake_case_ ( nn.Module ): def __init__( self : Union[str, Any] , _snake_case : Tuple[int, ...] , _snake_case : int , _snake_case : int , _snake_case : bool )->None: '''simple docstring''' super().__init__() __lowerCAmelCase : str = pool_scales __lowerCAmelCase : List[Any] = align_corners __lowerCAmelCase : Tuple = in_channels __lowerCAmelCase : Optional[int] = channels __lowerCAmelCase : Optional[int] = [] for i, pool_scale in enumerate(_snake_case ): __lowerCAmelCase : List[str] = UperNetPyramidPoolingBlock(pool_scale=_snake_case , in_channels=_snake_case , channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : List[Any] , _snake_case : torch.Tensor )->List[torch.Tensor]: '''simple docstring''' __lowerCAmelCase : Any = [] for ppm in self.blocks: __lowerCAmelCase : Dict = ppm(_snake_case ) __lowerCAmelCase : Any = nn.functional.interpolate( _snake_case , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class snake_case_ ( nn.Module ): def __init__( self : Optional[Any] , _snake_case : Optional[int] , _snake_case : int )->Optional[Any]: '''simple docstring''' super().__init__() __lowerCAmelCase : List[Any] = config __lowerCAmelCase : Union[str, Any] = config.pool_scales # e.g. (1, 2, 3, 6) __lowerCAmelCase : str = in_channels __lowerCAmelCase : str = config.hidden_size __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __lowerCAmelCase : Any = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __lowerCAmelCase : List[Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __lowerCAmelCase : Any = nn.ModuleList() __lowerCAmelCase : List[Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __lowerCAmelCase : str = UperNetConvModule(_snake_case , self.channels , kernel_size=1 ) __lowerCAmelCase : Any = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) __lowerCAmelCase : int = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' self.apply(self._init_weights ) def UpperCAmelCase__ ( self : Any , _snake_case : Optional[Any] )->Union[str, Any]: '''simple docstring''' if isinstance(_snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self : Tuple , _snake_case : int )->List[Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = inputs[-1] __lowerCAmelCase : Optional[Any] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) __lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=1 ) __lowerCAmelCase : List[Any] = self.bottleneck(_snake_case ) return output def UpperCAmelCase__ ( self : List[str] , _snake_case : torch.Tensor )->torch.Tensor: '''simple docstring''' __lowerCAmelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path __lowerCAmelCase : Union[str, Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __lowerCAmelCase : Optional[Any] = laterals[i - 1].shape[2:] __lowerCAmelCase : Dict = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_snake_case , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs __lowerCAmelCase : Union[str, Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __lowerCAmelCase : Optional[Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) __lowerCAmelCase : Dict = torch.cat(_snake_case , dim=1 ) __lowerCAmelCase : Optional[int] = self.fpn_bottleneck(_snake_case ) __lowerCAmelCase : List[str] = self.classifier(_snake_case ) return output class snake_case_ ( nn.Module ): def __init__( self : Dict , _snake_case : List[Any] , _snake_case : int = 2 , _snake_case : int = 3 , _snake_case : Union[int, Tuple[int, int]] = 1 )->None: '''simple docstring''' super().__init__() __lowerCAmelCase : List[str] = config __lowerCAmelCase : Optional[int] = config.auxiliary_in_channels __lowerCAmelCase : Tuple = config.auxiliary_channels __lowerCAmelCase : Any = config.auxiliary_num_convs __lowerCAmelCase : List[Any] = config.auxiliary_concat_input __lowerCAmelCase : Optional[Any] = in_index __lowerCAmelCase : Union[str, Any] = (kernel_size // 2) * dilation __lowerCAmelCase : List[str] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_snake_case , padding=_snake_case , dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_snake_case , padding=_snake_case , dilation=_snake_case ) ) if self.num_convs == 0: __lowerCAmelCase : Union[str, Any] = nn.Identity() else: __lowerCAmelCase : int = nn.Sequential(*_snake_case ) if self.concat_input: __lowerCAmelCase : Dict = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_snake_case , padding=kernel_size // 2 ) __lowerCAmelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def UpperCAmelCase__ ( self : List[Any] )->Tuple: '''simple docstring''' self.apply(self._init_weights ) def UpperCAmelCase__ ( self : Any , _snake_case : Any )->int: '''simple docstring''' if isinstance(_snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self : List[Any] , _snake_case : torch.Tensor )->torch.Tensor: '''simple docstring''' __lowerCAmelCase : List[str] = encoder_hidden_states[self.in_index] __lowerCAmelCase : List[str] = self.convs(_snake_case ) if self.concat_input: __lowerCAmelCase : Tuple = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __lowerCAmelCase : Any = self.classifier(_snake_case ) return output class snake_case_ ( __lowercase ): A_ = UperNetConfig A_ = 'pixel_values' A_ = True def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : List[str] )->Optional[int]: '''simple docstring''' if isinstance(_snake_case , _snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase__ ( self : Any )->Tuple: '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase__ ( self : Tuple , _snake_case : Union[str, Any] , _snake_case : List[Any]=False )->str: '''simple docstring''' if isinstance(_snake_case , _snake_case ): __lowerCAmelCase : List[Any] = value _UpperCAmelCase = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _UpperCAmelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' ,__lowercase ,) class snake_case_ ( __lowercase ): def __init__( self : str , _snake_case : Optional[int] )->Union[str, Any]: '''simple docstring''' super().__init__(_snake_case ) __lowerCAmelCase : List[Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __lowerCAmelCase : Tuple = UperNetHead(_snake_case , in_channels=self.backbone.channels ) __lowerCAmelCase : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=_snake_case , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase__ ( self : Tuple , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[bool] = None , )->Union[tuple, SemanticSegmenterOutput]: '''simple docstring''' __lowerCAmelCase : Dict = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase : Optional[int] = output_attentions if output_attentions is not None else self.config.output_attentions __lowerCAmelCase : Any = self.backbone.forward_with_filtered_kwargs( _snake_case , output_hidden_states=_snake_case , output_attentions=_snake_case ) __lowerCAmelCase : int = outputs.feature_maps __lowerCAmelCase : Union[str, Any] = self.decode_head(_snake_case ) __lowerCAmelCase : str = nn.functional.interpolate(_snake_case , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=_snake_case ) __lowerCAmelCase : int = None if self.auxiliary_head is not None: __lowerCAmelCase : List[Any] = self.auxiliary_head(_snake_case ) __lowerCAmelCase : Tuple = nn.functional.interpolate( _snake_case , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=_snake_case ) __lowerCAmelCase : Dict = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss __lowerCAmelCase : Dict = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __lowerCAmelCase : Any = loss_fct(_snake_case , _snake_case ) __lowerCAmelCase : Optional[Any] = loss_fct(_snake_case , _snake_case ) __lowerCAmelCase : Any = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __lowerCAmelCase : List[Any] = (logits,) + outputs[1:] else: __lowerCAmelCase : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
240
1
import re import subprocess import sys SCREAMING_SNAKE_CASE__ : str = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") SCREAMING_SNAKE_CASE__ : int = subprocess.check_output(f"git diff --name-only {fork_point_sha}".split()).decode("""utf-8""").split() SCREAMING_SNAKE_CASE__ : List[str] = """|""".join(sys.argv[1:]) SCREAMING_SNAKE_CASE__ : Optional[Any] = re.compile(rf"^({joined_dirs}).*?\.py$") SCREAMING_SNAKE_CASE__ : str = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
0
'''simple docstring''' import socket def _A ( ): '''simple docstring''' A__ = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) A__ = socket.gethostname() A__ = 12312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' ,'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: A__ = sock.recv(1024 ) if not data: break out_file.write(UpperCAmelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
531
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
347
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co./huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co./models?filter=time_series_transformer } class a_ ( snake_case ): UpperCAmelCase : Dict = """time_series_transformer""" UpperCAmelCase : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Any , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : str = "student_t" , a_ : str = "nll" , a_ : int = 1 , a_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , a_ : Optional[Union[str, bool]] = "mean" , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : Optional[List[int]] = None , a_ : Optional[List[int]] = None , a_ : int = 3_2 , a_ : int = 3_2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : bool = True , a_ : str = "gelu" , a_ : int = 6_4 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : int = 1_0_0 , a_ : float = 0.0_2 , a_ : Optional[int]=True , **a_ : Tuple , ) -> Optional[int]: # time series specific configuration snake_case: Dict =prediction_length snake_case: Any =context_length or prediction_length snake_case: str =distribution_output snake_case: List[str] =loss snake_case: Optional[Any] =input_size snake_case: Optional[Any] =num_time_features snake_case: List[str] =lags_sequence snake_case: Union[str, Any] =scaling snake_case: List[str] =num_dynamic_real_features snake_case: Any =num_static_real_features snake_case: Dict =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) snake_case: Dict =cardinality else: snake_case: Dict =[0] if embedding_dimension and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) snake_case: List[Any] =embedding_dimension else: snake_case: str =[min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case: Any =num_parallel_samples # Transformer architecture configuration snake_case: Union[str, Any] =input_size * len(a_ ) + self._number_of_features snake_case: List[Any] =d_model snake_case: int =encoder_attention_heads snake_case: Optional[int] =decoder_attention_heads snake_case: str =encoder_ffn_dim snake_case: List[Any] =decoder_ffn_dim snake_case: str =encoder_layers snake_case: List[str] =decoder_layers snake_case: List[Any] =dropout snake_case: Union[str, Any] =attention_dropout snake_case: Optional[int] =activation_dropout snake_case: str =encoder_layerdrop snake_case: Optional[int] =decoder_layerdrop snake_case: Tuple =activation_function snake_case: List[Any] =init_std snake_case: Union[str, Any] =use_cache super().__init__(is_encoder_decoder=a_ , **a_ ) @property def UpperCamelCase ( self : Tuple ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
347
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase_ ( _lowerCamelCase: int ) -> Dict: '''simple docstring''' __lowerCamelCase : List[str] = int(number**0.5 ) return number == sq * sq def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: int ) -> Dict: '''simple docstring''' __lowerCamelCase : Dict = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __lowerCamelCase : Union[str, Any] = x_den * y_den * z_den __lowerCamelCase : List[Any] = gcd(snake_case__ , snake_case__ ) top //= hcf bottom //= hcf return top, bottom def lowercase_ ( _lowerCamelCase: int = 35 ) -> int: '''simple docstring''' __lowerCamelCase : Optional[Any] = set() __lowerCamelCase : Optional[Any] = 42 __lowerCamelCase : str = Fraction(0 ) __lowerCamelCase : Optional[Any] = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __lowerCamelCase : List[str] = x_num * y_den + x_den * y_num __lowerCamelCase : str = x_den * y_den __lowerCamelCase : Dict = gcd(snake_case__ , snake_case__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase : Dict = add_three( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) unique_s.add(snake_case__ ) # n=2 __lowerCamelCase : int = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __lowerCamelCase : Tuple = x_den * x_den * y_den * y_den if is_sq(snake_case__ ) and is_sq(snake_case__ ): __lowerCamelCase : List[Any] = int(sqrt(snake_case__ ) ) __lowerCamelCase : Optional[Any] = int(sqrt(snake_case__ ) ) __lowerCamelCase : Any = gcd(snake_case__ , snake_case__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase : Optional[int] = add_three( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) unique_s.add(snake_case__ ) # n=-1 __lowerCamelCase : Any = x_num * y_num __lowerCamelCase : Any = x_den * y_num + x_num * y_den __lowerCamelCase : Dict = gcd(snake_case__ , snake_case__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase : int = add_three( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) unique_s.add(snake_case__ ) # n=2 __lowerCamelCase : List[Any] = x_num * x_num * y_num * y_num __lowerCamelCase : Optional[int] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(snake_case__ ) and is_sq(snake_case__ ): __lowerCamelCase : List[str] = int(sqrt(snake_case__ ) ) __lowerCamelCase : List[str] = int(sqrt(snake_case__ ) ) __lowerCamelCase : int = gcd(snake_case__ , snake_case__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase : Dict = add_three( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) unique_s.add(snake_case__ ) for num, den in unique_s: total += Fraction(snake_case__ , snake_case__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
646
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : Any ,A_ : int=13 ,A_ : str=7 ,A_ : Tuple=True ,A_ : str=True ,A_ : str=False ,A_ : List[str]=True ,A_ : str=99 ,A_ : str=32 ,A_ : Optional[int]=5 ,A_ : Optional[Any]=4 ,A_ : str=37 ,A_ : Optional[Any]="gelu" ,A_ : Union[str, Any]=0.1 ,A_ : Any=0.1 ,A_ : Optional[Any]=512 ,A_ : str=16 ,A_ : int=2 ,A_ : Optional[Any]=0.02 ,A_ : str=3 ,A_ : str=4 ,A_ : List[str]=None ,) -> str: A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = scope def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A_ ,initializer_range=self.initializer_range ,) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : Optional[int] ,A_ : Any ,A_ : Optional[Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ) -> List[Any]: A = LlamaModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : int ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : Dict ,) -> List[str]: A = True A = LlamaModel(A_ ) model.to(A_ ) model.eval() A = model( A_ ,attention_mask=A_ ,encoder_hidden_states=A_ ,encoder_attention_mask=A_ ,) A = model( A_ ,attention_mask=A_ ,encoder_hidden_states=A_ ,) A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict ,A_ : Dict ,A_ : Tuple ,A_ : Tuple ,A_ : Dict ,) -> Union[str, Any]: A = LlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Dict ,A_ : Any ,A_ : int ,A_ : List[str] ,A_ : Tuple ,A_ : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : int ,) -> List[Any]: A = True A = True A = LlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass A = model( A_ ,attention_mask=A_ ,encoder_hidden_states=A_ ,encoder_attention_mask=A_ ,use_cache=A_ ,) A = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A = ids_tensor((self.batch_size, 3) ,config.vocab_size ) A = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and A = torch.cat([input_ids, next_tokens] ,dim=-1 ) A = torch.cat([input_mask, next_mask] ,dim=-1 ) A = model( A_ ,attention_mask=A_ ,encoder_hidden_states=A_ ,encoder_attention_mask=A_ ,output_hidden_states=A_ ,)['hidden_states'][0] A = model( A_ ,attention_mask=A_ ,encoder_hidden_states=A_ ,encoder_attention_mask=A_ ,past_key_values=A_ ,output_hidden_states=A_ ,)['hidden_states'][0] # select random slice A = ids_tensor((1,) ,output_from_past.shape[-1] ).item() A = output_from_no_past[:, -3:, random_slice_idx].detach() A = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ ,A_ ,atol=1e-3 ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _lowerCamelCase: List[Any] = (LlamaForCausalLM,) if is_torch_available() else () _lowerCamelCase: Any = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase: int = False _lowerCamelCase: List[str] = False def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = LlamaModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A = type self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = 3 A = input_dict['input_ids'] A = input_ids.ne(1 ).to(A_ ) A = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) A = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = 3 A = 'single_label_classification' A = input_dict['input_ids'] A = input_ids.ne(1 ).to(A_ ) A = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) A = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = 3 A = 'multi_label_classification' A = input_dict['input_ids'] A = input_ids.ne(1 ).to(A_ ) A = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) A = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: pass @parameterized.expand([('linear',), ('dynamic',)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Any ) -> str: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = ids_tensor([1, 10] ,config.vocab_size ) A = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A = LlamaModel(A_ ) original_model.to(A_ ) original_model.eval() A = original_model(A_ ).last_hidden_state A = original_model(A_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A = {'type': scaling_type, 'factor': 10.0} A = LlamaModel(A_ ) scaled_model.to(A_ ) scaled_model.eval() A = scaled_model(A_ ).last_hidden_state A = scaled_model(A_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A_ ,A_ ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A_ ,A_ ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A_ ,A_ ,atol=1e-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A = [1, 306, 4658, 278, 6593, 310, 2834, 338] A = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) A = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 A = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) ,A_ ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A = torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,A_ ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: A = [1, 306, 4658, 278, 6593, 310, 2834, 338] A = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) A = model(torch.tensor(A_ ) ) # Expected mean on dim = -1 A = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) ,A_ ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,A_ ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> str: A = [1, 306, 4658, 278, 6593, 310, 2834, 338] A = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) A = model(torch.tensor(A_ ) ) # Expected mean on dim = -1 A = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) ,A_ ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,A_ ,atol=1e-2 ,rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: A = [1, 306, 4658, 278, 6593, 310, 2834, 338] A = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) A = model(torch.tensor(A_ ) ) A = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,A_ ,atol=1e-2 ,rtol=1e-2 ) # fmt: off A = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,A_ ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: A = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' A = 'Simply put, the theory of relativity states that ' A = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) A = tokenizer.encode(A_ ,return_tensors='pt' ) A = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=A_ ) # greedy generation outputs A = model.generate(A_ ,max_new_tokens=64 ,top_p=A_ ,temperature=1 ,do_sample=A_ ) A = tokenizer.decode(generated_ids[0] ,skip_special_tokens=A_ ) self.assertEqual(A_ ,A_ )
91
0
'''simple docstring''' from torch import nn def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
708
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : Dict=13 ,lowerCamelCase__ : Tuple=7 ,lowerCamelCase__ : Optional[Any]=6 ,lowerCamelCase__ : List[str]=17 ,lowerCamelCase__ : Union[str, Any]=23 ,lowerCamelCase__ : Tuple=11 ,lowerCamelCase__ : Any=True ,) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = act_dim SCREAMING_SNAKE_CASE = state_dim SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = is_training def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) SCREAMING_SNAKE_CASE = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) SCREAMING_SNAKE_CASE = floats_tensor((self.batch_size, self.seq_length, 1) ) SCREAMING_SNAKE_CASE = floats_tensor((self.batch_size, self.seq_length, 1) ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, self.seq_length) ,vocab_size=1000 ) SCREAMING_SNAKE_CASE = random_attention_mask((self.batch_size, self.seq_length) ) SCREAMING_SNAKE_CASE = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size ,seq_length=self.seq_length ,act_dim=self.act_dim ,state_dim=self.state_dim ,hidden_size=self.hidden_size ,max_length=self.max_length ,) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Union[str, Any] ,) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = DecisionTransformerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) self.parent.assertEqual(result.state_preds.shape ,states.shape ) self.parent.assertEqual(result.action_preds.shape ,actions.shape ) self.parent.assertEqual(result.return_preds.shape ,returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) = config_and_inputs SCREAMING_SNAKE_CASE = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Tuple = (DecisionTransformerModel,) if is_torch_available() else () __snake_case : Dict = () __snake_case : List[Any] = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __snake_case : int = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __snake_case : Optional[Any] = False __snake_case : Optional[Any] = False __snake_case : int = False __snake_case : str = False __snake_case : Union[str, Any] = False __snake_case : Union[str, Any] = False __snake_case : List[Any] = False __snake_case : Optional[int] = False __snake_case : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = DecisionTransformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = DecisionTransformerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(lowerCamelCase__ )] ,lowerCamelCase__ ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = 2 # number of steps of autoregressive prediction we will perform SCREAMING_SNAKE_CASE = 10 # defined by the RL environment, may be normalized SCREAMING_SNAKE_CASE = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) SCREAMING_SNAKE_CASE = model.to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model.config torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = torch.randn(1 ,1 ,config.state_dim ).to(device=lowerCamelCase__ ,dtype=torch.floataa ) # env.reset() SCREAMING_SNAKE_CASE = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] ,device=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor(lowerCamelCase__ ,device=lowerCamelCase__ ,dtype=torch.floataa ).reshape(1 ,1 ,1 ) SCREAMING_SNAKE_CASE = state SCREAMING_SNAKE_CASE = torch.zeros(1 ,0 ,config.act_dim ,device=lowerCamelCase__ ,dtype=torch.floataa ) SCREAMING_SNAKE_CASE = torch.zeros(1 ,0 ,device=lowerCamelCase__ ,dtype=torch.floataa ) SCREAMING_SNAKE_CASE = torch.tensor(0 ,device=lowerCamelCase__ ,dtype=torch.long ).reshape(1 ,1 ) for step in range(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = torch.cat([actions, torch.zeros(1 ,1 ,config.act_dim ,device=lowerCamelCase__ )] ,dim=1 ) SCREAMING_SNAKE_CASE = torch.cat([rewards, torch.zeros(1 ,1 ,device=lowerCamelCase__ )] ,dim=1 ) SCREAMING_SNAKE_CASE = torch.ones(1 ,states.shape[1] ).to(dtype=torch.long ,device=states.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = model( states=lowerCamelCase__ ,actions=lowerCamelCase__ ,rewards=lowerCamelCase__ ,returns_to_go=lowerCamelCase__ ,timesteps=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,return_dict=lowerCamelCase__ ,) self.assertEqual(action_pred.shape ,actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] ,expected_outputs[step] ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ( # env.step(action) torch.randn(1 ,1 ,config.state_dim ).to(device=lowerCamelCase__ ,dtype=torch.floataa ), 1.0, False, {}, ) SCREAMING_SNAKE_CASE = action_pred[0, -1] SCREAMING_SNAKE_CASE = torch.cat([states, state] ,dim=1 ) SCREAMING_SNAKE_CASE = returns_to_go[0, -1] - reward SCREAMING_SNAKE_CASE = torch.cat([returns_to_go, pred_return.reshape(1 ,1 ,1 )] ,dim=1 ) SCREAMING_SNAKE_CASE = torch.cat( [timesteps, torch.ones((1, 1) ,device=lowerCamelCase__ ,dtype=torch.long ) * (step + 1)] ,dim=1 )
116
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""image_processor""", """tokenizer"""] __UpperCAmelCase : str ="""CLIPImageProcessor""" __UpperCAmelCase : List[Any] =("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __a=None , __a=None , **__a ): __lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) __lowerCAmelCase = kwargs.pop("feature_extractor" ) __lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self , __a=None , __a=None , __a=None , **__a ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __lowerCAmelCase = self.tokenizer(__a , return_tensors=__a , **__a ) if images is not None: __lowerCAmelCase = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: __lowerCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def snake_case ( self , *__a , **__a ): return self.tokenizer.batch_decode(*__a , **__a ) def snake_case ( self , *__a , **__a ): return self.tokenizer.decode(*__a , **__a ) @property def snake_case ( self ): __lowerCAmelCase = self.tokenizer.model_input_names __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def snake_case ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
636
'''simple docstring''' import unittest import numpy as np def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , ): '''simple docstring''' __A : List[Any] = np.shape(SCREAMING_SNAKE_CASE ) __A : List[str] = np.shape(SCREAMING_SNAKE_CASE ) __A : Dict = np.shape(SCREAMING_SNAKE_CASE ) if shape_a[0] != shape_b[0]: __A : Tuple = ( "Expected the same number of rows for A and B. " f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(SCREAMING_SNAKE_CASE ) if shape_b[1] != shape_c[1]: __A : Optional[Any] = ( "Expected the same number of columns for B and C. " f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(SCREAMING_SNAKE_CASE ) __A : Tuple = pseudo_inv if a_inv is None: try: __A : Optional[Any] = np.linalg.inv(SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __A : Tuple = np.array([[0, 3], [3, 0], [2, 3]] ) __A : Tuple = np.array([[2, 1], [6, 3]] ) __A : Optional[Any] = schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __A : int = np.block([[a, b], [b.T, c]] ) __A : int = np.linalg.det(lowerCamelCase ) __A : List[str] = np.linalg.det(lowerCamelCase ) __A : Any = np.linalg.det(lowerCamelCase ) self.assertAlmostEqual(lowerCamelCase , det_a * det_s ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __A : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) __A : List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCamelCase ): schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __A : Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) __A : Optional[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCamelCase ): schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
111
0
'''simple docstring''' def __UpperCamelCase ( a : str ) ->int: assert column_title.isupper() snake_case = 0 snake_case = len(a ) - 1 snake_case = 0 while index >= 0: snake_case = (ord(column_title[index] ) - 64) * pow(26 , a ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
44
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=__a ): _UpperCAmelCase = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *A__ , **A__ ) -> Union[str, Any]: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> Optional[Any]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> Any: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
44
1
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = """▁""" UpperCAmelCase = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCAmelCase = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co./facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co./facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co./facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co./facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co./facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co./facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCAmelCase = { """facebook/m2m100_418M""": 1024, } # fmt: off UpperCAmelCase = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class lowercase__ ( A_ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = ['''input_ids''', '''attention_mask'''] __UpperCAmelCase = [] __UpperCAmelCase = [] def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="m2m100" , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE=8 , **SCREAMING_SNAKE_CASE , ) -> None: _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : List[Any] = language_codes _lowerCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCamelCase : str = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCamelCase : Optional[Any] = kwargs.get("""additional_special_tokens""" , []) kwargs["additional_special_tokens"] += [ self.get_lang_token(SCREAMING_SNAKE_CASE) for lang_code in fairseq_language_code if self.get_lang_token(SCREAMING_SNAKE_CASE) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=SCREAMING_SNAKE_CASE , tgt_lang=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , language_codes=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _lowerCamelCase : Union[str, Any] = vocab_file _lowerCamelCase : str = load_json(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = {v: k for k, v in self.encoder.items()} _lowerCamelCase : Optional[int] = spm_file _lowerCamelCase : Union[str, Any] = load_spm(SCREAMING_SNAKE_CASE , self.sp_model_kwargs) _lowerCamelCase : Optional[int] = len(self.encoder) _lowerCamelCase : Dict = { self.get_lang_token(SCREAMING_SNAKE_CASE): self.encoder_size + i for i, lang_code in enumerate(SCREAMING_SNAKE_CASE) } _lowerCamelCase : List[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(SCREAMING_SNAKE_CASE)} _lowerCamelCase : str = {v: k for k, v in self.lang_token_to_id.items()} _lowerCamelCase : List[str] = src_lang if src_lang is not None else """en""" _lowerCamelCase : List[str] = tgt_lang _lowerCamelCase : List[str] = self.get_lang_id(self._src_lang) self.set_src_lang_special_tokens(self._src_lang) _lowerCamelCase : Dict = num_madeup_words @property def UpperCamelCase_ ( self) -> int: return len(self.encoder) + len(self.lang_token_to_id) @property def UpperCamelCase_ ( self) -> str: return self._src_lang @src_lang.setter def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(SCREAMING_SNAKE_CASE , self.encoder[self.unk_token]) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(SCREAMING_SNAKE_CASE , self.unk_token) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Dict: _lowerCamelCase : Tuple = [] _lowerCamelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) + token _lowerCamelCase : Tuple = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) return out_string.strip() def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = [1] * len(self.prefix_tokens) _lowerCamelCase : Dict = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE)) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE)) + ([0] * len(SCREAMING_SNAKE_CASE)) + suffix_ones def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Dict: _lowerCamelCase : str = self.__dict__.copy() _lowerCamelCase : List[Any] = None return state def __setstate__( self , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): _lowerCamelCase : int = {} _lowerCamelCase : Any = load_spm(self.spm_file , self.sp_model_kwargs) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None) -> Tuple[str]: _lowerCamelCase : Optional[int] = Path(SCREAMING_SNAKE_CASE) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory') _lowerCamelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCamelCase : Optional[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , SCREAMING_SNAKE_CASE) if os.path.abspath(self.spm_file) != os.path.abspath(SCREAMING_SNAKE_CASE) and os.path.isfile(self.spm_file): copyfile(self.spm_file , SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.spm_file): with open(SCREAMING_SNAKE_CASE , """wb""") as fi: _lowerCamelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE) return (str(SCREAMING_SNAKE_CASE), str(SCREAMING_SNAKE_CASE)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = "en" , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "ro" , **SCREAMING_SNAKE_CASE , ) -> BatchEncoding: _lowerCamelCase : List[Any] = src_lang _lowerCamelCase : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang) return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""") _lowerCamelCase : List[str] = src_lang _lowerCamelCase : str = self(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = self.get_lang_id(SCREAMING_SNAKE_CASE) _lowerCamelCase : str = tgt_lang_id return inputs def UpperCamelCase_ ( self) -> Any: self.set_src_lang_special_tokens(self.src_lang) def UpperCamelCase_ ( self) -> Tuple: self.set_tgt_lang_special_tokens(self.tgt_lang) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : List[Any] = self.get_lang_token(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = self.lang_token_to_id[lang_token] _lowerCamelCase : str = [self.cur_lang_id] _lowerCamelCase : int = [self.eos_token_id] def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : int = self.get_lang_token(SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = self.lang_token_to_id[lang_token] _lowerCamelCase : List[Any] = [self.cur_lang_id] _lowerCamelCase : Tuple = [self.eos_token_id] def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> str: return self.lang_code_to_token[lang] def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : int = self.get_lang_token(SCREAMING_SNAKE_CASE) return self.lang_token_to_id[lang_token] def _snake_case ( __snake_case : str , __snake_case : Dict[str, Any] ): """simple docstring""" _lowerCamelCase : List[str] = sentencepiece.SentencePieceProcessor(**__snake_case ) spm.Load(str(__snake_case ) ) return spm def _snake_case ( __snake_case : str ): """simple docstring""" with open(__snake_case , """r""" ) as f: return json.load(__snake_case ) def _snake_case ( __snake_case : List[str] , __snake_case : str ): """simple docstring""" with open(__snake_case , """w""" ) as f: json.dump(__snake_case , __snake_case , indent=2 )
88
'''simple docstring''' def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' __snake_case = [[0 for _ in range(_lowerCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __snake_case = 1 for n in range(m + 1 ): for k in range(1 , _lowerCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ : List[str] = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: UpperCAmelCase_ : Union[str, Any] = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
0
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ ): # Construct model if gpta_config_file == "": _lowercase: Union[str, Any] = GPTaConfig() else: _lowercase: int = GPTaConfig.from_json_file(__magic_name__ ) _lowercase: int = GPTaModel(__magic_name__ ) # Load weights from numpy load_tf_weights_in_gpta(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model _lowercase: Union[str, Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _lowercase: Any = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __magic_name__ ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
206
def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): return abs(__magic_name__ ) if a == 0 else greatest_common_divisor(b % a , __magic_name__ ) def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): while y: # --> when y=0 then loop will terminate and return x as final GCD. _lowercase , _lowercase: Any = y, x % y return abs(__magic_name__ ) def __lowerCAmelCase ( ): try: _lowercase: Optional[int] = input("Enter two integers separated by comma (,): " ).split("," ) _lowercase: Any = int(nums[0] ) _lowercase: int = int(nums[1] ) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(__magic_name__ , __magic_name__ )}" ) print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__magic_name__ , __magic_name__ )}" ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
206
1
'''simple docstring''' import os import sys import unittest _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCAmelCase = os.path.join("tests", "models", "bert", "test_modeling_bert.py") _lowerCAmelCase = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class __A ( unittest.TestCase ): """simple docstring""" def snake_case_( self )-> Dict: lowercase__ = get_test_to_tester_mapping(_lowerCamelCase ) lowercase__ = get_test_to_tester_mapping(_lowerCamelCase ) lowercase__ = {'''BertModelTest''': '''BertModelTester'''} lowercase__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase ) def snake_case_( self )-> List[str]: lowercase__ = get_model_to_test_mapping(_lowerCamelCase ) lowercase__ = get_model_to_test_mapping(_lowerCamelCase ) lowercase__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } lowercase__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase ) def snake_case_( self )-> Any: lowercase__ = get_model_to_tester_mapping(_lowerCamelCase ) lowercase__ = get_model_to_tester_mapping(_lowerCamelCase ) lowercase__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } lowercase__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(get_test_info.to_json(_lowerCamelCase ) , _lowerCamelCase )
161
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "sayakpaul/vit-msn-base": "https://huggingface.co./sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co./models?filter=vit_msn } class __A ( a ): """simple docstring""" A_ = 'vit_msn' def __init__( self , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-06 , _lowerCamelCase=2_2_4 , _lowerCamelCase=1_6 , _lowerCamelCase=3 , _lowerCamelCase=True , **_lowerCamelCase , )-> Optional[Any]: super().__init__(**_lowerCamelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias
161
1
def _lowercase ( SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1_000 ): """simple docstring""" UpperCamelCase = 1 UpperCamelCase = 0 for divide_by_number in range(SCREAMING_SNAKE_CASE_ , digit + 1 ): UpperCamelCase = [] UpperCamelCase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
181
def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 UpperCamelCase , UpperCamelCase = 1, 1 for _ in range(number_of_steps - 1 ): UpperCamelCase , UpperCamelCase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
181
1
import json import sys def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as f: _lowercase = json.load(SCREAMING_SNAKE_CASE_ ) _lowercase = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(SCREAMING_SNAKE_CASE_ ): _lowercase = results[benchmark_name] _lowercase = benchmark_name.split("""/""" )[-1] output_md.append(f"""### Benchmark: {benchmark_file_name}""" ) _lowercase = """| metric |""" _lowercase = """|--------|""" _lowercase = """| new / old (diff) |""" for metric_name in sorted(SCREAMING_SNAKE_CASE_ ): _lowercase = benchmark_res[metric_name] _lowercase = metric_vals["""new"""] _lowercase = metric_vals.get("""old""" , SCREAMING_SNAKE_CASE_ ) _lowercase = metric_vals.get("""diff""" , SCREAMING_SNAKE_CASE_ ) _lowercase = f""" {new_val:f}""" if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) else """None""" if old_val is not None: val_str += f""" / {old_val:f}""" if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) else "None" if dif_val is not None: val_str += f""" ({dif_val:f})""" if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": A : Union[str, Any] = sys.argv[1] A : Dict = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
287
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: _lowercase = [0 for i in range(n + 1 )] _lowercase = 1 _lowercase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _lowercase = 1 _lowercase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'{solution() = }')
287
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( __UpperCAmelCase ): '''simple docstring''' lowercase : Any = ["image_processor", "tokenizer"] lowercase : Dict = "BridgeTowerImageProcessor" lowercase : int = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE__ : Union[bool, str, TruncationStrategy] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE__ : str , ) -> Any: A : Dict =self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) # add pixel_values + pixel_mask A : Tuple =self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , do_center_crop=lowerCAmelCase_ , **lowerCAmelCase_ ) encoding.update(lowerCAmelCase_ ) return encoding def SCREAMING_SNAKE_CASE_ ( self : Any , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : str ) -> Tuple: return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Any: A : int =self.tokenizer.model_input_names A : Tuple =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
712
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase : int =2 class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]: A , A , A , A : Optional[Any] =bos, unk, pad, eos A : Dict =[] A : Union[str, Any] =[] A : Any ={} A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =len(self.symbols ) def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return self.indices == other.indices def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.symbols ) def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: return sym in self.indices @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: A : Union[str, Any] =cls() d.add_from_file(SCREAMING_SNAKE_CASE__ ) return d def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any: if word in self.indices and not overwrite: A : int =self.indices[word] A : Union[str, Any] =self.count[idx] + n return idx else: A : Tuple =len(self.symbols ) A : str =idx self.symbols.append(SCREAMING_SNAKE_CASE__ ) self.count.append(SCREAMING_SNAKE_CASE__ ) return idx def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: return 0 def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) ) return A : str =f.readlines() A : int =self._load_meta(SCREAMING_SNAKE_CASE__ ) for line in lines[indices_start_line:]: try: A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": A : int =True A , A : Optional[Any] =line.rsplit(' ' , 1 ) else: A : Any =False A : Tuple =int(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) ) self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def A__ ( lowercase: Union[str, Any] ) -> str: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() ) A : int ='<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] A : List[Any] =d[k] # restore return da def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str: # prep if not os.path.exists(lowercase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowercase, exist_ok=lowercase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models A : List[str] =os.path.join(lowercase, 'checkpoint.pt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) A : Optional[Any] =torch.load(lowercase, map_location='cpu' ) A : Any =chkpt['cfg']['model'] # dicts A : Any =os.path.join(lowercase, 'dict.txt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) A : Dict =Dictionary.load(lowercase ) A : Optional[Any] =rewrite_dict_keys(src_dict.indices ) A : Tuple =len(lowercase ) A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # merges_file (bpecodes) A : List[str] =os.path.join(lowercase, 'bpecodes' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowercase, lowercase ) # model config A : Tuple =os.path.join(lowercase, 'config.json' ) A : Tuple ={ 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # tokenizer config A : int =os.path.join(lowercase, lowercase ) A : List[str] ={ 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # model A : List[Any] =chkpt['model'] # remove unneeded keys A : List[Any] =[ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowercase, lowercase ) A : str =list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): A : Union[str, Any] =model_state_dict.pop(lowercase ) else: A : List[str] =model_state_dict.pop(lowercase ) A : Any =BioGptConfig.from_pretrained(lowercase ) A : str =BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save A : Tuple =os.path.join(lowercase, lowercase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase, lowercase ) print('Conversion is done!' ) if __name__ == "__main__": _lowercase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase : List[Any] =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
661
0
'''simple docstring''' from __future__ import annotations import queue class a_ : def __init__( self : List[str] , a_ : Tuple ) -> Optional[int]: snake_case: Any =data snake_case: Optional[Any] =None snake_case: Union[str, Any] =None def a_ ( ) -> Dict: """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) snake_case: Union[str, Any] =input('Enter the value of the root node: ' ).strip().lower() snake_case: List[Any] =queue.Queue() snake_case: Optional[int] =TreeNode(int(lowercase__ ) ) q.put(lowercase__ ) while not q.empty(): snake_case: str =q.get() snake_case: int =f'''Enter the left node of {node_found.data}: ''' snake_case: Tuple =input(lowercase__ ).strip().lower() or 'n' if check == "n": return tree_node snake_case: Union[str, Any] =TreeNode(int(lowercase__ ) ) snake_case: List[Any] =left_node q.put(lowercase__ ) snake_case: str =f'''Enter the right node of {node_found.data}: ''' snake_case: int =input(lowercase__ ).strip().lower() or 'n' if check == "n": return tree_node snake_case: str =TreeNode(int(lowercase__ ) ) snake_case: Optional[int] =right_node q.put(lowercase__ ) raise def a_ ( __UpperCAmelCase ) -> int: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def a_ ( __UpperCAmelCase ) -> int: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def a_ ( __UpperCAmelCase ) -> Optional[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def a_ ( __UpperCAmelCase ) -> Optional[Any]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return snake_case: Optional[int] =queue.Queue() q.put(lowercase__ ) while not q.empty(): snake_case: List[Any] =q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def a_ ( __UpperCAmelCase ) -> Any: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return snake_case: List[str] =queue.Queue() q.put(lowercase__ ) while not q.empty(): snake_case: int =[] while not q.empty(): snake_case: Union[str, Any] =q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowercase__ ) def a_ ( __UpperCAmelCase ) -> Optional[Any]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return snake_case: str =[] snake_case: str =node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(lowercase__ ) snake_case: List[str] =n.left # end of while means current node doesn't have left child snake_case: Union[str, Any] =stack.pop() # start to traverse its right child snake_case: Union[str, Any] =n.right def a_ ( __UpperCAmelCase ) -> List[str]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return snake_case: List[Any] =[] snake_case: Any =node while n or stack: while n: stack.append(lowercase__ ) snake_case: Tuple =n.left snake_case: Tuple =stack.pop() print(n.data , end=',' ) snake_case: Union[str, Any] =n.right def a_ ( __UpperCAmelCase ) -> Optional[Any]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return snake_case , snake_case: Tuple =[], [] snake_case: List[Any] =node stacka.append(lowercase__ ) while stacka: # to find the reversed order of post order, store it in stack2 snake_case: List[str] =stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowercase__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def a_ ( __UpperCAmelCase = "" , __UpperCAmelCase=50 , __UpperCAmelCase="*" ) -> Tuple: """simple docstring""" if not s: return "\n" + width * char snake_case , snake_case: Any =divmod(width - len(lowercase__ ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) a = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
350
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __snake_case : __a = None def __a ( self: int ): __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCamelCase = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , A_ ) def __a ( self: List[str] ): __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = os.path.join(A_ , """feat_extract.json""" ) feat_extract_first.to_json_file(A_ ) __lowerCamelCase = self.feature_extraction_class.from_json_file(A_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __a ( self: Optional[Any] ): __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __lowerCamelCase = self.feature_extraction_class.from_pretrained(A_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __a ( self: List[Any] ): __lowerCamelCase = self.feature_extraction_class() self.assertIsNotNone(A_ )
281
0
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __a : def __init__( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=13 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : List[str]=64 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : List[Any]=None , )-> List[str]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = embedding_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Any: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] )-> int: """simple docstring""" UpperCamelCase = MobileBertModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) UpperCamelCase = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) UpperCamelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] )-> str: """simple docstring""" UpperCamelCase = MobileBertForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int )-> int: """simple docstring""" UpperCamelCase = MobileBertForNextSentencePrediction(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] )-> Optional[int]: """simple docstring""" UpperCamelCase = MobileBertForPreTraining(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , next_sentence_label=UpperCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple )-> Union[str, Any]: """simple docstring""" UpperCamelCase = MobileBertForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] )-> Any: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileBertForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileBertForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = self.num_choices UpperCamelCase = MobileBertForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Tuple: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase_ : Dict = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : List[str] = True def _SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple=False )-> str: """simple docstring""" UpperCamelCase = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class in get_values(UpperCAmelCase_ ): UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ ) UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Tuple: """simple docstring""" UpperCamelCase = MobileBertModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Dict )-> str: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Tuple: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int )-> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str )-> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCAmelCase_ ) def lowerCamelCase__ ( UpperCAmelCase_ )-> List[str]: """simple docstring""" return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCamelCase = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(UpperCAmelCase_ ) UpperCamelCase = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): UpperCamelCase = model(UpperCAmelCase_ )[0] UpperCamelCase = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , UpperCAmelCase_ ) UpperCamelCase = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ] , device=UpperCAmelCase_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCamelCase = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCamelCase = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
556
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __a ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[str] )-> Optional[int]: """simple docstring""" UpperCamelCase = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) UpperCamelCase = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase = model(UpperCAmelCase_ )["last_hidden_state"].detach() self.assertEqual(output.shape , UpperCAmelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1e-3 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) UpperCamelCase = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase = model(UpperCAmelCase_ )["last_hidden_state"].detach() self.assertEqual(output.shape , UpperCAmelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1e-3 ) )
556
1