rem
stringlengths
0
274k
add
stringlengths
0
169k
context
stringlengths
9
471k
av=avma; uftot=0;
uftot = NULL;
thueinit(GEN poly, long flag, long prec){ GEN thueres,ALH,csts,c0; long av,tetpil,k,st; double d,dr; av=avma; uftot=0; if (checktnf(poly)) { uftot=(GEN)poly[2]; poly=(GEN)poly[1]; } else if (typ(poly)!=t_POL) err(notpoler,"thueinit"); if (degpol(poly)<=2) err(talker,"invalid polynomial in thue (need deg>2)"); if (!gisirreducible(poly)) err(redpoler,"thueinit"); st=sturm(poly); if (st) { dr=(double)((st+lgef(poly)-5)>>1); d=(double)degpol(poly); d=d*(d-1)*(d-2); /* Try to guess the precision by approximating Baker's bound. * Note that the guess is most of the time pretty generous, * ie 10 to 30 decimal digits above what is *really* necessary. * Note that the limiting step is the reduction. See paper. */ Prec=3 + (long)((5.83 + (dr+4)*5 + log(fact(dr+3)) + (dr+3)*log(dr+2) + (dr+3)*log(d) + log(log(2*d*(dr+2))) + (dr+1)) / 10.); ConstPrec=4; if (Prec<prec) Prec = prec; if (!checktnf(poly)) inithue(poly,flag); thueres=cgetg(8,t_VEC); thueres[1]=(long)poly; thueres[2]=(long)uftot; thueres[3]=(long)roo; Compute_Fund_Units(gmael(uftot,8,5)); ALH=cgetg(r+1,t_COL); for (k=1; k<=r; k++) ALH[k]=(long)Logarithmic_Height(k); thueres[4]=(long)ALH; thueres[5]=(long)MatFU; T_A_Matrices(); thueres[6]=(long)A; csts=cgetg(7,t_VEC); csts[1]=(long)c1; csts[2]=(long)c2; csts[3]=(long)halpha; csts[4]=(long)x0; csts[5]=(long)eps3; csts[6]=(long)stoi(Prec); thueres[7]=(long)csts; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres)); } thueres=cgetg(3,t_VEC); c0=gun; Prec=4; roo=roots(poly,Prec); for (k=1; k<lg(roo); k++) c0=gmul(c0, gimag((GEN)roo[k])); c0=ginv(gabs(c0,Prec)); thueres[1]=(long)poly; thueres[2]=(long)c0; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres));}
thueres[7]=(long)csts; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres));
thueres[7]=(long)csts; return gerepilecopy(av,thueres);
thueinit(GEN poly, long flag, long prec){ GEN thueres,ALH,csts,c0; long av,tetpil,k,st; double d,dr; av=avma; uftot=0; if (checktnf(poly)) { uftot=(GEN)poly[2]; poly=(GEN)poly[1]; } else if (typ(poly)!=t_POL) err(notpoler,"thueinit"); if (degpol(poly)<=2) err(talker,"invalid polynomial in thue (need deg>2)"); if (!gisirreducible(poly)) err(redpoler,"thueinit"); st=sturm(poly); if (st) { dr=(double)((st+lgef(poly)-5)>>1); d=(double)degpol(poly); d=d*(d-1)*(d-2); /* Try to guess the precision by approximating Baker's bound. * Note that the guess is most of the time pretty generous, * ie 10 to 30 decimal digits above what is *really* necessary. * Note that the limiting step is the reduction. See paper. */ Prec=3 + (long)((5.83 + (dr+4)*5 + log(fact(dr+3)) + (dr+3)*log(dr+2) + (dr+3)*log(d) + log(log(2*d*(dr+2))) + (dr+1)) / 10.); ConstPrec=4; if (Prec<prec) Prec = prec; if (!checktnf(poly)) inithue(poly,flag); thueres=cgetg(8,t_VEC); thueres[1]=(long)poly; thueres[2]=(long)uftot; thueres[3]=(long)roo; Compute_Fund_Units(gmael(uftot,8,5)); ALH=cgetg(r+1,t_COL); for (k=1; k<=r; k++) ALH[k]=(long)Logarithmic_Height(k); thueres[4]=(long)ALH; thueres[5]=(long)MatFU; T_A_Matrices(); thueres[6]=(long)A; csts=cgetg(7,t_VEC); csts[1]=(long)c1; csts[2]=(long)c2; csts[3]=(long)halpha; csts[4]=(long)x0; csts[5]=(long)eps3; csts[6]=(long)stoi(Prec); thueres[7]=(long)csts; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres)); } thueres=cgetg(3,t_VEC); c0=gun; Prec=4; roo=roots(poly,Prec); for (k=1; k<lg(roo); k++) c0=gmul(c0, gimag((GEN)roo[k])); c0=ginv(gabs(c0,Prec)); thueres[1]=(long)poly; thueres[2]=(long)c0; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres));}
tetpil=avma; return gerepile(av,tetpil,gcopy(thueres));
return gerepilecopy(av,thueres);
thueinit(GEN poly, long flag, long prec){ GEN thueres,ALH,csts,c0; long av,tetpil,k,st; double d,dr; av=avma; uftot=0; if (checktnf(poly)) { uftot=(GEN)poly[2]; poly=(GEN)poly[1]; } else if (typ(poly)!=t_POL) err(notpoler,"thueinit"); if (degpol(poly)<=2) err(talker,"invalid polynomial in thue (need deg>2)"); if (!gisirreducible(poly)) err(redpoler,"thueinit"); st=sturm(poly); if (st) { dr=(double)((st+lgef(poly)-5)>>1); d=(double)degpol(poly); d=d*(d-1)*(d-2); /* Try to guess the precision by approximating Baker's bound. * Note that the guess is most of the time pretty generous, * ie 10 to 30 decimal digits above what is *really* necessary. * Note that the limiting step is the reduction. See paper. */ Prec=3 + (long)((5.83 + (dr+4)*5 + log(fact(dr+3)) + (dr+3)*log(dr+2) + (dr+3)*log(d) + log(log(2*d*(dr+2))) + (dr+1)) / 10.); ConstPrec=4; if (Prec<prec) Prec = prec; if (!checktnf(poly)) inithue(poly,flag); thueres=cgetg(8,t_VEC); thueres[1]=(long)poly; thueres[2]=(long)uftot; thueres[3]=(long)roo; Compute_Fund_Units(gmael(uftot,8,5)); ALH=cgetg(r+1,t_COL); for (k=1; k<=r; k++) ALH[k]=(long)Logarithmic_Height(k); thueres[4]=(long)ALH; thueres[5]=(long)MatFU; T_A_Matrices(); thueres[6]=(long)A; csts=cgetg(7,t_VEC); csts[1]=(long)c1; csts[2]=(long)c2; csts[3]=(long)halpha; csts[4]=(long)x0; csts[5]=(long)eps3; csts[6]=(long)stoi(Prec); thueres[7]=(long)csts; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres)); } thueres=cgetg(3,t_VEC); c0=gun; Prec=4; roo=roots(poly,Prec); for (k=1; k<lg(roo); k++) c0=gmul(c0, gimag((GEN)roo[k])); c0=ginv(gabs(c0,Prec)); thueres[1]=(long)poly; thueres[2]=(long)c0; tetpil=avma; return gerepile(av,tetpil,gcopy(thueres));}
unsigned8 b[NUM_FIELDS];
uint8_t b[NUM_FIELDS];
command_port(FTPD_SessionInfo_t *info, char const *args){ enum { NUM_FIELDS = 6 }; unsigned int a[NUM_FIELDS]; int n; close_data_socket(info); n = sscanf(args, "%u,%u,%u,%u,%u,%u", a+0, a+1, a+2, a+3, a+4, a+5); if(NUM_FIELDS == n) { int i; unsigned8 b[NUM_FIELDS]; for(i = 0; i < NUM_FIELDS; ++i) { if(a[i] > 255) break; b[i] = (unsigned8)a[i]; } if(i == NUM_FIELDS) { /* Note: while it contradicts with RFC959, we don't allow PORT command * to specify IP address different than those of the originating client * for the sake of safety. */ unsigned32 const *ip = (unsigned32 *)b; if(*ip == info->def_addr.sin_addr.s_addr) { info->data_addr.sin_addr.s_addr = *ip; info->data_addr.sin_port = *(unsigned16 *)(b + 4); info->data_addr.sin_family = AF_INET; memset(info->data_addr.sin_zero, 0, sizeof(info->data_addr.sin_zero)); info->use_default = 0; send_reply(info, 200, "PORT command successful."); return; /* success */ } else { send_reply(info, 425, "Address doesn't match peer's IP."); return; } } } send_reply(info, 501, "Syntax error.");}
b[i] = (unsigned8)a[i];
b[i] = (uint8_t)a[i];
command_port(FTPD_SessionInfo_t *info, char const *args){ enum { NUM_FIELDS = 6 }; unsigned int a[NUM_FIELDS]; int n; close_data_socket(info); n = sscanf(args, "%u,%u,%u,%u,%u,%u", a+0, a+1, a+2, a+3, a+4, a+5); if(NUM_FIELDS == n) { int i; unsigned8 b[NUM_FIELDS]; for(i = 0; i < NUM_FIELDS; ++i) { if(a[i] > 255) break; b[i] = (unsigned8)a[i]; } if(i == NUM_FIELDS) { /* Note: while it contradicts with RFC959, we don't allow PORT command * to specify IP address different than those of the originating client * for the sake of safety. */ unsigned32 const *ip = (unsigned32 *)b; if(*ip == info->def_addr.sin_addr.s_addr) { info->data_addr.sin_addr.s_addr = *ip; info->data_addr.sin_port = *(unsigned16 *)(b + 4); info->data_addr.sin_family = AF_INET; memset(info->data_addr.sin_zero, 0, sizeof(info->data_addr.sin_zero)); info->use_default = 0; send_reply(info, 200, "PORT command successful."); return; /* success */ } else { send_reply(info, 425, "Address doesn't match peer's IP."); return; } } } send_reply(info, 501, "Syntax error.");}
unsigned32 const *ip = (unsigned32 *)b;
uint32_t const *ip = (uint32_t *)b;
command_port(FTPD_SessionInfo_t *info, char const *args){ enum { NUM_FIELDS = 6 }; unsigned int a[NUM_FIELDS]; int n; close_data_socket(info); n = sscanf(args, "%u,%u,%u,%u,%u,%u", a+0, a+1, a+2, a+3, a+4, a+5); if(NUM_FIELDS == n) { int i; unsigned8 b[NUM_FIELDS]; for(i = 0; i < NUM_FIELDS; ++i) { if(a[i] > 255) break; b[i] = (unsigned8)a[i]; } if(i == NUM_FIELDS) { /* Note: while it contradicts with RFC959, we don't allow PORT command * to specify IP address different than those of the originating client * for the sake of safety. */ unsigned32 const *ip = (unsigned32 *)b; if(*ip == info->def_addr.sin_addr.s_addr) { info->data_addr.sin_addr.s_addr = *ip; info->data_addr.sin_port = *(unsigned16 *)(b + 4); info->data_addr.sin_family = AF_INET; memset(info->data_addr.sin_zero, 0, sizeof(info->data_addr.sin_zero)); info->use_default = 0; send_reply(info, 200, "PORT command successful."); return; /* success */ } else { send_reply(info, 425, "Address doesn't match peer's IP."); return; } } } send_reply(info, 501, "Syntax error.");}
info->data_addr.sin_port = *(unsigned16 *)(b + 4);
info->data_addr.sin_port = *(uint16_t *)(b + 4);
command_port(FTPD_SessionInfo_t *info, char const *args){ enum { NUM_FIELDS = 6 }; unsigned int a[NUM_FIELDS]; int n; close_data_socket(info); n = sscanf(args, "%u,%u,%u,%u,%u,%u", a+0, a+1, a+2, a+3, a+4, a+5); if(NUM_FIELDS == n) { int i; unsigned8 b[NUM_FIELDS]; for(i = 0; i < NUM_FIELDS; ++i) { if(a[i] > 255) break; b[i] = (unsigned8)a[i]; } if(i == NUM_FIELDS) { /* Note: while it contradicts with RFC959, we don't allow PORT command * to specify IP address different than those of the originating client * for the sake of safety. */ unsigned32 const *ip = (unsigned32 *)b; if(*ip == info->def_addr.sin_addr.s_addr) { info->data_addr.sin_addr.s_addr = *ip; info->data_addr.sin_port = *(unsigned16 *)(b + 4); info->data_addr.sin_family = AF_INET; memset(info->data_addr.sin_zero, 0, sizeof(info->data_addr.sin_zero)); info->use_default = 0; send_reply(info, 200, "PORT command successful."); return; /* success */ } else { send_reply(info, 425, "Address doesn't match peer's IP."); return; } } } send_reply(info, 501, "Syntax error.");}
if (!signe(x)) { y=cgetr(3); y[1]=x[1]; y[2]=0; return y; }
if (!signe(x)) return realzero_bit(expo(x));
mpsin(GEN x){ long mod8,av,tetpil; GEN y,p1; if (typ(x)!=t_REAL) err(typeer,"mpsin"); if (!signe(x)) { y=cgetr(3); y[1]=x[1]; y[2]=0; return y; } av=avma; p1=mpsc1(x,&mod8); tetpil=avma; switch(mod8) { case 0: case 6: y=mpaut(p1); break; case 1: case 5: y=addsr(1,p1); break; case 2: case 4: y=mpaut(p1); setsigne(y,-signe(y)); break; default: /* case 3: case 7: */ y=subsr(-1,p1); break; } return gerepile(av,tetpil,y);}
testx(GEN bnfz, GEN bnf, GEN X, GEN module, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U)
testx(GEN bnfz, GEN bnr, GEN X, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U)
testx(GEN bnfz, GEN bnf, GEN X, GEN module, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U){ long i,l,lX; GEN be,polrelbe,p1,nf; if (gcmp0(X)) return NULL; lX = lg(X); for (i=dv+1; i<lX; i++) if (gcmp0((GEN)X[i])) return NULL; l = lg(vecMsup); for (i=1; i<l; i++) if (gcmp0(FpV_red(gmul((GEN)vecMsup[i],X), gell))) return NULL; be = gun; for (i=1; i<lX; i++) be = gmul(be, powgi((GEN)vecWB[i], (GEN)X[i])); if (DEBUGLEVEL>1) fprintferr("reducing beta = %Z\n",be); be = reducebeta(bnfz, be); if (DEBUGLEVEL>1) fprintferr("beta reduced = %Z\n",be); nf = (GEN)bnf[7]; polrelbe = computepolrelbeta((GEN)nf[1],be,g,U); p1 = unifpol(nf,polrelbe,0); l = lg(p1); /* lift to Q rational coeffs */ for (i=2; i<l; i++) if (isnfscalar((GEN)p1[i])) polrelbe[i] = mael(p1,i,1); p1 = denom(gtovec(p1)); polrelbe = rescale_pol(polrelbe,p1); if (DEBUGLEVEL>1) fprintferr("polrelbe = %Z\n",polrelbe); p1 = rnfconductor(bnf,polrelbe,0); if (!gegal((GEN)p1[1],module) || !gegal((GEN)p1[3],subgroup)) return NULL; return polrelbe;}
be = gun; for (i=1; i<lX; i++) be = gmul(be, powgi((GEN)vecWB[i], (GEN)X[i]));
be = factorback(vecWB, X);
testx(GEN bnfz, GEN bnf, GEN X, GEN module, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U){ long i,l,lX; GEN be,polrelbe,p1,nf; if (gcmp0(X)) return NULL; lX = lg(X); for (i=dv+1; i<lX; i++) if (gcmp0((GEN)X[i])) return NULL; l = lg(vecMsup); for (i=1; i<l; i++) if (gcmp0(FpV_red(gmul((GEN)vecMsup[i],X), gell))) return NULL; be = gun; for (i=1; i<lX; i++) be = gmul(be, powgi((GEN)vecWB[i], (GEN)X[i])); if (DEBUGLEVEL>1) fprintferr("reducing beta = %Z\n",be); be = reducebeta(bnfz, be); if (DEBUGLEVEL>1) fprintferr("beta reduced = %Z\n",be); nf = (GEN)bnf[7]; polrelbe = computepolrelbeta((GEN)nf[1],be,g,U); p1 = unifpol(nf,polrelbe,0); l = lg(p1); /* lift to Q rational coeffs */ for (i=2; i<l; i++) if (isnfscalar((GEN)p1[i])) polrelbe[i] = mael(p1,i,1); p1 = denom(gtovec(p1)); polrelbe = rescale_pol(polrelbe,p1); if (DEBUGLEVEL>1) fprintferr("polrelbe = %Z\n",polrelbe); p1 = rnfconductor(bnf,polrelbe,0); if (!gegal((GEN)p1[1],module) || !gegal((GEN)p1[3],subgroup)) return NULL; return polrelbe;}
nf = (GEN)bnf[7];
nf = checknf(bnr);
testx(GEN bnfz, GEN bnf, GEN X, GEN module, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U){ long i,l,lX; GEN be,polrelbe,p1,nf; if (gcmp0(X)) return NULL; lX = lg(X); for (i=dv+1; i<lX; i++) if (gcmp0((GEN)X[i])) return NULL; l = lg(vecMsup); for (i=1; i<l; i++) if (gcmp0(FpV_red(gmul((GEN)vecMsup[i],X), gell))) return NULL; be = gun; for (i=1; i<lX; i++) be = gmul(be, powgi((GEN)vecWB[i], (GEN)X[i])); if (DEBUGLEVEL>1) fprintferr("reducing beta = %Z\n",be); be = reducebeta(bnfz, be); if (DEBUGLEVEL>1) fprintferr("beta reduced = %Z\n",be); nf = (GEN)bnf[7]; polrelbe = computepolrelbeta((GEN)nf[1],be,g,U); p1 = unifpol(nf,polrelbe,0); l = lg(p1); /* lift to Q rational coeffs */ for (i=2; i<l; i++) if (isnfscalar((GEN)p1[i])) polrelbe[i] = mael(p1,i,1); p1 = denom(gtovec(p1)); polrelbe = rescale_pol(polrelbe,p1); if (DEBUGLEVEL>1) fprintferr("polrelbe = %Z\n",polrelbe); p1 = rnfconductor(bnf,polrelbe,0); if (!gegal((GEN)p1[1],module) || !gegal((GEN)p1[3],subgroup)) return NULL; return polrelbe;}
p1 = rnfconductor(bnf,polrelbe,0); if (!gegal((GEN)p1[1],module) || !gegal((GEN)p1[3],subgroup)) return NULL;
p1 = rnfnormgroup(bnr,polrelbe); if (!gegal(p1,subgroup)) return NULL;
testx(GEN bnfz, GEN bnf, GEN X, GEN module, GEN subgroup, GEN vecMsup, GEN vecWB, long g, GEN U){ long i,l,lX; GEN be,polrelbe,p1,nf; if (gcmp0(X)) return NULL; lX = lg(X); for (i=dv+1; i<lX; i++) if (gcmp0((GEN)X[i])) return NULL; l = lg(vecMsup); for (i=1; i<l; i++) if (gcmp0(FpV_red(gmul((GEN)vecMsup[i],X), gell))) return NULL; be = gun; for (i=1; i<lX; i++) be = gmul(be, powgi((GEN)vecWB[i], (GEN)X[i])); if (DEBUGLEVEL>1) fprintferr("reducing beta = %Z\n",be); be = reducebeta(bnfz, be); if (DEBUGLEVEL>1) fprintferr("beta reduced = %Z\n",be); nf = (GEN)bnf[7]; polrelbe = computepolrelbeta((GEN)nf[1],be,g,U); p1 = unifpol(nf,polrelbe,0); l = lg(p1); /* lift to Q rational coeffs */ for (i=2; i<l; i++) if (isnfscalar((GEN)p1[i])) polrelbe[i] = mael(p1,i,1); p1 = denom(gtovec(p1)); polrelbe = rescale_pol(polrelbe,p1); if (DEBUGLEVEL>1) fprintferr("polrelbe = %Z\n",polrelbe); p1 = rnfconductor(bnf,polrelbe,0); if (!gegal((GEN)p1[1],module) || !gegal((GEN)p1[3],subgroup)) return NULL; return polrelbe;}
const int pk = _pk(p,k), L = lg(tabaall)-1, lz = pk - L;
const int pk = u_pow(p,k), L = lg(tabaall)-1, lz = pk - L;
extendtabs(GEN N, int p, int k){ const int pk = _pk(p,k), L = lg(tabaall)-1, lz = pk - L; const ulong ltab = (NBITSN/kglob)+2; if (lz <= 0) { if (tabcyc[pk]==0) filltabs(N,p,k,ltab); return; } extend((GEN*)&tabaall, lz); extend((GEN*)&tabtall, lz); extend((GEN*)&tabcyc, lz); extend(&tabefin, lz); extend(&tabE, lz); extend(&tabTH, lz); extend(&tabeta, lz); extend(&sgt, lz); extend(&ctsgt, lz); filltabs(N,p,k, ltab);}
extend(&tabefin, lz);
extendtabs(GEN N, int p, int k){ const int pk = _pk(p,k), L = lg(tabaall)-1, lz = pk - L; const ulong ltab = (NBITSN/kglob)+2; if (lz <= 0) { if (tabcyc[pk]==0) filltabs(N,p,k,ltab); return; } extend((GEN*)&tabaall, lz); extend((GEN*)&tabtall, lz); extend((GEN*)&tabcyc, lz); extend(&tabefin, lz); extend(&tabE, lz); extend(&tabTH, lz); extend(&tabeta, lz); extend(&sgt, lz); extend(&ctsgt, lz); filltabs(N,p,k, ltab);}
pushtmatrix((SDL_svg_context *)closure);
pushtmatrix(c); c->minx = HUGE; c->miny = HUGE; c->maxx = -HUGE; c->maxy = -HUGE;
static svg_status_t _SDL_SVG_BeginElement (void *closure){ dprintf("svg_BeginElement\n"); pushtmatrix((SDL_svg_context *)closure); return SVG_STATUS_SUCCESS;}
_extremes(c, x1, y1); _extremes(c, x2, y2); _extremes(c, x3, y3);
_SDL_SVG_CurveTo (void *closure, double x1, double y1, double x2, double y2, double x3, double y3){SDL_svg_context *c=closure;IPoint p1,p2,p3; dprintf("svg_CurveTo (x1=%5.5f, y1=%5.5f, x2=%5.5f, y2=%5.5f, x3=%5.5f, y3=%5.5f)\n", x1,y1,x2,y2,x3,y3); if(!c->path || !c->numpoints) return SVG_STATUS_INVALID_CALL; p1 = FixCoords(c, (IPoint) {x1, y1}); p2 = FixCoords(c, (IPoint) {x2, y2}); p3 = FixCoords(c, (IPoint) {x3, y3}); _AddIPoint(c, (IPoint) {p1.x, p1.y}, TAG_CONTROL3); _AddIPoint(c, (IPoint) {p2.x, p2.y}, TAG_CONTROL3); _AddIPoint(c, (IPoint) {p3.x, p3.y}, TAG_ONPATH); c->at = (IPoint) {x3, y3}; return SVG_STATUS_SUCCESS;}
_extremes(c, x, y);
_SDL_SVG_LineTo (void *closure, double x, double y){SDL_svg_context *c=closure; dprintf("svg_LineTo (x=%5.5f, y=%5.5f)\n",x,y); _AddIPoint(c, FixCoords(c, (IPoint) {x, y}), TAG_ONPATH); c->at = (IPoint) {x, y}; return SVG_STATUS_SUCCESS;}
_extremes(c, x, y);
_SDL_SVG_MoveTo (void *closure, double x, double y){SDL_svg_context *c=closure; dprintf("svg_MoveTo (x=%5.5f, y=%5.5f)\n",x,y); if(c->numpoints && needs_path_stop(c)) _AddPathStop(c, 0); _AddIPoint(c, FixCoords(c, (IPoint) {x, y}), TAG_ONPATH); c->at = (IPoint) {x, y}; return SVG_STATUS_SUCCESS;}
_extremes(c, x1, y1); _extremes(c, x2, y2);
_SDL_SVG_QuadraticCurveTo (void *closure, double x1, double y1, double x2, double y2){SDL_svg_context *c=closure;IPoint p1,p2; dprintf("svg_QuadraticCurveTo (x1=%5.5f, y1=%5.5f, x2=%5.5f, y2=%5.5f)\n", x1,y1,x2,y2); if(!c->path || !c->numpoints) return SVG_STATUS_INVALID_CALL; p1 = FixCoords(c, (IPoint) {x1, y1}); p2 = FixCoords(c, (IPoint) {x2, y2}); _AddIPoint(c, (IPoint) {p1.x, p1.y}, TAG_CONTROL2); _AddIPoint(c, (IPoint) {p2.x, p2.y}, TAG_ONPATH); c->at = (IPoint) {x2, y2}; return SVG_STATUS_SUCCESS;}
_extremes(c, x1, y1); _extremes(c, x2, y2);
_SDL_SVG_RenderRect (void *closure, svg_length_t *x_len, svg_length_t *y_len, svg_length_t *width_len, svg_length_t *height_len, svg_length_t *rx_len, svg_length_t *ry_len){SDL_svg_context *c=closure;float x1,y1;float x2,y2; dprintf("svg_RenderRect\n"); x1 = x_len->value; y1 = y_len->value; x2 = x1 + width_len->value; y2 = y1 + height_len->value; _AddIPoint(c, FixCoords(c, (IPoint) {x1, y1}), TAG_ONPATH); _AddIPoint(c, FixCoords(c, (IPoint) {x2, y1}), TAG_ONPATH); _AddIPoint(c, FixCoords(c, (IPoint) {x2, y2}), TAG_ONPATH); _AddIPoint(c, FixCoords(c, (IPoint) {x1, y2}), TAG_ONPATH); _SDL_SVG_RenderPath(closure); return SVG_STATUS_SUCCESS;}
dst.e = in->c * in->f - in->d * in->e; dst.f = in->b * in->e - in->a * in->f;
dst.e = (in->c * in->f - in->d * in->e)/det; dst.f = (in->b * in->e - in->a * in->f)/det;
svg_matrix_t svg_matrix_invert(svg_matrix_t *in){float det;svg_matrix_t dst; det = in->a * in->d - in->b * in->c; if(det == 0.0) return (svg_matrix_t) {1.0, 0.0, 0.0, 1.0, 0.0, 0.0}; dst.a = in->d/det; dst.b = -in->b/det; dst.c = -in->c/det; dst.d = in->a/det; dst.e = in->c * in->f - in->d * in->e; dst.f = in->b * in->e - in->a * in->f; return dst;}
the_object = _Objects_Get( information, id, OBJECTS_SEARCH_LOCAL_NODE );
the_object = _Objects_Get( information, id, &ignored_location );
Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name){ unsigned32 the_api; unsigned32 the_class; Objects_Information *information; Objects_Control *the_object = (Objects_Control *) 0; if ( !name ) return OBJECTS_INVALID_NAME; the_api = _Objects_Get_API( id ); if ( the_api && the_api > OBJECTS_APIS_LAST ) return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( id ); information = _Objects_Information_table[ the_api ][ the_class ]; if ( !information ) return OBJECTS_INVALID_ID; if ( information->is_string ) return OBJECTS_INVALID_ID; the_object = _Objects_Get( information, id, OBJECTS_SEARCH_LOCAL_NODE ); if (!the_object) return OBJECTS_INVALID_ID; *name = the_object->name; return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;}
if (precision(p1)) return 1;
if (precision(p1)) res = 1;
use_maximal_pivot(GEN x){ long tx,i,j, lx = lg(x), ly = lg(x[1]); GEN p1; for (i=1; i<lx; i++) for (j=1; j<ly; j++) { p1 = gmael(x,i,j); tx = typ(p1); if (!is_scalar_t(tx)) return 0; if (precision(p1)) return 1; } return 0;}
return 0;
return res;
use_maximal_pivot(GEN x){ long tx,i,j, lx = lg(x), ly = lg(x[1]); GEN p1; for (i=1; i<lx; i++) for (j=1; j<ly; j++) { p1 = gmael(x,i,j); tx = typ(p1); if (!is_scalar_t(tx)) return 0; if (precision(p1)) return 1; } return 0;}
tmppool);
request->respool);
static apr_status_t read_from_connection(serf_connection_t *conn){ apr_status_t status; apr_pool_t *tmppool; /* Whatever is coming in on the socket corresponds to the first request * on our chain. */ serf_request_t *request = conn->requests; /* assert: request != NULL */ if ((status = apr_pool_create(&tmppool, request->respool)) != APR_SUCCESS) goto error; /* Invoke response handlers until we have no more work. */ while (1) { apr_pool_clear(tmppool); /* If the request doesn't have a response bucket, then call the * acceptor to get one created. */ if (request->resp_bkt == NULL) { request->resp_bkt = (*request->acceptor)(request, conn->skt, request->acceptor_baton, tmppool); apr_pool_clear(tmppool); } status = (*request->handler)(request->resp_bkt, request->handler_baton, tmppool); if (!APR_STATUS_IS_EOF(status)) { /* Whether success, or an error, there is no more to do unless * this request has been completed. */ goto error; } /* The request has been fully-delivered, and the response has * been fully-read. Remove it from our queue and loop to read * another response. */ conn->requests = request->next; /* The bucket is no longer needed, nor is the request's pool. */ serf_bucket_destroy(request->resp_bkt); apr_pool_destroy(request->respool); request = conn->requests; /* If we just ran out of requests, then update the pollset. We * don't want to read from this socket any more. We are definitely * done with this loop, too. */ if (request == NULL) { status = update_pollset(conn); goto error; } } error: apr_pool_destroy(tmppool); return status;}
unsigned32 erc32_sonic_read_register(
uint32_t erc32_sonic_read_register(
unsigned32 erc32_sonic_read_register( void *base, unsigned32 regno){ volatile unsigned32 *p = base; unsigned32 value; value = p[regno];#if (SONIC_DEBUG & SONIC_DEBUG_PRINT_REGISTERS) printf( "%p Read 0x%04x from %s (0x%02x)\n", &p[regno], value, SONIC_Reg_name[regno], regno ); fflush( stdout );#endif return 0x0ffff & value;}
unsigned32 regno
uint32_t regno
unsigned32 erc32_sonic_read_register( void *base, unsigned32 regno){ volatile unsigned32 *p = base; unsigned32 value; value = p[regno];#if (SONIC_DEBUG & SONIC_DEBUG_PRINT_REGISTERS) printf( "%p Read 0x%04x from %s (0x%02x)\n", &p[regno], value, SONIC_Reg_name[regno], regno ); fflush( stdout );#endif return 0x0ffff & value;}
volatile unsigned32 *p = base; unsigned32 value;
volatile uint32_t *p = base; uint32_t value;
unsigned32 erc32_sonic_read_register( void *base, unsigned32 regno){ volatile unsigned32 *p = base; unsigned32 value; value = p[regno];#if (SONIC_DEBUG & SONIC_DEBUG_PRINT_REGISTERS) printf( "%p Read 0x%04x from %s (0x%02x)\n", &p[regno], value, SONIC_Reg_name[regno], regno ); fflush( stdout );#endif return 0x0ffff & value;}
rtems_unsigned32 task_count = 0;
uint32_t task_count = 0;
void test1(){ boolean auto_extend; rtems_status_code result; rtems_unsigned32 task_count = 0; Objects_Information *the_information; char c1 = 'a'; char c2 = 'a'; char c3 = '0'; char c4 = '0'; printf( "\n TEST1 : auto-extend disabled.\n" ); /* * This is a major hack and only recommended for a test. Doing this * saves having another test. */ the_information = _Objects_Information_table[OBJECTS_CLASSIC_API][OBJECTS_RTEMS_TASKS]; auto_extend = the_information->auto_extend; the_information->auto_extend = FALSE; while (task_count < MAX_TASKS) { rtems_name name; printf(" TEST1 : creating task '%c%c%c%c', ", c1, c2, c3, c4); name = rtems_build_name(c1, c2, c3, c4); result = rtems_task_create(name, 10, RTEMS_MINIMUM_STACK_SIZE, RTEMS_DEFAULT_ATTRIBUTES, RTEMS_LOCAL, &task_id[task_count]); if (status_code_bad(result)) break; printf("number = %3i, id = %08x, starting, ", task_count, task_id[task_count]); fflush(stdout); result = rtems_task_start(task_id[task_count], test_task, (rtems_task_argument) task_count); if (status_code_bad(result)) break; /* * Update the name. */ NEXT_TASK_NAME(c1, c2, c3, c4); task_count++; } if (task_count >= MAX_TASKS) printf( "\nMAX_TASKS too small for work-space size, please make larger !!\n\n" ); if (task_count != (TASK_ALLOCATION_SIZE - 1)) { printf( " FAIL1 : the number of tasks does not equal the expected size -\n" " task created = %i, required number = %i\n", task_count, TASK_ALLOCATION_SIZE); exit( 1 ); } destory_all_tasks("TEST1"); the_information->auto_extend = auto_extend; printf( " TEST1 : completed\n" );}
puts("");
void stat_a_file( const char *file){ int status; struct stat statbuf; assert( file ); printf( "stat( %s ) returned ", file ); fflush( stdout ); status = stat( file, &statbuf ); if ( status == -1 ) { printf( ": %s\n", strerror( errno ) ); } else { dump_statbuf( &statbuf ); }}
long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf;
long ell, i, j, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, vnf; long l, lSp, lSml2, lSl2, lW;
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp;
GEN polnf,bnf,nf,bnfz,nfz,bid,ideal,cycgen,gell,p1,p2,wk,U,vselmer; GEN clgp,fununits,torsunit,Tc,Tv,P; GEN Q,idealz,gothf,factgothf; GEN M,K,y,vecMsup,vecW,vecWA,vecWB,vecB,vecC; GEN u,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp,listprSp;
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4];
compositum_red(&COMPO, polnf, cyclo(ell,vnf));
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
degKz = degpol(R); m = degKz/degK; d = (ell-1)/m;
degKz = degpol(COMPO.R); m = degKz / degK; d = (ell-1) / m;
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
bnfz = bnfinit0(R,1,NULL,prec);
bnfz = bnfinit0(COMPO.R,1,NULL,prec); cycgen = check_and_build_cycgen(bnfz);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
tau = get_tau(&_tau, nfz, U);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
cycgen = check_and_build_cycgen(bnfz);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell);
u = cgetg(l,t_VEC); for (j=1; j<=rc; j++) u[j] = zero; for ( ; j< l; j++) u[j] = lmpinvmod((GEN)cyc[j], gell);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
U = gadd(gpowgs(COMPO.q, g), gmul(COMPO.k, COMPO.p)); U = poleval(COMPO.rev, U); tau = get_tau(&_tau, nfz, U);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc);
p1 = tauofideal(nfz, (GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,u,gell,rc);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB;
p2 = vecB;
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
p3 = tauofvec(p3, tau);
p2 = tauofvec(p2, tau);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2;
vecC[i] = (long)famat_mul((GEN)vecC[i], famat_factorback(p2, (GEN)T[i])); }
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
dc = lg(Q)-1; if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2);
if (DEBUGLEVEL>2) fprintferr("Step 8\n"); p1 = RXQ_powers(lift_intern(COMPO.p), COMPO.R, degK-1); p1 = vecpol_to_mat(p1, degKz); T.invexpoteta1 = invmat(p1);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc);
GEN e, a, ap; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,u,gell,rc);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT);
p2 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p2; ap = cgetg(1, t_MAT);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau);
ap = famat_mul(ap, famat_pow(p2, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p2 = tauofelt(p2, tau);
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
vecalphap[j] = (long)p2; }
vecalphap[j] = (long)ap; }
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
dK= lg(K)-1; if (!dK) { avma=av; return gzero; }
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
y = cgetg(dK,t_VECSMALL); do
dK = lg(K)-1; y = cgetg(dK+1,t_VECSMALL); while (dK)
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); i = dK; do
y[i] = 1; do { GEN be, res, X = FpV_red(gmul_mati_smallvec(K, y), gell); if (ok_congruence(X,gell,lW,vecMsup))
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); } DECREASE:
be = compute_beta(X, vecWB, gell, bnfz); res = compute_polrel(&T, be, g, ell); if (DEBUGLEVEL>1) fprintferr("polrel(beta) = %Z\n", res); if (gegal(subgroup, rnfnormgroup(bnr, res))) return gerepilecopy(av, res); } } while (increment_y(y, dK, ell));
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
while (dK); avma = av; return gzero;
avma = av; return gzero;
rnfkummer(GEN bnr, GEN subgroup, long all, long prec){ long i, j, l, m, d, dK, dc, rc, ru, rv, g, mginv, degK, degKz, ell; long lSp, lSl2, lSml2, lW, vnf; gpmem_t av = avma; GEN p1,p2,p3,wk,U,R,gell; GEN polnf,nf,bnf,bnfz,bid,ideal,cycgen,vselmer; GEN kk,clgp,fununits,torsunit,vecB,vecC,Tc,Tv,P; GEN Q,idealz,gothf,factgothf,nfz; GEN listprSp,vecW,vecWA,vecWB; GEN M,K,y,A1,A2,A3,A3rev,vecMsup; GEN uu,gen,cyc,vecalpha,vecalphap,vecbetap,matP,Sp; primlist L; toK_s T; tau_s _tau, *tau; checkbnrgen(bnr); bnf = (GEN)bnr[1]; nf = (GEN)bnf[7]; polnf = (GEN)nf[1]; vnf = varn(polnf); if (!vnf) err(talker,"main variable in kummer must not be x"); wk = gmael3(bnf,8,4,1); /* step 7 */ if (all) subgroup = NULL; p1 = conductor(bnr, subgroup, 2); bnr = (GEN)p1[2]; subgroup = (GEN)p1[3]; gell = get_gell(bnr,subgroup,all); if (gcmp1(gell)) { avma = av; return polx[vnf]; } if (!isprime(gell)) err(impl,"kummer for composite relative degree"); if (divise(wk,gell)) return gerepilecopy(av, rnfkummersimple(bnr,subgroup,all)); if (all) err(impl,"extensions by degree in kummer when zeta not in K"); bid = (GEN)bnr[2]; ideal = gmael(bid,1,1); ell = itos(gell); /* step 1 of alg 5.3.5. */ if (DEBUGLEVEL>2) fprintferr("Step 1\n"); p1 = (GEN)compositum2(polnf, cyclo(ell,vnf))[1]; R = (GEN)p1[1]; A1= (GEN)p1[2]; A2= (GEN)p1[3]; kk= (GEN)p1[4]; /* step 2 */ if (DEBUGLEVEL>2) fprintferr("Step 2\n"); degK = degpol(polnf); degKz = degpol(R); m = degKz/degK; d = (ell-1)/m; g = powuumod(u_gener(ell), d, ell); if (powuumod(g, m, ell*ell) == 1) g += ell; /* ord(g)=m in all (Z/ell^k)^* */ /* step reduction of R */ if (DEBUGLEVEL>2) fprintferr("Step reduction\n"); p1 = polredabs0(R, nf_ORIG|nf_PARTIALFACT); R = (GEN)p1[1]; if (DEBUGLEVEL>2) fprintferr("polredabs = %Z",R); A3= (GEN)p1[2]; A1 = poleval(lift(A1), A3); A2 = poleval(lift(A2), A3); A3rev= modreverse_i((GEN)A3[2], (GEN)A3[1]); U = gadd(gpowgs(A2,g), gmul(kk,A1)); U = poleval(A3rev, U); /* step 3 */ /* one could factor disc(R) using th. 2.1.6. */ if (DEBUGLEVEL>2) fprintferr("Step 3\n"); bnfz = bnfinit0(R,1,NULL,prec); nfz = (GEN)bnfz[7]; tau = get_tau(&_tau, nfz, U); clgp = gmael(bnfz,8,1); cyc = (GEN)clgp[2]; rc = prank(cyc,ell); gen = (GEN)clgp[3]; l = lg(cyc); vecalpha = cgetg(l,t_VEC); cycgen = check_and_build_cycgen(bnfz); for (j=1; j<l; j++) vecalpha[j] = (long)basistoalg(nfz, famat_to_nf(nfz, (GEN)cycgen[j])); /* computation of the uu(j) (see remark 5.2.15.) */ uu = cgetg(l,t_VEC); for (j=1; j<=rc; j++) uu[j] = zero; for ( ; j< l; j++) uu[j] = lmpinvmod((GEN)cyc[j], gell); fununits = check_units(bnfz,"rnfkummer"); torsunit = gmael3(bnfz,8,4,2); ru = (degKz>>1)-1; rv = rc+ru+1; vselmer = cgetg(rv+1,t_VEC); for (j=1; j<=rc; j++) vselmer[j] = cycgen[j]; for ( ; j< rv; j++) vselmer[j] = fununits[j-rc]; vselmer[rv]=(long)torsunit; /* step 4 */ if (DEBUGLEVEL>2) fprintferr("Step 4\n"); vecB=cgetg(rc+1,t_VEC); Tc=cgetg(rc+1,t_MAT); for (j=1; j<=rc; j++) { p1 = tauofideal(nfz,(GEN)gen[j], tau); p1 = isprincipalell(bnfz, p1, cycgen,uu,gell,rc); Tc[j] = p1[1]; vecB[j]= p1[2]; } p1 = cgetg(m,t_VEC); p1[1] = (long)idmat(rc); for (j=2; j<=m-1; j++) p1[j] = lmul((GEN)p1[j-1],Tc); p2 = cgetg(rc+1,t_VEC); for (j=1; j<=rc; j++) p2[j] = lgetg(1, t_MAT); p3 = vecB; for (j=1; j<=m-1; j++) { GEN T = FpM_red(gmulsg((j*d)%ell,(GEN)p1[m-j]), gell); p3 = tauofvec(p3, tau); for (i=1; i<=rc; i++) p2[i] = (long)famat_mul((GEN)p2[i], famat_factorback(p3, (GEN)T[i])); } vecC = p2; for (i=1; i<=rc; i++) vecC[i] = (long)famat_reduce((GEN)vecC[i]); /* step 5 */ if (DEBUGLEVEL>2) fprintferr("Step 5\n"); Tv = cgetg(rv+1,t_MAT); for (j=1; j<=rv; j++) { p1 = tauofelt((GEN)vselmer[j], tau); if (typ(p1) == t_MAT) p1 = factorbackelt(p1, nfz, NULL); /* famat */ Tv[j] = isvirtualunit(bnfz, p1, vecalpha,cyc,gell,rc)[1]; } P = FpM_ker(gsubgs(Tv, g), gell); lW = lg(P); vecW = cgetg(lW,t_VEC); for (j=1; j<lW; j++) vecW[j] = (long)famat_factorback(vselmer, (GEN)P[j]); /* step 6 */ if (DEBUGLEVEL>2) fprintferr("Step 6\n"); Q = FpM_ker(gsubgs(gtrans(Tc), g), gell); dc = lg(Q)-1; /* step 7 done above */ /* step 8 */ if (DEBUGLEVEL>2) fprintferr("Step 7 and 8\n"); idealz = lifttoKz(nfz, nf, ideal, A1); A1 = lift_intern(A1); p1 = polun[vnf]; p2 = cgetg(degK+1,t_MAT); for (j=1; j<=degK; j++) { p2[j] = (long)pol_to_vec(p1, degKz); if (j<degK) p1 = gmod(gmul(p1,A1), R); } T.invexpoteta1 = invmat(p2); /* left inverse */ T.polnf = polnf; T.tau = tau; T.m = m; if (smodis(idealnorm(nf,ideal), ell)) gothf = idealz; else { /* l | N(ideal) */ GEN bnrz = buchrayinitgen(bnfz, idealz); GEN subgroupz = invimsubgroup(&T, bnrz,bnr,subgroup); gothf = conductor(bnrz,subgroupz,0); } /* step 9 */ if (DEBUGLEVEL>2) fprintferr("Step 9\n"); factgothf = idealfactor(nfz,gothf); /* step 10 and step 11 */ if (DEBUGLEVEL>2) fprintferr("Step 10 and 11\n"); i = build_list_Hecke(&L, nfz, factgothf, gothf, gell, tau); if (i) return no_sol(all,i); lSml2 = lg(L.Sml2)-1; Sp = concatsp(L.Sm, L.Sml1); lSp = lg(Sp)-1; listprSp = concatsp(L.Sml2, L.Sl); lSl2 = lg(listprSp)-1; /* step 12 */ if (DEBUGLEVEL>2) fprintferr("Step 12\n"); vecbetap = cgetg(lSp+1,t_VEC); vecalphap= cgetg(lSp+1,t_VEC); matP = cgetg(lSp+1,t_MAT); for (j=1; j<=lSp; j++) { GEN e, a; p1 = isprincipalell(bnfz, (GEN)Sp[j], cycgen,uu,gell,rc); e = (GEN)p1[1]; a = (GEN)p1[2]; matP[j] = (long)e; p3 = famat_mul(famat_factorback(vecC, gneg(e)), a); vecbetap[j] = (long)p3; p2 = cgetg(1, t_MAT); for (i=0; i<m; i++) { p2 = famat_mul(p2, famat_pow(p3, utoi(powuumod(g,m-1-i,ell)))); if (i < m-1) p3 = tauofelt(p3, tau); } vecalphap[j] = (long)p2; } /* step 13 */ if (DEBUGLEVEL>2) fprintferr("Step 13\n"); vecWB = concatsp(vecW, vecbetap); vecWA = concatsp(vecW, vecalphap); /* step 14, 15, and 17 */ if (DEBUGLEVEL>2) fprintferr("Step 14, 15 and 17\n"); mginv = (m * u_invmod(g,ell)) % ell; vecMsup = cgetg(lSml2+1,t_VEC); M = NULL; for (i=1; i<=lSl2; i++) { GEN pr = (GEN)listprSp[i]; long e = itos((GEN)pr[3]), z = ell * (e / (ell-1)); if (i <= lSml2) { z += 1 - L.ESml2[i]; vecMsup[i] = (long)logall(nfz, vecWA,lW,mginv,ell,pr, z+1); } M = vconcat(M, logall(nfz, vecWA,lW,mginv,ell,pr, z)); } if (dc) { GEN QtP = gmul(gtrans_i(Q),matP); M = vconcat(M, concatsp(zeromat(dc,lW-1), QtP)); } if (!M) M = zeromat(1, lSp + lW - 1); /* step 16 */ if (DEBUGLEVEL>2) fprintferr("Step 16\n"); K = FpM_ker(M, gell); dK= lg(K)-1; if (!dK) { avma=av; return gzero; } /* step 18 */ if (DEBUGLEVEL>2) fprintferr("Step 18\n"); y = cgetg(dK,t_VECSMALL); do { for (i=1; i<dK; i++) y[i] = 0; /* step 19 */ for(;;) { GEN res, X = (GEN)K[dK]; for (j=1; j<dK; j++) X = gadd(X, gmulsg(y[j],(GEN)K[j])); res = testx(&T,bnfz,bnr,X,subgroup,vecMsup,vecWB,g,gell,lW); if (res) return gerepilecopy(av, res); /* step 20,21,22 */ i = dK; do { i--; if (!i) goto DECREASE; if (i < dK-1) y[i+1] = 0; y[i]++; } while (y[i] >= ell); }DECREASE: dK--; } while (dK); avma = av; return gzero;}
int i;
subtask (rtems_task_argument arg){ int i; rtems_status_code sc; rtems_id sem = (rtems_id)arg; for (;;) { rtems_task_wake_after (ticksPerSecond * 2); sc = rtems_semaphore_release (sem); if (sc != RTEMS_SUCCESSFUL) printf ("%d: Can't release semaphore: %s\n", __LINE__, rtems_status_text (sc)); }}
reducebeta(GEN bnfz, GEN be, long ell)
reducebeta(GEN bnfz, GEN be, GEN ell)
reducebeta(GEN bnfz, GEN be, long ell){ long j,ru, prec = nfgetprec(bnfz); GEN emb,z,u,matunit, nf = checknf(bnfz); matunit = gmulgs(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ for (;;) { z = get_arch_real(nf, be, &emb, prec); if (z) break; prec = (prec-1)<<1; if (DEBUGLEVEL) err(warnprec,"reducebeta",prec); nf = nfnewprec(nf,prec); } z = concatsp(matunit, z); u = lllintern(z, 100, 1, prec); if (u) { ru = lg(u); for (j=1; j < ru; j++) if (smodis(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ if (j < ru) { u = (GEN)u[j]; /* coords on (fu^ell, be) of a small generator */ ru--; setlg(u, ru); be = element_pow(nf, be, (GEN)u[ru]); be = fix_be(bnfz,be,u); } } return reducebetanaive(bnfz, be, NULL, ell);}
matunit = gmulgs(greal((GEN)bnfz[3]), ell);
if (DEBUGLEVEL>1) fprintferr("reducing beta = %Z\n",be); be = reduce_mod_Qell(nf, be, ell); z = idealsqrtn(nf, be, ell, 0); z = ideallllred_elt(nf, z); be = element_div(nf, be, element_pow(nf, z, ell)); be = reduce_mod_Qell(nf, be, ell); if (DEBUGLEVEL>1) fprintferr("beta reduced via ell-th root = %Z\n",be); matunit = gmul(greal((GEN)bnfz[3]), ell);
reducebeta(GEN bnfz, GEN be, long ell){ long j,ru, prec = nfgetprec(bnfz); GEN emb,z,u,matunit, nf = checknf(bnfz); matunit = gmulgs(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ for (;;) { z = get_arch_real(nf, be, &emb, prec); if (z) break; prec = (prec-1)<<1; if (DEBUGLEVEL) err(warnprec,"reducebeta",prec); nf = nfnewprec(nf,prec); } z = concatsp(matunit, z); u = lllintern(z, 100, 1, prec); if (u) { ru = lg(u); for (j=1; j < ru; j++) if (smodis(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ if (j < ru) { u = (GEN)u[j]; /* coords on (fu^ell, be) of a small generator */ ru--; setlg(u, ru); be = element_pow(nf, be, (GEN)u[ru]); be = fix_be(bnfz,be,u); } } return reducebetanaive(bnfz, be, NULL, ell);}
if (smodis(gcoeff(u,ru-1,j), ell)) break;
if (!divise(gcoeff(u,ru-1,j), ell)) break;
reducebeta(GEN bnfz, GEN be, long ell){ long j,ru, prec = nfgetprec(bnfz); GEN emb,z,u,matunit, nf = checknf(bnfz); matunit = gmulgs(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ for (;;) { z = get_arch_real(nf, be, &emb, prec); if (z) break; prec = (prec-1)<<1; if (DEBUGLEVEL) err(warnprec,"reducebeta",prec); nf = nfnewprec(nf,prec); } z = concatsp(matunit, z); u = lllintern(z, 100, 1, prec); if (u) { ru = lg(u); for (j=1; j < ru; j++) if (smodis(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ if (j < ru) { u = (GEN)u[j]; /* coords on (fu^ell, be) of a small generator */ ru--; setlg(u, ru); be = element_pow(nf, be, (GEN)u[ru]); be = fix_be(bnfz,be,u); } } return reducebetanaive(bnfz, be, NULL, ell);}
be = fix_be(bnfz,be,u);
be = fix_be(bnfz, be, gmul(ell,u));
reducebeta(GEN bnfz, GEN be, long ell){ long j,ru, prec = nfgetprec(bnfz); GEN emb,z,u,matunit, nf = checknf(bnfz); matunit = gmulgs(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ for (;;) { z = get_arch_real(nf, be, &emb, prec); if (z) break; prec = (prec-1)<<1; if (DEBUGLEVEL) err(warnprec,"reducebeta",prec); nf = nfnewprec(nf,prec); } z = concatsp(matunit, z); u = lllintern(z, 100, 1, prec); if (u) { ru = lg(u); for (j=1; j < ru; j++) if (smodis(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ if (j < ru) { u = (GEN)u[j]; /* coords on (fu^ell, be) of a small generator */ ru--; setlg(u, ru); be = element_pow(nf, be, (GEN)u[ru]); be = fix_be(bnfz,be,u); } } return reducebetanaive(bnfz, be, NULL, ell);}
if (DEBUGLEVEL>1) fprintferr("beta LLL-reduced mod units = %Z\n",be);
reducebeta(GEN bnfz, GEN be, long ell){ long j,ru, prec = nfgetprec(bnfz); GEN emb,z,u,matunit, nf = checknf(bnfz); matunit = gmulgs(greal((GEN)bnfz[3]), ell); /* log. embeddings of fu^ell */ for (;;) { z = get_arch_real(nf, be, &emb, prec); if (z) break; prec = (prec-1)<<1; if (DEBUGLEVEL) err(warnprec,"reducebeta",prec); nf = nfnewprec(nf,prec); } z = concatsp(matunit, z); u = lllintern(z, 100, 1, prec); if (u) { ru = lg(u); for (j=1; j < ru; j++) if (smodis(gcoeff(u,ru-1,j), ell)) break; /* prime to ell */ if (j < ru) { u = (GEN)u[j]; /* coords on (fu^ell, be) of a small generator */ ru--; setlg(u, ru); be = element_pow(nf, be, (GEN)u[ru]); be = fix_be(bnfz,be,u); } } return reducebetanaive(bnfz, be, NULL, ell);}
return 0;
Thread _Thread_Idle_body( unsigned32 ignored ){ for( ; ; ) { asm volatile( "mfmsr 3; oris 3,3,4; sync; mtmsr 3; isync; ori 3,3,0; ori 3,3,0" ); }}
F->subFB = yes; F->pow = NULL; return 1;
gunclone(F->subFB); F->subFB = gclone(yes); F->pow = NULL; avma = av; return 1;
subFB_increase(FB_t *F, GEN nf, long step){ GEN yes, D = (GEN)nf[3]; long i, iyes, lv = F->KC + 1, minsFB = lg(F->subFB)-1 + step; yes = cgetg(minsFB+1, t_VECSMALL); iyes = 1; for (i = 1; i < lv; i++) { long t = F->perm[i]; if (!ok_subFB(F, t, D)) continue; yes[iyes++] = t; if (iyes > minsFB) break; } if (i == lv) return 0; F->subFB = yes; F->pow = NULL; return 1;}
F->pow = NULL; avma = av; return 1;
F->newpow = 1; avma = av; return 1;
subFB_change(FB_t *F, GEN nf, GEN L_jid){ GEN yes, D = (GEN)nf[3]; long i, iyes, minsFB, chg = F->sfb_chg, lv = F->KC + 1, l = lg(F->subFB)-1; pari_sp av = avma; switch (chg) { case sfb_INCREASE: minsFB = l + 1; break; default: minsFB = l; break; } if (DEBUGLEVEL) fprintferr("*** Changing sub factor base\n"); yes = cgetg(minsFB+1, t_VECSMALL); iyes = 1; if (L_jid) { for (i = 1; i < lg(L_jid); i++) { long t = L_jid[i]; if (!ok_subFB(F, t, D)) continue; yes[iyes++] = t; if (iyes > minsFB) break; } } else i = 1; if (iyes <= minsFB) { for ( ; i < lv; i++) { long t = F->perm[i]; if (!ok_subFB(F, t, D)) continue; yes[iyes++] = t; if (iyes > minsFB) break; } if (i == lv) return 0; } if (gegal(F->subFB, yes)) { if (chg != sfb_UNSUITABLE) F->sfb_chg = 0; } else { gunclone(F->subFB); F->subFB = gclone(yes); F->sfb_chg = 0; } F->pow = NULL; avma = av; return 1;}
pari_sp ltop, lim; long i,k,lx = lg(x); if (lx == 1) return gen_1; if (lx == 2) return gcopy(gel(x,1)); x = shallowcopy(x); k = lx; ltop=avma; lim = stack_lim(ltop,1); while (k > 2) { if (DEBUGLEVEL>7) fprintferr("prod: remaining objects %ld\n",k-1); lx = k; k = 1; for (i=1; i<lx-1; i+=2) gel(x,k++) = mul(gel(x,i),gel(x,i+1)); if (i < lx) x[k++] = x[i]; if (low_stack(lim,stack_lim(av,1))) gerepilecoeffs(ltop,x+1,k-1); } return gel(x,1);
return divide_conquer_assoc(x, _domul, (void *)mul);
divide_conquer_prod(GEN x, GEN (*mul)(GEN,GEN)){ pari_sp ltop, lim; long i,k,lx = lg(x); if (lx == 1) return gen_1; if (lx == 2) return gcopy(gel(x,1)); x = shallowcopy(x); k = lx; ltop=avma; lim = stack_lim(ltop,1); while (k > 2) { if (DEBUGLEVEL>7) fprintferr("prod: remaining objects %ld\n",k-1); lx = k; k = 1; for (i=1; i<lx-1; i+=2) gel(x,k++) = mul(gel(x,i),gel(x,i+1)); if (i < lx) x[k++] = x[i]; if (low_stack(lim,stack_lim(av,1))) gerepilecoeffs(ltop,x+1,k-1); } return gel(x,1);}
if (k > 0) xp = gmul(xp, gpuigs(p1, k)); else xm = gmul(xm, gpuigs(p1,-k));
if (k > 0) xp = gmul(xp, gpowgs(p1, k)); else xm = gmul(xm, gpowgs(p1,-k));
bnfissunit(GEN bnf,GEN suni,GEN x){ long lB, cH, i, k, ls; gpmem_t tetpil, av = avma; GEN den,gen,S,v,p1,xp,xm,xb,N,HB,perm; bnf = checkbnf(bnf); if (typ(suni)!=t_VEC || lg(suni)!=7) err(typeer,"bnfissunit"); switch (typ(x)) { case t_INT: case t_FRAC: case t_FRACN: case t_POL: case t_COL: x = basistoalg(bnf,x); break; case t_POLMOD: break; default: err(typeer,"bnfissunit"); } if (gcmp0(x)) return cgetg(1,t_COL); S = (GEN) suni[6]; ls=lg(S); if (ls==1) return isunit(bnf,x); p1 = (GEN)suni[2]; perm = (GEN)p1[1]; HB = (GEN)p1[2]; den = (GEN)p1[3]; cH = lg(HB[1]) - 1; lB = lg(HB) - cH; xb = algtobasis(bnf,x); p1 = Q_denom(xb); N = mulii(gnorm(gmul(x,p1)), p1); /* relevant primes divide N */ v = cgetg(ls, t_VECSMALL); for (i=1; i<ls; i++) { GEN P = (GEN)S[i]; v[i] = (resii(N, (GEN)P[1]) == gzero)? element_val(bnf,xb,P): 0; } /* here, x = S v */ p1 = cgetg(ls, t_COL); for (i=1; i<ls; i++) p1[i] = lstoi(v[perm[i]]); /* p1 = v o perm */ v = gmul(HB, p1); for (i=1; i<=cH; i++) { GEN w = gdiv((GEN)v[i], den); if (typ(w) != t_INT) { avma = av; return cgetg(1,t_COL); } v[i] = (long)w; } p1 += cH; p1[0] = evaltyp(t_COL) | evallg(lB); v = concatsp(v, p1); /* append bottom of p1 (= [0 Id] part) */ xp = gun; xm = gun; gen = (GEN)suni[1]; for (i=1; i<ls; i++) { k = -itos((GEN)v[i]); if (!k) continue; p1 = basistoalg(bnf, (GEN)gen[i]); if (k > 0) xp = gmul(xp, gpuigs(p1, k)); else xm = gmul(xm, gpuigs(p1,-k)); } if (xp != gun) x = gmul(x,xp); if (xm != gun) x = gdiv(x,xm); p1 = isunit(bnf,x); if (lg(p1)==1) { avma = av; return cgetg(1,t_COL); } tetpil=avma; return gerepile(av,tetpil,concat(p1,v));}
} else if (rt = (struct rtentry *) rnh->rnh_lookup(dst, netmask, rnh))
} else if ((rt = (struct rtentry *) rnh->rnh_lookup(dst, netmask, rnh)))
route_output(m, so) register struct mbuf *m; struct socket *so;{ register struct rt_msghdr *rtm = 0; register struct rtentry *rt = 0; struct rtentry *saved_nrt = 0; struct radix_node_head *rnh; struct rt_addrinfo info; int len, error = 0; struct ifnet *ifp = 0; struct ifaddr *ifa = 0;#define senderr(e) { error = e; goto flush;} if (m == 0 || ((m->m_len < sizeof(long)) && (m = m_pullup(m, sizeof(long))) == 0)) return (ENOBUFS); if ((m->m_flags & M_PKTHDR) == 0) panic("route_output"); len = m->m_pkthdr.len; if (len < sizeof(*rtm) || len != mtod(m, struct rt_msghdr *)->rtm_msglen) { dst = 0; senderr(EINVAL); } R_Malloc(rtm, struct rt_msghdr *, len); if (rtm == 0) { dst = 0; senderr(ENOBUFS); } m_copydata(m, 0, len, (caddr_t)rtm); if (rtm->rtm_version != RTM_VERSION) { dst = 0; senderr(EPROTONOSUPPORT); } info.rti_addrs = rtm->rtm_addrs; if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { dst = 0; senderr(EINVAL); } if (dst == 0 || (dst->sa_family >= AF_MAX) || (gate != 0 && (gate->sa_family >= AF_MAX))) senderr(EINVAL); if (genmask) { struct radix_node *t; t = rn_addmask((caddr_t)genmask, 0, 1); if (t && Bcmp(genmask, t->rn_key, *(u_char *)genmask) == 0) genmask = (struct sockaddr *)(t->rn_key); else senderr(ENOBUFS); } switch (rtm->rtm_type) { case RTM_ADD: if (gate == 0) senderr(EINVAL); error = rtrequest(RTM_ADD, dst, gate, netmask, rtm->rtm_flags, &saved_nrt); if (error == 0 && saved_nrt) { rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &saved_nrt->rt_rmx); saved_nrt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); saved_nrt->rt_rmx.rmx_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); saved_nrt->rt_refcnt--; saved_nrt->rt_genmask = genmask; } break; case RTM_DELETE: error = rtrequest(RTM_DELETE, dst, gate, netmask, rtm->rtm_flags, &saved_nrt); if (error == 0) { if ((rt = saved_nrt)) rt->rt_refcnt++; goto report; } break; case RTM_GET: case RTM_CHANGE: case RTM_LOCK: if ((rnh = rt_tables[dst->sa_family]) == 0) { senderr(EAFNOSUPPORT); } else if (rt = (struct rtentry *) rnh->rnh_lookup(dst, netmask, rnh)) rt->rt_refcnt++; else senderr(ESRCH); switch(rtm->rtm_type) { case RTM_GET: report: dst = rt_key(rt); gate = rt->rt_gateway; netmask = rt_mask(rt); genmask = rt->rt_genmask; if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { ifp = rt->rt_ifp; if (ifp) { ifpaddr = ifp->if_addrlist->ifa_addr; ifaaddr = rt->rt_ifa->ifa_addr; rtm->rtm_index = ifp->if_index; } else { ifpaddr = 0; ifaaddr = 0; } } len = rt_msg2(rtm->rtm_type, &info, (caddr_t)0, (struct walkarg *)0); if (len > rtm->rtm_msglen) { struct rt_msghdr *new_rtm; R_Malloc(new_rtm, struct rt_msghdr *, len); if (new_rtm == 0) senderr(ENOBUFS); Bcopy(rtm, new_rtm, rtm->rtm_msglen); Free(rtm); rtm = new_rtm; } (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, (struct walkarg *)0); rtm->rtm_flags = rt->rt_flags; rtm->rtm_rmx = rt->rt_rmx; rtm->rtm_addrs = info.rti_addrs; break; case RTM_CHANGE: if (gate && (error = rt_setgate(rt, rt_key(rt), gate))) senderr(error); /* * If they tried to change things but didn't specify * the required gateway, then just use the old one. * This can happen if the user tries to change the * flags on the default route without changing the * default gateway. Changing flags still doesn't work. */ if ((rt->rt_flags & RTF_GATEWAY) && !gate) gate = rt->rt_gateway; /* new gateway could require new ifaddr, ifp; flags may also be different; ifp may be specified by ll sockaddr when protocol address is ambiguous */ if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) && (ifp = ifa->ifa_ifp) && (ifaaddr || gate)) ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate, ifp); else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) || (gate && (ifa = ifa_ifwithroute(rt->rt_flags, rt_key(rt), gate)))) ifp = ifa->ifa_ifp; if (ifa) { register struct ifaddr *oifa = rt->rt_ifa; if (oifa != ifa) { if (oifa && oifa->ifa_rtrequest) oifa->ifa_rtrequest(RTM_DELETE, rt, gate); IFAFREE(rt->rt_ifa); rt->rt_ifa = ifa; ifa->ifa_refcnt++; rt->rt_ifp = ifp; } } rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx); if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, gate); if (genmask) rt->rt_genmask = genmask; /* * Fall into */ case RTM_LOCK: rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); rt->rt_rmx.rmx_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); break; } break; default: senderr(EOPNOTSUPP); }flush: if (rtm) { if (error) rtm->rtm_errno = error; else rtm->rtm_flags |= RTF_DONE; } if (rt) rtfree(rt); { register struct rawcb *rp = 0; /* * Check to see if we don't want our own messages. */ if ((so->so_options & SO_USELOOPBACK) == 0) { if (route_cb.any_count <= 1) { if (rtm) Free(rtm); m_freem(m); return (error); } /* There is another listener, so construct message */ rp = sotorawcb(so); } if (rtm) { m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); Free(rtm); } if (rp) rp->rcb_proto.sp_family = 0; /* Avoid us */ if (dst) route_proto.sp_protocol = dst->sa_family; raw_input(m, &route_proto, &route_src, &route_dst); if (rp) rp->rcb_proto.sp_family = PF_ROUTE; } return (error);}
} else if (rt = (struct rtentry *) rnh->rnh_lookup(dst, netmask, rnh))
} else if ((rt = (struct rtentry *) rnh->rnh_lookup(dst, netmask, rnh)))
rt_msg1 __P((int, struct rt_addrinfo *));static int rt_msg2 __P((int, struct rt_addrinfo *, caddr_t, struct walkarg *));static int rt_xaddrs __P((caddr_t, caddr_t, struct rt_addrinfo *));static int sysctl_dumpentry __P((struct radix_node *rn, void *vw));static int sysctl_iflist __P((int af, struct walkarg *w));static int route_output __P((struct mbuf *, struct socket *));static int route_usrreq __P((struct socket *, int, struct mbuf *, struct mbuf *, struct mbuf *));static void rt_setmetrics __P((u_long, struct rt_metrics *, struct rt_metrics *));/* Sleazy use of local variables throughout file, warning!!!! */#define dst info.rti_info[RTAX_DST]#define gate info.rti_info[RTAX_GATEWAY]#define netmask info.rti_info[RTAX_NETMASK]#define genmask info.rti_info[RTAX_GENMASK]#define ifpaddr info.rti_info[RTAX_IFP]#define ifaaddr info.rti_info[RTAX_IFA]#define brdaddr info.rti_info[RTAX_BRD]/*ARGSUSED*/static introute_usrreq(so, req, m, nam, control) register struct socket *so; int req; struct mbuf *m, *nam, *control;{ register int error = 0; register struct rawcb *rp = sotorawcb(so); int s; if (req == PRU_ATTACH) { MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK); so->so_pcb = (caddr_t)rp; if (so->so_pcb) bzero(so->so_pcb, sizeof(*rp)); } if (req == PRU_DETACH && rp) { int af = rp->rcb_proto.sp_protocol; if (af == AF_INET) route_cb.ip_count--; else if (af == AF_IPX) route_cb.ipx_count--; else if (af == AF_NS) route_cb.ns_count--; else if (af == AF_ISO) route_cb.iso_count--; route_cb.any_count--; } s = splnet(); error = raw_usrreq(so, req, m, nam, control); rp = sotorawcb(so); if (req == PRU_ATTACH && rp) { int af = rp->rcb_proto.sp_protocol; if (error) { free((caddr_t)rp, M_PCB); splx(s); return (error); } if (af == AF_INET) route_cb.ip_count++; else if (af == AF_IPX) route_cb.ipx_count++; else if (af == AF_NS) route_cb.ns_count++; else if (af == AF_ISO) route_cb.iso_count++; rp->rcb_faddr = &route_src; route_cb.any_count++; soisconnected(so); so->so_options |= SO_USELOOPBACK; } splx(s); return (error);}/*ARGSUSED*/static introute_output(m, so) register struct mbuf *m; struct socket *so;{ register struct rt_msghdr *rtm = 0; register struct rtentry *rt = 0; struct rtentry *saved_nrt = 0; struct radix_node_head *rnh; struct rt_addrinfo info; int len, error = 0; struct ifnet *ifp = 0; struct ifaddr *ifa = 0;#define senderr(e) { error = e; goto flush;} if (m == 0 || ((m->m_len < sizeof(long)) && (m = m_pullup(m, sizeof(long))) == 0)) return (ENOBUFS); if ((m->m_flags & M_PKTHDR) == 0) panic("route_output"); len = m->m_pkthdr.len; if (len < sizeof(*rtm) || len != mtod(m, struct rt_msghdr *)->rtm_msglen) { dst = 0; senderr(EINVAL); } R_Malloc(rtm, struct rt_msghdr *, len); if (rtm == 0) { dst = 0; senderr(ENOBUFS); } m_copydata(m, 0, len, (caddr_t)rtm); if (rtm->rtm_version != RTM_VERSION) { dst = 0; senderr(EPROTONOSUPPORT); } info.rti_addrs = rtm->rtm_addrs; if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { dst = 0; senderr(EINVAL); } if (dst == 0 || (dst->sa_family >= AF_MAX) || (gate != 0 && (gate->sa_family >= AF_MAX))) senderr(EINVAL); if (genmask) { struct radix_node *t; t = rn_addmask((caddr_t)genmask, 0, 1); if (t && Bcmp(genmask, t->rn_key, *(u_char *)genmask) == 0) genmask = (struct sockaddr *)(t->rn_key); else senderr(ENOBUFS); } switch (rtm->rtm_type) { case RTM_ADD: if (gate == 0) senderr(EINVAL); error = rtrequest(RTM_ADD, dst, gate, netmask, rtm->rtm_flags, &saved_nrt); if (error == 0 && saved_nrt) { rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &saved_nrt->rt_rmx); saved_nrt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); saved_nrt->rt_rmx.rmx_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); saved_nrt->rt_refcnt--; saved_nrt->rt_genmask = genmask; } break; case RTM_DELETE: error = rtrequest(RTM_DELETE, dst, gate, netmask, rtm->rtm_flags, &saved_nrt); if (error == 0) { if ((rt = saved_nrt)) rt->rt_refcnt++; goto report; } break; case RTM_GET: case RTM_CHANGE: case RTM_LOCK: if ((rnh = rt_tables[dst->sa_family]) == 0) { senderr(EAFNOSUPPORT); } else if (rt = (struct rtentry *) rnh->rnh_lookup(dst, netmask, rnh)) rt->rt_refcnt++; else senderr(ESRCH); switch(rtm->rtm_type) { case RTM_GET: report: dst = rt_key(rt); gate = rt->rt_gateway; netmask = rt_mask(rt); genmask = rt->rt_genmask; if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { ifp = rt->rt_ifp; if (ifp) { ifpaddr = ifp->if_addrlist->ifa_addr; ifaaddr = rt->rt_ifa->ifa_addr; rtm->rtm_index = ifp->if_index; } else { ifpaddr = 0; ifaaddr = 0; } } len = rt_msg2(rtm->rtm_type, &info, (caddr_t)0, (struct walkarg *)0); if (len > rtm->rtm_msglen) { struct rt_msghdr *new_rtm; R_Malloc(new_rtm, struct rt_msghdr *, len); if (new_rtm == 0) senderr(ENOBUFS); Bcopy(rtm, new_rtm, rtm->rtm_msglen); Free(rtm); rtm = new_rtm; } (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, (struct walkarg *)0); rtm->rtm_flags = rt->rt_flags; rtm->rtm_rmx = rt->rt_rmx; rtm->rtm_addrs = info.rti_addrs; break; case RTM_CHANGE: if (gate && (error = rt_setgate(rt, rt_key(rt), gate))) senderr(error); /* * If they tried to change things but didn't specify * the required gateway, then just use the old one. * This can happen if the user tries to change the * flags on the default route without changing the * default gateway. Changing flags still doesn't work. */ if ((rt->rt_flags & RTF_GATEWAY) && !gate) gate = rt->rt_gateway; /* new gateway could require new ifaddr, ifp; flags may also be different; ifp may be specified by ll sockaddr when protocol address is ambiguous */ if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) && (ifp = ifa->ifa_ifp) && (ifaaddr || gate)) ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate, ifp); else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) || (gate && (ifa = ifa_ifwithroute(rt->rt_flags, rt_key(rt), gate)))) ifp = ifa->ifa_ifp; if (ifa) { register struct ifaddr *oifa = rt->rt_ifa; if (oifa != ifa) { if (oifa && oifa->ifa_rtrequest) oifa->ifa_rtrequest(RTM_DELETE, rt, gate); IFAFREE(rt->rt_ifa); rt->rt_ifa = ifa; ifa->ifa_refcnt++; rt->rt_ifp = ifp; } } rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx); if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, gate); if (genmask) rt->rt_genmask = genmask; /* * Fall into */ case RTM_LOCK: rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); rt->rt_rmx.rmx_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); break; } break; default: senderr(EOPNOTSUPP); }flush: if (rtm) { if (error) rtm->rtm_errno = error; else rtm->rtm_flags |= RTF_DONE; } if (rt) rtfree(rt); { register struct rawcb *rp = 0; /* * Check to see if we don't want our own messages. */ if ((so->so_options & SO_USELOOPBACK) == 0) { if (route_cb.any_count <= 1) { if (rtm) Free(rtm); m_freem(m); return (error); } /* There is another listener, so construct message */ rp = sotorawcb(so); } if (rtm) { m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); Free(rtm); } if (rp) rp->rcb_proto.sp_family = 0; /* Avoid us */ if (dst) route_proto.sp_protocol = dst->sa_family; raw_input(m, &route_proto, &route_src, &route_dst); if (rp) rp->rcb_proto.sp_family = PF_ROUTE; } return (error);}static voidrt_setmetrics(which, in, out) u_long which; register struct rt_metrics *in, *out;{#define metric(f, e) if (which & (f)) out->e = in->e; metric(RTV_RPIPE, rmx_recvpipe); metric(RTV_SPIPE, rmx_sendpipe); metric(RTV_SSTHRESH, rmx_ssthresh); metric(RTV_RTT, rmx_rtt); metric(RTV_RTTVAR, rmx_rttvar); metric(RTV_HOPCOUNT, rmx_hopcount); metric(RTV_MTU, rmx_mtu); metric(RTV_EXPIRE, rmx_expire);#undef metric}#define ROUNDUP(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))#define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len))/* * Extract the addresses of the passed sockaddrs. * Do a little sanity checking so as to avoid bad memory references. * This data is derived straight from userland. */static intrt_xaddrs(cp, cplim, rtinfo) register caddr_t cp, cplim; register struct rt_addrinfo *rtinfo;{ register struct sockaddr *sa; register int i; bzero(rtinfo->rti_info, sizeof(rtinfo->rti_info)); for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) { if ((rtinfo->rti_addrs & (1 << i)) == 0) continue; sa = (struct sockaddr *)cp; /* * It won't fit. */ if ( (cp + sa->sa_len) > cplim ) { return (EINVAL); } /* * there are no more.. quit now * If there are more bits, they are in error. * I've seen this. route(1) can evidently generate these. * This causes kernel to core dump. * for compatibility, If we see this, point to a safe address. */ if (sa->sa_len == 0) { rtinfo->rti_info[i] = &sa_zero; return (0); /* should be EINVAL but for compat */ } /* accept it */ rtinfo->rti_info[i] = sa; ADVANCE(cp, sa); } return (0);}static struct mbuf *rt_msg1(type, rtinfo) int type; register struct rt_addrinfo *rtinfo;{ register struct rt_msghdr *rtm; register struct mbuf *m; register int i; register struct sockaddr *sa; int len, dlen; m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == 0) return (m); switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; case RTM_IFINFO: len = sizeof(struct if_msghdr); break; default: len = sizeof(struct rt_msghdr); } if (len > MHLEN) panic("rt_msg1"); m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = 0; rtm = mtod(m, struct rt_msghdr *); bzero((caddr_t)rtm, len); for (i = 0; i < RTAX_MAX; i++) { if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); dlen = ROUNDUP(sa->sa_len); m_copyback(m, len, dlen, (caddr_t)sa); len += dlen; } if (m->m_pkthdr.len != len) { m_freem(m); return (NULL); } rtm->rtm_msglen = len; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; return (m);}
S = init_pow_q_mod_pT(X, q, u, T, p);
S = init_spec_FqXQ_pow(X, q, u, T, p);
FqX_sqf_split(GEN *t0, GEN q, GEN T, GEN p){ GEN *t = t0, u = *t, v, S, g, X; long d, dg, N = degpol(u); if (N == 1) return 1; v = X = polx[varn(u)]; S = init_pow_q_mod_pT(X, q, u, T, p); for (d=1; d <= N>>1; d++) { v = spec_FqXQ_pow(v, S, T, p); g = FqX_gcd(gsub(v,X),u, T,p); dg = degpol(g); if (dg <= 0) continue; /* all factors of g have degree d */ *t = g; FqX_split(t, d, q, S, T, p); t += dg / d; N -= dg; if (N) { u = FqX_div(u,g, T,p); v = FqX_rem(v,u, T,p); } } if (N) *t++ = u; return t - t0;}
rtems_unsigned32 real_trap;
uint32_t real_trap;
rtems_isr bsp_spurious_handler( rtems_vector_number trap, CPU_Interrupt_frame *isf){ char line[ 80 ]; rtems_unsigned32 real_trap; real_trap = SPARC_REAL_TRAP_NUMBER(trap); strcpy(line, "Unexpected trap (0x ) at address 0x "); line[ 19 ] = digits[ real_trap >> 4 ]; line[ 20 ] = digits[ real_trap & 0xf ]; itos(isf->tpc, &line[36]); DEBUG_puts( line ); switch (real_trap) { /* * First the ones defined by the basic architecture */ case 0x00: DEBUG_puts( "reset" ); break; case 0x01: DEBUG_puts( "instruction access exception" ); break; case 0x02: DEBUG_puts( "illegal instruction" ); break; case 0x03: DEBUG_puts( "privileged instruction" ); break; case 0x04: DEBUG_puts( "fp disabled" ); break; case 0x07: DEBUG_puts( "memory address not aligned" ); break; case 0x08: DEBUG_puts( "fp exception" ); break; case 0x09: strcpy(line, "data access exception at 0x " ); itos(ERC32_MEC.First_Failing_Address, &line[27]); DEBUG_puts( line ); break; case 0x0A: DEBUG_puts( "tag overflow" ); break; /* * Then the ones defined by the ERC32 in particular */ case ERC32_TRAP_TYPE( ERC32_INTERRUPT_MASKED_ERRORS ): DEBUG_puts( "ERC32_INTERRUPT_MASKED_ERRORS" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_EXTERNAL_1 ): DEBUG_puts( "ERC32_INTERRUPT_EXTERNAL_1" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_EXTERNAL_2 ): DEBUG_puts( "ERC32_INTERRUPT_EXTERNAL_2" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_UART_A_RX_TX ): DEBUG_puts( "ERC32_INTERRUPT_UART_A_RX_TX" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_UART_B_RX_TX ): DEBUG_puts( "ERC32_INTERRUPT_UART_A_RX_TX" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_CORRECTABLE_MEMORY_ERROR ): DEBUG_puts( "ERC32_INTERRUPT_CORRECTABLE_MEMORY_ERROR" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_UART_ERROR ): DEBUG_puts( "ERC32_INTERRUPT_UART_ERROR" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_DMA_ACCESS_ERROR ): DEBUG_puts( "ERC32_INTERRUPT_DMA_ACCESS_ERROR" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_DMA_TIMEOUT ): DEBUG_puts( "ERC32_INTERRUPT_DMA_TIMEOUT" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_EXTERNAL_3 ): DEBUG_puts( "ERC32_INTERRUPT_EXTERNAL_3" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_EXTERNAL_4 ): DEBUG_puts( "ERC32_INTERRUPT_EXTERNAL_4" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_GENERAL_PURPOSE_TIMER ): DEBUG_puts( "ERC32_INTERRUPT_GENERAL_PURPOSE_TIMER" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_REAL_TIME_CLOCK ): DEBUG_puts( "ERC32_INTERRUPT_REAL_TIME_CLOCK" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_EXTERNAL_5 ): DEBUG_puts( "ERC32_INTERRUPT_EXTERNAL_5" ); break; case ERC32_TRAP_TYPE( ERC32_INTERRUPT_WATCHDOG_TIMEOUT ): DEBUG_puts( "ERC32_INTERRUPT_WATCHDOG_TIMEOUT" ); break; default: break; } /* * What else can we do but stop ... */ asm volatile( "mov 1, %g1; ta 0x0" );}
rtems_unsigned32 trap; unsigned32 level = 15; unsigned32 mask;
uint32_t trap; uint32_t level = 15; uint32_t mask;
void bsp_spurious_initialize(){ rtems_unsigned32 trap; unsigned32 level = 15; unsigned32 mask; sparc_disable_interrupts(level); mask = ERC32_MEC.Interrupt_Mask; for ( trap=0 ; trap<256 ; trap++ ) { /* * Skip window overflow, underflow, and flush as well as software * trap 0 which we will use as a shutdown. Also avoid trap 0x70 - 0x7f * which cannot happen and where some of the space is used to pass * paramaters to the program. */ if (( trap == 5 || trap == 6 ) || (( trap >= 0x11 ) && ( trap <= 0x1f )) || (( trap >= 0x70 ) && ( trap <= 0x83 ))) continue; set_vector( (rtems_isr_entry) bsp_spurious_handler, SPARC_SYNCHRONOUS_TRAP( trap ), 1 ); } ERC32_MEC.Interrupt_Mask = mask; sparc_enable_interrupts(level);}
else vmeUniverse0PciIrqLine = irqline;
vmeUniverseFindPciBase( int instance, volatile LERegister **pbase ){int bus,dev,fun;pci_ulong busaddr;unsigned char irqline; if (BSP_PCI_FIND_DEVICE( PCI_VENDOR_TUNDRA, PCI_DEVICE_UNIVERSEII, instance, &bus, &dev, &fun)) return -1; if (BSP_PCI_CONFIG_IN_LONG(bus,dev,fun,PCI_UNIVERSE_BASE0,&busaddr)) return -1; if ((unsigned long)(busaddr) & 1) { /* it's IO space, try BASE1 */ if (BSP_PCI_CONFIG_IN_LONG(bus,dev,fun,PCI_UNIVERSE_BASE1,&busaddr) || ((unsigned long)(busaddr) & 1)) return -1; } *pbase=(volatile LERegister*)PCI_TO_LOCAL_ADDR(busaddr); if (BSP_PCI_CONFIG_IN_BYTE(bus,dev,fun,PCI_INTERRUPT_LINE,&irqline)) return -1; else vmeUniverse0PciIrqLine = irqline; return 0;}
return 0;
BSP_PCI_CONFIG_IN_SHORT(bus, dev, fun, PCI_COMMAND, &wrd); BSP_PCI_CONFIG_OUT_SHORT(bus, dev, fun, PCI_COMMAND, wrd | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); return irqline;
vmeUniverseFindPciBase( int instance, volatile LERegister **pbase ){int bus,dev,fun;pci_ulong busaddr;unsigned char irqline; if (BSP_PCI_FIND_DEVICE( PCI_VENDOR_TUNDRA, PCI_DEVICE_UNIVERSEII, instance, &bus, &dev, &fun)) return -1; if (BSP_PCI_CONFIG_IN_LONG(bus,dev,fun,PCI_UNIVERSE_BASE0,&busaddr)) return -1; if ((unsigned long)(busaddr) & 1) { /* it's IO space, try BASE1 */ if (BSP_PCI_CONFIG_IN_LONG(bus,dev,fun,PCI_UNIVERSE_BASE1,&busaddr) || ((unsigned long)(busaddr) & 1)) return -1; } *pbase=(volatile LERegister*)PCI_TO_LOCAL_ADDR(busaddr); if (BSP_PCI_CONFIG_IN_BYTE(bus,dev,fun,PCI_INTERRUPT_LINE,&irqline)) return -1; else vmeUniverse0PciIrqLine = irqline; return 0;}
if (!vmeUniverse0BaseAddr && vmeUniverseInit()) return -1; if ((local_addr & 7) != (vme_addr & 7)) { uprintf(stderr,"vmeUniverseStartDMA: misaligned addresses\n"); return -1; } { register volatile LERegister *b=vmeUniverse0BaseAddr; register unsigned long dgcsoff=UNIV_REGOFF_DGCS,dgcs; dgcs=READ_LE(b, dgcsoff); dgcs &= ~UNIV_DGCS_CHAIN; WRITE_LE(dgcs, b, dgcsoff); WRITE_LE(local_addr, b, UNIV_REGOFF_DLA); WRITE_LE(vme_addr, b, UNIV_REGOFF_DVA); WRITE_LE(count, b, UNIV_REGOFF_DTBC); dgcs |= UNIV_DGCS_GO; EIEIO_REG; WRITE_LE(dgcs, b, dgcsoff); } SYNC; return 0;
DFLT_BASE; return vmeUniverseStartDMAXX(base, local_addr, vme_addr, count);
vmeUniverseStartDMA( unsigned long local_addr, unsigned long vme_addr, unsigned long count){ if (!vmeUniverse0BaseAddr && vmeUniverseInit()) return -1; if ((local_addr & 7) != (vme_addr & 7)) { uprintf(stderr,"vmeUniverseStartDMA: misaligned addresses\n"); return -1; } { /* help the compiler allocate registers */ register volatile LERegister *b=vmeUniverse0BaseAddr; register unsigned long dgcsoff=UNIV_REGOFF_DGCS,dgcs; dgcs=READ_LE(b, dgcsoff); /* clear status and make sure CHAIN is clear */ dgcs &= ~UNIV_DGCS_CHAIN; WRITE_LE(dgcs, b, dgcsoff); WRITE_LE(local_addr, b, UNIV_REGOFF_DLA); WRITE_LE(vme_addr, b, UNIV_REGOFF_DVA); WRITE_LE(count, b, UNIV_REGOFF_DTBC); dgcs |= UNIV_DGCS_GO; EIEIO_REG; /* make sure GO is written after everything else */ WRITE_LE(dgcs, b, dgcsoff); } SYNC; /* enforce command completion */ return 0;}
: "=r"(p) : "r"(p) : "r0"
: "=r"(p) : "0"(p) : "r0"
vmeUniverseCvtToLE(unsigned long *ptr, unsigned long num){#if !defined(__LITTLE_ENDIAN__) || (__LITTLE_ENDIAN__ != 1)register unsigned long *p=ptr+num; while (p > ptr) {#if (defined(_ARCH_PPC) || defined(__PPC__) || defined(__PPC)) && (__BIG_ENDIAN__ == 1) __asm__ __volatile__( "lwzu 0, -4(%0)\n" "stwbrx 0, 0, %0\n" : "=r"(p) : "r"(p) : "r0" );#elif defined(__rtems__) p--; st_le32(p, *p);#else#error "vmeUniverse: endian conversion not implemented for this architecture"#endif }#endif}
GEN y,a,beta,cx,xZ,mul; long i,lm, N = degpol(nf[1]);
GEN y, a, cx, xZ; long N = degpol(nf[1]);
mat_ideal_two_elt(GEN nf, GEN x){ GEN y,a,beta,cx,xZ,mul; long i,lm, N = degpol(nf[1]); pari_sp av, tetpil; y = cgetg(3,t_VEC); av = avma; if (lg(x[1]) != N+1) err(typeer,"ideal_two_elt"); if (N == 2) { gel(y,1) = gcopy(gcoeff(x,1,1)); gel(y,2) = gcopy(gel(x,2)); return y; } x = Q_primitive_part(x, &cx); if (!cx) cx = gen_1; if (lg(x) != N+1) x = idealhermite_aux(nf,x); xZ = gcoeff(x,1,1); if (gcmp1(xZ)) { cx = gerepilecopy(av,cx); gel(y,1) = cx; gel(y,2) = gscalcol_i(cx, N); return y; } a = NULL; /* gcc -Wall */ beta= cgetg(N+1, t_VEC); mul = cgetg(N+1, t_VEC); lm = 1; /* = lg(mul) */ /* look for a in x such that a O/xZ = x O/xZ */ for (i=2; i<=N; i++) { pari_sp av1 = avma; GEN t, y = eltmul_get_table(nf, gel(x,i)); t = FpM_red(y, xZ); if (gcmp0(t)) { avma = av1; continue; } if (ok_elt(x,xZ, t)) { a = gel(x,i); break; } beta[lm]= x[i]; /* mul[i] = { canonical generators for x[i] O/xZ as Z-module } */ gel(mul,lm) = t; lm++; } if (i > N) { GEN z = cgetg(lm, t_VECSMALL); pari_sp av1; ulong c = 0; setlg(mul, lm); setlg(beta,lm); if (DEBUGLEVEL>3) fprintferr("ideal_two_elt, hard case:\n"); for(av1=avma;;avma=av1) { if (++c == 100) { if (DEBUGLEVEL>3) fprintferr("using approximation theorem\n"); a = mat_ideal_two_elt2(nf, x, xZ); goto END; } for (a=NULL,i=1; i<lm; i++) { long t = random_bits(4) - 7; /* in [-7,8] */ z[i] = t; a = addmul_mat(a, t, gel(mul,i)); } /* a = matrix (NOT HNF) of ideal generated by beta.z in O/xZ */ if (a && ok_elt(x,xZ, a)) break; } for (a=NULL,i=1; i<lm; i++) a = addmul_col(a, z[i], gel(beta,i)); }END: a = centermod(a, xZ); tetpil = avma; gel(y,1) = gmul(xZ,cx); gel(y,2) = gmul(a, cx); gerepilecoeffssp(av,tetpil,y+1,2); return y;}
if (lg(x[1]) != N+1) err(typeer,"ideal_two_elt"); if (N == 2) { gel(y,1) = gcopy(gcoeff(x,1,1)); gel(y,2) = gcopy(gel(x,2)); return y; }
mat_ideal_two_elt(GEN nf, GEN x){ GEN y,a,beta,cx,xZ,mul; long i,lm, N = degpol(nf[1]); pari_sp av, tetpil; y = cgetg(3,t_VEC); av = avma; if (lg(x[1]) != N+1) err(typeer,"ideal_two_elt"); if (N == 2) { gel(y,1) = gcopy(gcoeff(x,1,1)); gel(y,2) = gcopy(gel(x,2)); return y; } x = Q_primitive_part(x, &cx); if (!cx) cx = gen_1; if (lg(x) != N+1) x = idealhermite_aux(nf,x); xZ = gcoeff(x,1,1); if (gcmp1(xZ)) { cx = gerepilecopy(av,cx); gel(y,1) = cx; gel(y,2) = gscalcol_i(cx, N); return y; } a = NULL; /* gcc -Wall */ beta= cgetg(N+1, t_VEC); mul = cgetg(N+1, t_VEC); lm = 1; /* = lg(mul) */ /* look for a in x such that a O/xZ = x O/xZ */ for (i=2; i<=N; i++) { pari_sp av1 = avma; GEN t, y = eltmul_get_table(nf, gel(x,i)); t = FpM_red(y, xZ); if (gcmp0(t)) { avma = av1; continue; } if (ok_elt(x,xZ, t)) { a = gel(x,i); break; } beta[lm]= x[i]; /* mul[i] = { canonical generators for x[i] O/xZ as Z-module } */ gel(mul,lm) = t; lm++; } if (i > N) { GEN z = cgetg(lm, t_VECSMALL); pari_sp av1; ulong c = 0; setlg(mul, lm); setlg(beta,lm); if (DEBUGLEVEL>3) fprintferr("ideal_two_elt, hard case:\n"); for(av1=avma;;avma=av1) { if (++c == 100) { if (DEBUGLEVEL>3) fprintferr("using approximation theorem\n"); a = mat_ideal_two_elt2(nf, x, xZ); goto END; } for (a=NULL,i=1; i<lm; i++) { long t = random_bits(4) - 7; /* in [-7,8] */ z[i] = t; a = addmul_mat(a, t, gel(mul,i)); } /* a = matrix (NOT HNF) of ideal generated by beta.z in O/xZ */ if (a && ok_elt(x,xZ, a)) break; } for (a=NULL,i=1; i<lm; i++) a = addmul_col(a, z[i], gel(beta,i)); }END: a = centermod(a, xZ); tetpil = avma; gel(y,1) = gmul(xZ,cx); gel(y,2) = gmul(a, cx); gerepilecoeffssp(av,tetpil,y+1,2); return y;}
a = NULL; beta= cgetg(N+1, t_VEC); mul = cgetg(N+1, t_VEC); lm = 1; for (i=2; i<=N; i++)
if (N < 6) a = get_random_a(nf, x, xZ); else
mat_ideal_two_elt(GEN nf, GEN x){ GEN y,a,beta,cx,xZ,mul; long i,lm, N = degpol(nf[1]); pari_sp av, tetpil; y = cgetg(3,t_VEC); av = avma; if (lg(x[1]) != N+1) err(typeer,"ideal_two_elt"); if (N == 2) { gel(y,1) = gcopy(gcoeff(x,1,1)); gel(y,2) = gcopy(gel(x,2)); return y; } x = Q_primitive_part(x, &cx); if (!cx) cx = gen_1; if (lg(x) != N+1) x = idealhermite_aux(nf,x); xZ = gcoeff(x,1,1); if (gcmp1(xZ)) { cx = gerepilecopy(av,cx); gel(y,1) = cx; gel(y,2) = gscalcol_i(cx, N); return y; } a = NULL; /* gcc -Wall */ beta= cgetg(N+1, t_VEC); mul = cgetg(N+1, t_VEC); lm = 1; /* = lg(mul) */ /* look for a in x such that a O/xZ = x O/xZ */ for (i=2; i<=N; i++) { pari_sp av1 = avma; GEN t, y = eltmul_get_table(nf, gel(x,i)); t = FpM_red(y, xZ); if (gcmp0(t)) { avma = av1; continue; } if (ok_elt(x,xZ, t)) { a = gel(x,i); break; } beta[lm]= x[i]; /* mul[i] = { canonical generators for x[i] O/xZ as Z-module } */ gel(mul,lm) = t; lm++; } if (i > N) { GEN z = cgetg(lm, t_VECSMALL); pari_sp av1; ulong c = 0; setlg(mul, lm); setlg(beta,lm); if (DEBUGLEVEL>3) fprintferr("ideal_two_elt, hard case:\n"); for(av1=avma;;avma=av1) { if (++c == 100) { if (DEBUGLEVEL>3) fprintferr("using approximation theorem\n"); a = mat_ideal_two_elt2(nf, x, xZ); goto END; } for (a=NULL,i=1; i<lm; i++) { long t = random_bits(4) - 7; /* in [-7,8] */ z[i] = t; a = addmul_mat(a, t, gel(mul,i)); } /* a = matrix (NOT HNF) of ideal generated by beta.z in O/xZ */ if (a && ok_elt(x,xZ, a)) break; } for (a=NULL,i=1; i<lm; i++) a = addmul_col(a, z[i], gel(beta,i)); }END: a = centermod(a, xZ); tetpil = avma; gel(y,1) = gmul(xZ,cx); gel(y,2) = gmul(a, cx); gerepilecoeffssp(av,tetpil,y+1,2); return y;}
pari_sp av1 = avma; GEN t, y = eltmul_get_table(nf, gel(x,i)); t = FpM_red(y, xZ); if (gcmp0(t)) { avma = av1; continue; } if (ok_elt(x,xZ, t)) { a = gel(x,i); break; } beta[lm]= x[i]; gel(mul,lm) = t; lm++;
const long lim = 47; GEN a1, fa = auxdecomp(xZ, lim), P = gel(fa,1), E = gel(fa,2); long l = lg(P)-1; a1 = powgi(gel(P, l), gel(E, l)); if (cmpis(a1, lim) <= 0) a = idealapprfact_i(nf, idealfactor(nf,x), 1); else if (equalii(xZ, a1)) a = get_random_a(nf, x, xZ); else { GEN A0, A1, a0, u0, u1, v0, v1, pi0, pi1, t, u; a0 = diviiexact(xZ, a1); A0 = hnfmodid(x, a0); A1 = hnfmodid(x, a1); pi0 = idealapprfact_i(nf, idealfactor(nf,A0), 1); pi1 = get_random_a(nf, A1, a1); (void)bezout(a0, a1, &v0,&v1); u0 = gmul(a0, v0); u1 = gmul(a1, v1); t = gmul(pi0, u1); gel(t,1) = gadd(gel(t,1), u0); u = gmul(pi1, u0); gel(u,1) = gadd(gel(u,1), u1); a = element_muli(nf, centermod(u, xZ), centermod(t, xZ)); }
mat_ideal_two_elt(GEN nf, GEN x){ GEN y,a,beta,cx,xZ,mul; long i,lm, N = degpol(nf[1]); pari_sp av, tetpil; y = cgetg(3,t_VEC); av = avma; if (lg(x[1]) != N+1) err(typeer,"ideal_two_elt"); if (N == 2) { gel(y,1) = gcopy(gcoeff(x,1,1)); gel(y,2) = gcopy(gel(x,2)); return y; } x = Q_primitive_part(x, &cx); if (!cx) cx = gen_1; if (lg(x) != N+1) x = idealhermite_aux(nf,x); xZ = gcoeff(x,1,1); if (gcmp1(xZ)) { cx = gerepilecopy(av,cx); gel(y,1) = cx; gel(y,2) = gscalcol_i(cx, N); return y; } a = NULL; /* gcc -Wall */ beta= cgetg(N+1, t_VEC); mul = cgetg(N+1, t_VEC); lm = 1; /* = lg(mul) */ /* look for a in x such that a O/xZ = x O/xZ */ for (i=2; i<=N; i++) { pari_sp av1 = avma; GEN t, y = eltmul_get_table(nf, gel(x,i)); t = FpM_red(y, xZ); if (gcmp0(t)) { avma = av1; continue; } if (ok_elt(x,xZ, t)) { a = gel(x,i); break; } beta[lm]= x[i]; /* mul[i] = { canonical generators for x[i] O/xZ as Z-module } */ gel(mul,lm) = t; lm++; } if (i > N) { GEN z = cgetg(lm, t_VECSMALL); pari_sp av1; ulong c = 0; setlg(mul, lm); setlg(beta,lm); if (DEBUGLEVEL>3) fprintferr("ideal_two_elt, hard case:\n"); for(av1=avma;;avma=av1) { if (++c == 100) { if (DEBUGLEVEL>3) fprintferr("using approximation theorem\n"); a = mat_ideal_two_elt2(nf, x, xZ); goto END; } for (a=NULL,i=1; i<lm; i++) { long t = random_bits(4) - 7; /* in [-7,8] */ z[i] = t; a = addmul_mat(a, t, gel(mul,i)); } /* a = matrix (NOT HNF) of ideal generated by beta.z in O/xZ */ if (a && ok_elt(x,xZ, a)) break; } for (a=NULL,i=1; i<lm; i++) a = addmul_col(a, z[i], gel(beta,i)); }END: a = centermod(a, xZ); tetpil = avma; gel(y,1) = gmul(xZ,cx); gel(y,2) = gmul(a, cx); gerepilecoeffssp(av,tetpil,y+1,2); return y;}
if (i > N) { GEN z = cgetg(lm, t_VECSMALL); pari_sp av1; ulong c = 0; setlg(mul, lm); setlg(beta,lm); if (DEBUGLEVEL>3) fprintferr("ideal_two_elt, hard case:\n"); for(av1=avma;;avma=av1) { if (++c == 100) { if (DEBUGLEVEL>3) fprintferr("using approximation theorem\n"); a = mat_ideal_two_elt2(nf, x, xZ); goto END; } for (a=NULL,i=1; i<lm; i++) { long t = random_bits(4) - 7; z[i] = t; a = addmul_mat(a, t, gel(mul,i)); } if (a && ok_elt(x,xZ, a)) break; } for (a=NULL,i=1; i<lm; i++) a = addmul_col(a, z[i], gel(beta,i)); } END:
mat_ideal_two_elt(GEN nf, GEN x){ GEN y,a,beta,cx,xZ,mul; long i,lm, N = degpol(nf[1]); pari_sp av, tetpil; y = cgetg(3,t_VEC); av = avma; if (lg(x[1]) != N+1) err(typeer,"ideal_two_elt"); if (N == 2) { gel(y,1) = gcopy(gcoeff(x,1,1)); gel(y,2) = gcopy(gel(x,2)); return y; } x = Q_primitive_part(x, &cx); if (!cx) cx = gen_1; if (lg(x) != N+1) x = idealhermite_aux(nf,x); xZ = gcoeff(x,1,1); if (gcmp1(xZ)) { cx = gerepilecopy(av,cx); gel(y,1) = cx; gel(y,2) = gscalcol_i(cx, N); return y; } a = NULL; /* gcc -Wall */ beta= cgetg(N+1, t_VEC); mul = cgetg(N+1, t_VEC); lm = 1; /* = lg(mul) */ /* look for a in x such that a O/xZ = x O/xZ */ for (i=2; i<=N; i++) { pari_sp av1 = avma; GEN t, y = eltmul_get_table(nf, gel(x,i)); t = FpM_red(y, xZ); if (gcmp0(t)) { avma = av1; continue; } if (ok_elt(x,xZ, t)) { a = gel(x,i); break; } beta[lm]= x[i]; /* mul[i] = { canonical generators for x[i] O/xZ as Z-module } */ gel(mul,lm) = t; lm++; } if (i > N) { GEN z = cgetg(lm, t_VECSMALL); pari_sp av1; ulong c = 0; setlg(mul, lm); setlg(beta,lm); if (DEBUGLEVEL>3) fprintferr("ideal_two_elt, hard case:\n"); for(av1=avma;;avma=av1) { if (++c == 100) { if (DEBUGLEVEL>3) fprintferr("using approximation theorem\n"); a = mat_ideal_two_elt2(nf, x, xZ); goto END; } for (a=NULL,i=1; i<lm; i++) { long t = random_bits(4) - 7; /* in [-7,8] */ z[i] = t; a = addmul_mat(a, t, gel(mul,i)); } /* a = matrix (NOT HNF) of ideal generated by beta.z in O/xZ */ if (a && ok_elt(x,xZ, a)) break; } for (a=NULL,i=1; i<lm; i++) a = addmul_col(a, z[i], gel(beta,i)); }END: a = centermod(a, xZ); tetpil = avma; gel(y,1) = gmul(xZ,cx); gel(y,2) = gmul(a, cx); gerepilecoeffssp(av,tetpil,y+1,2); return y;}
y=gun; ms=gneg_i(s); p1=cgetr(prec+1);
y=gun; ms=gneg_i(s); p1=cgetr(prec+1); p2=gun;
czeta(GEN s, long prec){ long av,n,p,n1,l,flag1,flag2,flag3,i,i2; double st,sp,sn,ssig,ns,alpha,beta,maxbeta,xinf; GEN y,z,res,sig,ms,p1,p2,p3,p31,pitemp; l=precision(s); if (typ(s)==t_COMPLEX) { if (!l) l=prec; res=cgetg(3,t_COMPLEX); res[1]=lgetr(l); res[2]=lgetr(l); av=avma; p1=cgetg(3,t_COMPLEX); p1[1]=lgetr(l+1); p1[2]=lgetr(l+1); gaffect(s,p1); s=p1; sig=(GEN)s[1]; } else { res = cgetr(l); av=avma; p1=cgetr(l+1); affrr(s,p1); sig=s=p1; } if (signe(sig)>0 && expo(sig)>-2) flag1 = 0; else { if (gcmp0(gimag(s)) && gcmp0(gfrac(gmul2n(sig,-1)))) { if (gcmp0(sig)) gaffect(gneg_i(ghalf),res); else gaffsg(0,res); avma=av; return res; } flag1=1; s=gsub(gun,s); sig=greal(s); } ssig=rtodbl(sig); st=fabs(rtodbl(gimag(s))); maxbeta = pow(3.0,-2.5); if (st) { ns = ssig*ssig + st*st; alpha=pariC2*(prec-2)-0.39-0.5*(ssig-1.0)*log(ns)-log(ssig)+ssig*2*pariC1; beta=(alpha+ssig)/st-atan(ssig/st); if (beta<=0) { if (ssig>=1.0) { p=0; sn=sqrt(ns); n=(long)(ceil(exp(pariC2*(prec-2)/ssig)*pow(sn/(2*ssig),1.0/ssig))); } else { p=1; sn=ssig+1; n=(long)ceil(sqrt(sn*sn+st*st)/(2*PI)); } } else { if (beta<maxbeta) xinf=beta+pow(3*beta,1.0/3.0); else { double eps=0.0087, x00 = beta+PI/2.0, y00,x11; for(;;) { y00=x00*x00; x11=(beta+atan(x00))*(1+y00)/y00-1/x00; if (x00-x11 < eps) break; x00 = x11; } xinf=x11; } sp=1.0-ssig+st*xinf; if (sp>0) { p=(long)ceil(sp/2.0); sn=ssig+2*p-1; n=(long)ceil(sqrt(sn*sn+st*st)/(2*PI)); } else { p=0; sn=sqrt(ns); n=(long)ceil(exp(pariC2*(prec-2)/ssig)*pow(sn/(2*ssig),1.0/ssig)); } } } else { beta=pariC2*(prec-2)+0.61+ssig*2*pariC1-ssig*log(ssig); if (beta>0) { p=(long)ceil(beta/2.0); sn=ssig+2*p-1; n=(long)ceil(sqrt(sn*sn+st*st)/(2*PI)); } else { p=0; sn=sqrt(ssig*ssig+st*st); n=(long)ceil(exp(pariC2*(prec-2)/ssig)*pow(sn/(2*ssig),1.0/ssig)); } } if (n < 46340) { flag2=1; n1=n*n; } else flag2=0; y=gun; ms=gneg_i(s); p1=cgetr(prec+1); for (i=2; i<=n; i++) { affsr(i,p1); p2 = gexp(gmul(ms,mplog(p1)), prec+1); y = gadd(y,p2); } flag3 = (2*p < 46340); mpbern(p,prec+1); p31=cgetr(prec+1); z=gzero; for (i=p; i>=1; i--) { i2=i<<1; p1=gmul(gaddsg(i2-1,s),gaddsg(i2,s)); p1=flag3? gdivgs(p1,i2*(i2+1)): gdivgs(gdivgs(p1,i2),i2+1); p1=flag2? gdivgs(p1,n1): gdivgs(gdivgs(p1,n),n); p3 = bern(i); if (bernzone[2]>prec+1) { affrr(p3,p31); p3=p31; } z=gadd(divrs(p3,i),gmul(p1,z)); } p1=gsub(gdivsg(n,gsubgs(s,1)),ghalf); z=gmul(gadd(p1,gmul(s,gdivgs(z,n<<1))),p2); y = gadd(y,z); if (flag1) { pitemp=mppi(prec+1); setexpo(pitemp,2); y=gmul(gmul(y,ggamma(s,prec+1)),gpui(pitemp,ms,prec+1)); setexpo(pitemp,0); y=gmul2n(gmul(y,gcos(gmul(pitemp,s),prec+1)),1); } gaffect(y,res); avma=av; return res;}
if (typ(x) != t_MAT) err(typeer,"minim0");
if (typ(a) != t_MAT) err(typeer,"minim0");
minim0(GEN a, GEN BORNE, GEN STOCKMAX, long flag){ GEN x,res,p1,u,r,L,gnorme,invp,V; long n = lg(a), i, j, k, s, maxrank; pari_sp av0 = avma, av1, av, lim; double p,maxnorm,BOUND,*v,*y,*z,**q, eps = 0.000001; BORNE = gfloor(BORNE); if (typ(BORNE) != t_INT || typ(STOCKMAX) != t_INT) err(typeer, "minim0"); if (typ(x) != t_MAT) err(typeer,"minim0"); maxrank = 0; res = V = invp = NULL; /* gcc -Wall */ switch(flag) { case min_FIRST: if (gcmp0(BORNE)) err(talker,"bound = 0 in minim2"); res = cgetg(3,t_VEC); break; case min_ALL: res = cgetg(4,t_VEC); break; case min_PERF: break; case min_VECSMALL: case min_VECSMALL2: maxrank = itos(BORNE); if (maxrank <= 0) return cgetg(1, t_VECSMALL); res = const_vecsmall(maxrank, 0); if (flag == min_VECSMALL2) BORNE = shifti(BORNE,1); if (gcmp0(BORNE)) return res; break; default: err(talker, "incorrect flag in minim0"); } if (n == 1) { switch(flag) { case min_FIRST: avma=av0; return cgetg(1,t_VEC); case min_VECSMALL: case min_VECSMALL2: return res; case min_PERF: avma=av0; return gen_0; } gel(res,1) = gel(res,2) = gen_0; gel(res,3) = cgetg(1,t_MAT); return res; } av = avma; minim_alloc(n, &q, &x, &y, &z, &v); av1 = avma; u = lllgramint(a); if (lg(u) != n) err(talker,"not a definite form in minim0"); a = qf_base_change(a,u,1); n--; a = mat_to_MP(a, DEFAULTPREC); r = sqred1(a); for (j=1; j<=n; j++) { v[j] = rtodbl(gcoeff(r,j,j)); for (i=1; i<j; i++) q[i][j] = rtodbl(gcoeff(r,i,j)); } if (flag==min_PERF || gcmp0(BORNE)) { double c, b = rtodbl(gcoeff(a,1,1)); for (i=2; i<=n; i++) { c = rtodbl(gcoeff(a,i,i)); if (c < b) b = c; } BOUND = b+eps; BORNE = ground(dbltor(BOUND)); maxnorm = -1.; /* don't update maxnorm */ } else { BOUND = gtodouble(BORNE)+eps; maxnorm = 0.; } switch(flag) { case min_ALL: maxrank = itos(STOCKMAX); if (maxrank < 0) err(talker,"negative number of vectors in minim0"); L = new_chunk(1+maxrank); break; case min_PERF: BORNE = gerepileupto(av1,BORNE); maxrank = (n*(n+1)) >> 1; L = const_vecsmall(maxrank, 0); V = cgetg(1+maxrank, t_VECSMALL); } s = 0; av1 = avma; lim = stack_lim(av1,1); k = n; y[n] = z[n] = 0; x[n] = (long)sqrt(BOUND/v[n]); if (flag == min_PERF) invp = matid(maxrank); for(;;x[1]--) { do { if (k>1) { long l = k-1; z[l] = 0; for (j=k; j<=n; j++) z[l] += q[l][j]*x[j]; p = (double)x[k] + z[k]; y[l] = y[k] + p*p*v[k]; x[l] = (long)floor(sqrt((BOUND-y[l])/v[l])-z[l]); k = l; } for(;;) { p = (double)x[k] + z[k]; if (y[k] + p*p*v[k] <= BOUND) break; k++; x[k]--; } } while (k > 1); if (! x[1] && y[1]<=eps) break; p = (double)x[1] + z[1]; p = y[1] + p*p*v[1]; /* norm(x) */ if (maxnorm >= 0) { if (flag == min_FIRST) { gel(res,2) = gerepileupto(av, ZM_zc_mul(u,x)); av = avma; gel(res,1) = gerepileupto(av, ground(dbltor(p))); return res; } if (p > maxnorm) maxnorm = p; } else { pari_sp av2 = avma; gnorme = ground(dbltor(p)); if (gcmp(gnorme,BORNE) >= 0) avma = av2; else { BOUND=gtodouble(gnorme)+eps; s=0; affii(gnorme,BORNE); avma = av1; if (flag == min_PERF) invp = matid(maxrank); } } s++; switch(flag) { case min_ALL: if (s<=maxrank) { p1 = new_chunk(n+1); gel(L,s) = p1; for (i=1; i<=n; i++) p1[i] = x[i]; } break; case min_VECSMALL: { ulong norm = (ulong)(p + 0.5); res[norm]++; } break; case min_VECSMALL2: { ulong norm = (ulong)(p + 0.5); if ((norm&1) == 0) res[norm>>1]++; } break; case min_PERF: { long I=1; pari_sp av2=avma; for (i=1; i<=n; i++) for (j=i; j<=n; j++,I++) V[I] = x[i]*x[j]; if (! addcolumntomatrix(V,invp,L)) { if (DEBUGLEVEL>1) { fprintferr("."); flusherr(); } s--; avma=av2; continue; } if (DEBUGLEVEL>1) { fprintferr("*"); flusherr(); } if (s == maxrank) { if (DEBUGLEVEL>1) { fprintferr("\n"); flusherr(); } avma=av0; return stoi(s); } if (low_stack(lim, stack_lim(av1,1))) { if(DEBUGMEM>1) err(warnmem,"minim0, rank>=%ld",s); invp = gerepilecopy(av1, invp); } } } } switch(flag) { case min_FIRST: avma=av0; return cgetg(1,t_VEC); case min_VECSMALL: case min_VECSMALL2: avma=av; return res; case min_PERF: if (DEBUGLEVEL>1) { fprintferr("\n"); flusherr(); } avma=av0; return stoi(s); } k = min(s,maxrank); r = (maxnorm >= 0) ? ground(dbltor(maxnorm)): BORNE; L[0] = evaltyp(t_MAT) | evallg(k + 1); for (j=1; j<=k; j++) gel(L,j) = ZM_zc_mul(u, gel(L,j)); gerepileall(av, 2, &r, &L); gel(res,1) = stoi(s<<1); gel(res,2) = r; gel(res,3) = L; return res;}
char buffer[256];
void canonical_input( struct termios *tp ){ char c, first_time = TRUE; printf( "\nTesting canonical input\n\n" ); printf( "Setting line to canonical input mode.\n" ); tp->c_lflag = ISIG | ICANON | ECHO | ECHONL | ECHOK | ECHOE | ECHOPRT | ECHOCTL | IEXTEN; tp->c_iflag = BRKINT | ICRNL | IXON | IMAXBEL; if( tcsetattr( fileno( stdin ), TCSADRAIN, tp ) < 0 ) { perror( "canonical_input(): tcsetattr() failed" ); exit( 1 ); } while ( ( c = getchar () ) != '\n'); printf( "Testing getchar(). Type some text followed by carriage return\n" ); printf( "Each character you entered will be echoed back to you\n\n" ); while ( ( c = getchar () ) != '\n') { if( first_time ) { printf( "\nYou typed:\n"); first_time = FALSE; } printf( "%c", c ); } printf( "\n\nCanonical input test done.\n" );}
if (N==1) { S=cgetg(2,t_VEC); S[1]=(long)polx[v0]; return S; }
if (N==1) return _vec(polx[v0]);
conjugates(GEN pol){ long av,tetpil,N,i,j,pp,bound_primes,nbprimes,longT,v0,flL,f,longTnew,*tab,nop; GEN T,S,p1,p2,p,dpol,modunp,polp,xbar,frobp,frob,d,B,nf; byteptr di; if (DEBUGLEVEL>2){ fprintferr("** Entree dans conjugates\n"); flusherr(); } if (typ(pol)==t_POL) nf = NULL; else { nf = checknf(pol); pol=(GEN)nf[1]; } av=avma; N=deg(pol); v0=varn(pol); if (N==1) { S=cgetg(2,t_VEC); S[1]=(long)polx[v0]; return S; } if (N==2) { S=cgetg(3,t_VEC); S[1]=(long)polx[v0]; S[2]=lsub(gneg(polx[v0]),(GEN)pol[3]); tetpil=avma; return gerepile(av,tetpil,gcopy(S)); } dpol=absi(discsr(pol)); if (DEBUGLEVEL>2) { fprintferr("discriminant du polynome: "); outerr(dpol); } d = nf? (GEN)nf[4]: compute_denom(dpol); if (DEBUGLEVEL>2) { fprintferr("facteur carre du discriminant: "); outerr(d); } B=compute_bound_for_lift(pol,dpol,d); if (DEBUGLEVEL>2) { fprintferr("borne pour les lifts: "); outerr(B); } /* sous GRH il faut en fait 3.47*log(dpol) */ p1=gfloor(glog(dpol,DEFAULTPREC)); bound_primes=itos(p1); if (DEBUGLEVEL>2) { fprintferr("borne pour les premiers: %ld\n",bound_primes); flusherr(); } nbprimes=itos(gfloor(gmul(dbltor(1.25506), gdiv(p1,glog(p1,DEFAULTPREC))))); if (DEBUGLEVEL>2) { fprintferr("borne pour le nombre de premiers: %ld\n",nbprimes); flusherr(); } S=cgetg(nbprimes+1,t_VEC); di=diffptr; pp=*di; i=0; while (pp<=bound_primes) { if (smodis(dpol,pp)) { i++; S[i]=lstoi(pp); } pp = pp + (*(++di)); } for (j=i+1; j<=nbprimes; j++) S[j]=zero; nbprimes=i; tab=new_chunk(nbprimes+1); for (i=1; i<=nbprimes; i++) tab[i]=0; if (DEBUGLEVEL>2) { fprintferr("nombre de premiers: %ld\n",nbprimes); fprintferr("table des premiers: "); outerr(S); } T=cgetg(N+1,t_VEC); T[1]=(long)polx[v0]; for (i=2; i<=N; i++) T[i]=zero; longT=1; if (DEBUGLEVEL>2) { fprintferr("table initiale: "); outerr(T); } for(;;) { do { do { nop = 1+itos(shifti(mulss(mymyrand(),nbprimes),-(BITS_IN_RANDOM-1))); } while (tab[nop]); tab[nop]=1; p=(GEN)S[nop]; if (DEBUGLEVEL>2) { fprintferr("\nnombre premier: "); outerr(p); } modunp=gmodulsg(1,p); polp=gmul(modunp,pol); xbar=gmodulcp(gmul(polx[v0],modunp),polp); frobp=gpui(xbar,p,4); if (DEBUGLEVEL>2) { fprintferr("frobenius mod p: "); outerr(frobp); } flL=isinlistmodp(T,longT,frobp,p); if (DEBUGLEVEL>2){ fprintferr("flL: %ld\n",flL); flusherr(); } } while (flL); f=minimalexponent(T,longT,frobp,p,N); if (DEBUGLEVEL>2){ fprintferr("exposant minimum: %ld\n",f); flusherr(); } frob=frobenius(pol,frobp,p,B,d); if (DEBUGLEVEL>2) { fprintferr("frobenius: "); outerr(frob); }/* Ce passage n'est vrai que si le corps est abelien !! */ longTnew=longT; p2=gmodulcp(frob,pol); for (i=1; i<=longTnew; i++) for (j=1; j<f; j++) { p1=lift(gsubst((GEN)T[i],v0,gpuigs(p2,j))); if (DEBUGLEVEL>2) { fprintferr("test de la puissance (%ld,%ld): ",i,j); outerr(p1); } if (!isinlist(T,longTnew,p1)) { longT++; T[longT]=(long)p1; if (longT==N) { if (DEBUGLEVEL>2) { fprintferr("** Sortie de conjugates\n"); flusherr(); } tetpil=avma; return gerepile(av,tetpil,gcopy(T)); } } } if (DEBUGLEVEL>2) { fprintferr("nouvelle table: "); outerr(T); } }}
for (i=1; i<=n; i++)
for (i=1+(j==1); i<=n; i++)
mathilbert(long n) /* Hilbert matrix of order n */{ long i,j; GEN a,p; if (n<0) n = 0; p = cgetg(n+1,t_MAT); for (j=1; j<=n; j++) { p[j]=lgetg(n+1,t_COL); for (i=1; i<=n; i++) { a=cgetg(3,t_FRAC); a[1]=un; a[2]=lstoi(i+j-1); coeff(p,i,j)=(long)a; } } return p;}
if ( n ) mael(p,1,1)=un;
mathilbert(long n) /* Hilbert matrix of order n */{ long i,j; GEN a,p; if (n<0) n = 0; p = cgetg(n+1,t_MAT); for (j=1; j<=n; j++) { p[j]=lgetg(n+1,t_COL); for (i=1; i<=n; i++) { a=cgetg(3,t_FRAC); a[1]=un; a[2]=lstoi(i+j-1); coeff(p,i,j)=(long)a; } } return p;}
case PPC_604r:
int mpc60x_vector_is_valid(rtems_vector vector){ switch (current_ppc_cpu) { case PPC_7400: case PPC_750: if (!mpc750_vector_is_valid(vector)) { return 0; } break; case PPC_604: case PPC_604e: /* case PPC_604r: -- same value as PPC_750 */ if (!mpc604_vector_is_valid(vector)) { return 0; } break; case PPC_603: case PPC_603e: case PPC_603ev: if (!mpc603_vector_is_valid(vector)) { return 0; } break; default: printk("Please complete libcpu/powerpc/mpc6xx/raw_exception.c\n"); printk("current_ppc_cpu = %x\n", current_ppc_cpu); return 0; } return 1;}
printk("Please complete libcpu/powerpc/mpc6xx/raw_exception.c\n");
printk("Please complete libcpu/powerpc/mpc6xx/exceptions/raw_exception.c\n");
int mpc60x_vector_is_valid(rtems_vector vector){ switch (current_ppc_cpu) { case PPC_7400: case PPC_750: if (!mpc750_vector_is_valid(vector)) { return 0; } break; case PPC_604: case PPC_604e: /* case PPC_604r: -- same value as PPC_750 */ if (!mpc604_vector_is_valid(vector)) { return 0; } break; case PPC_603: case PPC_603e: case PPC_603ev: if (!mpc603_vector_is_valid(vector)) { return 0; } break; default: printk("Please complete libcpu/powerpc/mpc6xx/raw_exception.c\n"); printk("current_ppc_cpu = %x\n", current_ppc_cpu); return 0; } return 1;}
printk("Please complete libcpu/powerpc/XXX/raw_exception.c\n");
switch(vector) { case ASM_RESET_VECTOR: case ASM_MACH_VECTOR: case ASM_PROT_VECTOR: case ASM_ISI_VECTOR: case ASM_EXT_VECTOR: case ASM_ALIGN_VECTOR: case ASM_PROG_VECTOR: case ASM_FLOAT_VECTOR: case ASM_DEC_VECTOR: case ASM_SYS_VECTOR: case ASM_TRACE_VECTOR: case ASM_PERFMON_VECTOR: return 1; case ASM_IMISS_VECTOR: case ASM_DLMISS_VECTOR: case ASM_DSMISS_VECTOR: return 0; case ASM_ADDR_VECTOR: case ASM_SYSMGMT_VECTOR: return 1; case ASM_ITM_VECTOR: return 0; }
int mpc604_vector_is_valid(rtems_vector vector){ /* * Please fill this for MVME2307 */ printk("Please complete libcpu/powerpc/XXX/raw_exception.c\n"); return 0;}
GEN q, bas, invbas, mul, dK, nf, fa, g, e, dx = absi(ZX_disc(x));
GEN q, bas, invbas, mul, dK, nf, g, e, dx = absi(ZX_disc(x));
padicff(GEN x,GEN p,long pr){ pari_sp av = avma; GEN q, bas, invbas, mul, dK, nf, fa, g, e, dx = absi(ZX_disc(x)); long n = degpol(x), v = Z_pvalrem(dx,p,&q); nf = cgetg(10,t_VEC); nf[1] = (long)x; if (is_pm1(q)) { e = mkcol(utoi(v)); g = mkcol(p); } else { e = mkcol2(stoi(v), gen_1); g = mkcol2(p, q); } fa = cgetg(3,t_MAT); fa[1] = (long)g; fa[2] = (long)e; bas = nfbasis(x, &dK, 0, fa); nf[3] = (long)dK; nf[4] = dvdii( diviiexact(dx, dK), p )? (long)p: (long)gen_1; invbas = QM_inv(RgXV_to_RgM(bas,n), gen_1); mul = get_mul_table(x,bas,invbas); nf[7]=(long)bas; nf[8]=(long)invbas; nf[9]=(long)mul; nf[2]=nf[5]=nf[6]= (long)gen_0; return gerepileupto(av,padicff2(nf,p,pr));}
e = mkcol2(stoi(v), gen_1);
e = mkcol2(utoi(v), gen_1);
padicff(GEN x,GEN p,long pr){ pari_sp av = avma; GEN q, bas, invbas, mul, dK, nf, fa, g, e, dx = absi(ZX_disc(x)); long n = degpol(x), v = Z_pvalrem(dx,p,&q); nf = cgetg(10,t_VEC); nf[1] = (long)x; if (is_pm1(q)) { e = mkcol(utoi(v)); g = mkcol(p); } else { e = mkcol2(stoi(v), gen_1); g = mkcol2(p, q); } fa = cgetg(3,t_MAT); fa[1] = (long)g; fa[2] = (long)e; bas = nfbasis(x, &dK, 0, fa); nf[3] = (long)dK; nf[4] = dvdii( diviiexact(dx, dK), p )? (long)p: (long)gen_1; invbas = QM_inv(RgXV_to_RgM(bas,n), gen_1); mul = get_mul_table(x,bas,invbas); nf[7]=(long)bas; nf[8]=(long)invbas; nf[9]=(long)mul; nf[2]=nf[5]=nf[6]= (long)gen_0; return gerepileupto(av,padicff2(nf,p,pr));}
fa = cgetg(3,t_MAT); fa[1] = (long)g; fa[2] = (long)e; bas = nfbasis(x, &dK, 0, fa);
bas = nfbasis(x, &dK, 0, mkmat2(g,e));
padicff(GEN x,GEN p,long pr){ pari_sp av = avma; GEN q, bas, invbas, mul, dK, nf, fa, g, e, dx = absi(ZX_disc(x)); long n = degpol(x), v = Z_pvalrem(dx,p,&q); nf = cgetg(10,t_VEC); nf[1] = (long)x; if (is_pm1(q)) { e = mkcol(utoi(v)); g = mkcol(p); } else { e = mkcol2(stoi(v), gen_1); g = mkcol2(p, q); } fa = cgetg(3,t_MAT); fa[1] = (long)g; fa[2] = (long)e; bas = nfbasis(x, &dK, 0, fa); nf[3] = (long)dK; nf[4] = dvdii( diviiexact(dx, dK), p )? (long)p: (long)gen_1; invbas = QM_inv(RgXV_to_RgM(bas,n), gen_1); mul = get_mul_table(x,bas,invbas); nf[7]=(long)bas; nf[8]=(long)invbas; nf[9]=(long)mul; nf[2]=nf[5]=nf[6]= (long)gen_0; return gerepileupto(av,padicff2(nf,p,pr));}
top_of_used_memory = (rtems_unsigned32) &end + 0x1000;
top_of_used_memory = (uint32_t) &end + 0x1000;
int rx_boot_card( int argc, char **argv, char **environp){ extern int end; top_of_used_memory = (rtems_unsigned32) &end + 0x1000; if ((argc > 0) && argv && argv[0]) rtems_progname = argv[0]; else rtems_progname = "RTEMS/RP"; boot_card(argc, argv);}
long group,omax;
long group;
galoisanalysis(GEN T, struct galois_analysis *ga, long calcul_l){ ulong ltop=avma; long n,p; long i; long group,omax; /*TODO: complete the table to at least 200*/ const int prim_nonss_orders[]={36,48,56,60,72,75,80,96,108,0}; GEN F,Fp,Fe,Fpe,O; long np; long order,phi_order; long plift,nbmax,nbtest,deg; byteptr primepointer,pp; if (DEBUGLEVEL >= 1) timer2(); n = degree(T); O = cgetg(n+1,t_VECSMALL); for(i=1;i<=n;i++) O[i]=0; F = factor(stoi(n)); Fp=vectosmall((GEN)F[1]); Fe=vectosmall((GEN)F[2]); np=lg(Fp)-1; Fpe=cgetg(lg(Fp), t_VECSMALL); for (i = 1; i < lg(Fpe); i++) Fpe[i] = itos(powgi(gmael(F,1,i), gmael(F,2,i))); /*In this part, we study the cardinal of the group to have an information about the orders, so if we are unlucky we can continue.*/ /*Are there non WSS groups of this order ?*/ group=0; for(i=0;prim_nonss_orders[i];i++) if (n%prim_nonss_orders[i] == 0) group |= ga_non_wss; if ( n>12 && n%12 == 0 ) { /*We need to know the greatest prime dividing n/12*/ if ( Fp[np] == 3 && Fe[np] == 1 ) group |= ga_ext_2; } phi_order = 1; order = 1; for (i = np; i > 0; i--) { p = Fp[i]; if (phi_order % p != 0) { order *= p; phi_order *= p - 1; } else { group |= ga_all_normal; break; } if (Fe[i]>1) break; } /*Now, we study the orders of the Frobenius elements*/ plift = 0; omax=0; nbmax = 8+(n>>1); nbtest = 0; deg = 0; for (p = 0, pp = primepointer = diffptr; (plift == 0 || (nbtest < nbmax && order != n && (nbtest <=8 || order != (n>>1))) || (n == 24 && O[6] == 0 && O[4] == 0)) && (nbtest < 3 * nbmax || (!(group&ga_non_wss) && n%12 ) ) ;) { ulong av; long prime_incr; GEN ip,FS,p1; long o,norm_o; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; /*discard small primes*/ if (p <= (n << 1)) continue; ip=stoi(p); if (!Fp_is_squarefree(T,ip)) continue; nbtest++; av=avma; FS=(GEN)simplefactmod(T,ip)[1]; p1=(GEN)FS[1]; for(i=2;i<lg(FS);i++) if (cmpii(p1,(GEN)FS[i])) break; if (i<lg(FS)) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } o=n/(lg(FS)-1); avma=av; if (!O[o]) O[o]=p; if (DEBUGLEVEL >= 6) fprintferr("GaloisAnalysis:Nbtest=%ld,p=%ld,o=%ld,plift=%ld,ord=%ld\n", nbtest, p, o, plift, order); if (o > omax) omax = o; if (o >= order) { /*We try to find a power of the Frobenius which generate a normal subgroup just by looking at the order.*/ if (o * Fp[1] >= n) /*Subgroup of smallest index are normal*/ norm_o = o; else { norm_o = 1; for (i = np; i > 0; i--) { if (o % Fpe[i] == 0) norm_o *= Fpe[i]; else break; } } if (norm_o != 1) { if (!(group&ga_all_normal) || o > order || (o == order && (plift == 0 || norm_o > deg))) { deg = norm_o; order = o; plift = p; pp = primepointer; group |= ga_all_normal; } } else if (!(group&ga_all_normal) && (plift == 0 || o > order)) { deg = Fp[np]; order = o; plift = p; pp = primepointer; } } } /* This is to avoid looping on non-wss group. To be completed*/ if (plift == 0 || /*I am not 100% sure of this one, at least it is right for n<=72*/ (n > 24 && n%12 == 0 && Fp[np]==3 && !O[6]) || ((group&ga_non_wss) && omax == Fp[np])) { deg = 0; err(warner, "Galois group almost certainly not weakly super solvable"); } if (calcul_l && !O[1]) { ulong av; long prime_incr; long l=0; /*we need a totally splited prime l*/ av = avma; while (l == 0) { long nb; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; nb=FpX_nbroots(T,stoi(p)); if (nb == n) l = p; else if (nb && Fp_is_squarefree(T,stoi(p))) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } avma = av; } O[1]=l; } ga->p = plift; ga->group = group; ga->deg = deg; ga->ord = order; ga->l = O[1]; ga->primepointer = pp; ga->ppp = Fp[1]; ga->p4 = O[4]; if (DEBUGLEVEL >= 4) fprintferr("GaloisAnalysis:p=%ld l=%ld group=%ld deg=%ld ord=%ld\n", p, O[1], group, deg, order); if (DEBUGLEVEL >= 1) msgtimer("galoisanalysis()"); avma = ltop;}
Fpe=cgetg(lg(Fp), t_VECSMALL);
Fpe=cgetg(np+1, t_VECSMALL);
galoisanalysis(GEN T, struct galois_analysis *ga, long calcul_l){ ulong ltop=avma; long n,p; long i; long group,omax; /*TODO: complete the table to at least 200*/ const int prim_nonss_orders[]={36,48,56,60,72,75,80,96,108,0}; GEN F,Fp,Fe,Fpe,O; long np; long order,phi_order; long plift,nbmax,nbtest,deg; byteptr primepointer,pp; if (DEBUGLEVEL >= 1) timer2(); n = degree(T); O = cgetg(n+1,t_VECSMALL); for(i=1;i<=n;i++) O[i]=0; F = factor(stoi(n)); Fp=vectosmall((GEN)F[1]); Fe=vectosmall((GEN)F[2]); np=lg(Fp)-1; Fpe=cgetg(lg(Fp), t_VECSMALL); for (i = 1; i < lg(Fpe); i++) Fpe[i] = itos(powgi(gmael(F,1,i), gmael(F,2,i))); /*In this part, we study the cardinal of the group to have an information about the orders, so if we are unlucky we can continue.*/ /*Are there non WSS groups of this order ?*/ group=0; for(i=0;prim_nonss_orders[i];i++) if (n%prim_nonss_orders[i] == 0) group |= ga_non_wss; if ( n>12 && n%12 == 0 ) { /*We need to know the greatest prime dividing n/12*/ if ( Fp[np] == 3 && Fe[np] == 1 ) group |= ga_ext_2; } phi_order = 1; order = 1; for (i = np; i > 0; i--) { p = Fp[i]; if (phi_order % p != 0) { order *= p; phi_order *= p - 1; } else { group |= ga_all_normal; break; } if (Fe[i]>1) break; } /*Now, we study the orders of the Frobenius elements*/ plift = 0; omax=0; nbmax = 8+(n>>1); nbtest = 0; deg = 0; for (p = 0, pp = primepointer = diffptr; (plift == 0 || (nbtest < nbmax && order != n && (nbtest <=8 || order != (n>>1))) || (n == 24 && O[6] == 0 && O[4] == 0)) && (nbtest < 3 * nbmax || (!(group&ga_non_wss) && n%12 ) ) ;) { ulong av; long prime_incr; GEN ip,FS,p1; long o,norm_o; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; /*discard small primes*/ if (p <= (n << 1)) continue; ip=stoi(p); if (!Fp_is_squarefree(T,ip)) continue; nbtest++; av=avma; FS=(GEN)simplefactmod(T,ip)[1]; p1=(GEN)FS[1]; for(i=2;i<lg(FS);i++) if (cmpii(p1,(GEN)FS[i])) break; if (i<lg(FS)) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } o=n/(lg(FS)-1); avma=av; if (!O[o]) O[o]=p; if (DEBUGLEVEL >= 6) fprintferr("GaloisAnalysis:Nbtest=%ld,p=%ld,o=%ld,plift=%ld,ord=%ld\n", nbtest, p, o, plift, order); if (o > omax) omax = o; if (o >= order) { /*We try to find a power of the Frobenius which generate a normal subgroup just by looking at the order.*/ if (o * Fp[1] >= n) /*Subgroup of smallest index are normal*/ norm_o = o; else { norm_o = 1; for (i = np; i > 0; i--) { if (o % Fpe[i] == 0) norm_o *= Fpe[i]; else break; } } if (norm_o != 1) { if (!(group&ga_all_normal) || o > order || (o == order && (plift == 0 || norm_o > deg))) { deg = norm_o; order = o; plift = p; pp = primepointer; group |= ga_all_normal; } } else if (!(group&ga_all_normal) && (plift == 0 || o > order)) { deg = Fp[np]; order = o; plift = p; pp = primepointer; } } } /* This is to avoid looping on non-wss group. To be completed*/ if (plift == 0 || /*I am not 100% sure of this one, at least it is right for n<=72*/ (n > 24 && n%12 == 0 && Fp[np]==3 && !O[6]) || ((group&ga_non_wss) && omax == Fp[np])) { deg = 0; err(warner, "Galois group almost certainly not weakly super solvable"); } if (calcul_l && !O[1]) { ulong av; long prime_incr; long l=0; /*we need a totally splited prime l*/ av = avma; while (l == 0) { long nb; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; nb=FpX_nbroots(T,stoi(p)); if (nb == n) l = p; else if (nb && Fp_is_squarefree(T,stoi(p))) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } avma = av; } O[1]=l; } ga->p = plift; ga->group = group; ga->deg = deg; ga->ord = order; ga->l = O[1]; ga->primepointer = pp; ga->ppp = Fp[1]; ga->p4 = O[4]; if (DEBUGLEVEL >= 4) fprintferr("GaloisAnalysis:p=%ld l=%ld group=%ld deg=%ld ord=%ld\n", p, O[1], group, deg, order); if (DEBUGLEVEL >= 1) msgtimer("galoisanalysis()"); avma = ltop;}
omax=0;
galoisanalysis(GEN T, struct galois_analysis *ga, long calcul_l){ ulong ltop=avma; long n,p; long i; long group,omax; /*TODO: complete the table to at least 200*/ const int prim_nonss_orders[]={36,48,56,60,72,75,80,96,108,0}; GEN F,Fp,Fe,Fpe,O; long np; long order,phi_order; long plift,nbmax,nbtest,deg; byteptr primepointer,pp; if (DEBUGLEVEL >= 1) timer2(); n = degree(T); O = cgetg(n+1,t_VECSMALL); for(i=1;i<=n;i++) O[i]=0; F = factor(stoi(n)); Fp=vectosmall((GEN)F[1]); Fe=vectosmall((GEN)F[2]); np=lg(Fp)-1; Fpe=cgetg(lg(Fp), t_VECSMALL); for (i = 1; i < lg(Fpe); i++) Fpe[i] = itos(powgi(gmael(F,1,i), gmael(F,2,i))); /*In this part, we study the cardinal of the group to have an information about the orders, so if we are unlucky we can continue.*/ /*Are there non WSS groups of this order ?*/ group=0; for(i=0;prim_nonss_orders[i];i++) if (n%prim_nonss_orders[i] == 0) group |= ga_non_wss; if ( n>12 && n%12 == 0 ) { /*We need to know the greatest prime dividing n/12*/ if ( Fp[np] == 3 && Fe[np] == 1 ) group |= ga_ext_2; } phi_order = 1; order = 1; for (i = np; i > 0; i--) { p = Fp[i]; if (phi_order % p != 0) { order *= p; phi_order *= p - 1; } else { group |= ga_all_normal; break; } if (Fe[i]>1) break; } /*Now, we study the orders of the Frobenius elements*/ plift = 0; omax=0; nbmax = 8+(n>>1); nbtest = 0; deg = 0; for (p = 0, pp = primepointer = diffptr; (plift == 0 || (nbtest < nbmax && order != n && (nbtest <=8 || order != (n>>1))) || (n == 24 && O[6] == 0 && O[4] == 0)) && (nbtest < 3 * nbmax || (!(group&ga_non_wss) && n%12 ) ) ;) { ulong av; long prime_incr; GEN ip,FS,p1; long o,norm_o; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; /*discard small primes*/ if (p <= (n << 1)) continue; ip=stoi(p); if (!Fp_is_squarefree(T,ip)) continue; nbtest++; av=avma; FS=(GEN)simplefactmod(T,ip)[1]; p1=(GEN)FS[1]; for(i=2;i<lg(FS);i++) if (cmpii(p1,(GEN)FS[i])) break; if (i<lg(FS)) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } o=n/(lg(FS)-1); avma=av; if (!O[o]) O[o]=p; if (DEBUGLEVEL >= 6) fprintferr("GaloisAnalysis:Nbtest=%ld,p=%ld,o=%ld,plift=%ld,ord=%ld\n", nbtest, p, o, plift, order); if (o > omax) omax = o; if (o >= order) { /*We try to find a power of the Frobenius which generate a normal subgroup just by looking at the order.*/ if (o * Fp[1] >= n) /*Subgroup of smallest index are normal*/ norm_o = o; else { norm_o = 1; for (i = np; i > 0; i--) { if (o % Fpe[i] == 0) norm_o *= Fpe[i]; else break; } } if (norm_o != 1) { if (!(group&ga_all_normal) || o > order || (o == order && (plift == 0 || norm_o > deg))) { deg = norm_o; order = o; plift = p; pp = primepointer; group |= ga_all_normal; } } else if (!(group&ga_all_normal) && (plift == 0 || o > order)) { deg = Fp[np]; order = o; plift = p; pp = primepointer; } } } /* This is to avoid looping on non-wss group. To be completed*/ if (plift == 0 || /*I am not 100% sure of this one, at least it is right for n<=72*/ (n > 24 && n%12 == 0 && Fp[np]==3 && !O[6]) || ((group&ga_non_wss) && omax == Fp[np])) { deg = 0; err(warner, "Galois group almost certainly not weakly super solvable"); } if (calcul_l && !O[1]) { ulong av; long prime_incr; long l=0; /*we need a totally splited prime l*/ av = avma; while (l == 0) { long nb; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; nb=FpX_nbroots(T,stoi(p)); if (nb == n) l = p; else if (nb && Fp_is_squarefree(T,stoi(p))) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } avma = av; } O[1]=l; } ga->p = plift; ga->group = group; ga->deg = deg; ga->ord = order; ga->l = O[1]; ga->primepointer = pp; ga->ppp = Fp[1]; ga->p4 = O[4]; if (DEBUGLEVEL >= 4) fprintferr("GaloisAnalysis:p=%ld l=%ld group=%ld deg=%ld ord=%ld\n", p, O[1], group, deg, order); if (DEBUGLEVEL >= 1) msgtimer("galoisanalysis()"); avma = ltop;}
long o,norm_o;
long o,norm_o=1;
galoisanalysis(GEN T, struct galois_analysis *ga, long calcul_l){ ulong ltop=avma; long n,p; long i; long group,omax; /*TODO: complete the table to at least 200*/ const int prim_nonss_orders[]={36,48,56,60,72,75,80,96,108,0}; GEN F,Fp,Fe,Fpe,O; long np; long order,phi_order; long plift,nbmax,nbtest,deg; byteptr primepointer,pp; if (DEBUGLEVEL >= 1) timer2(); n = degree(T); O = cgetg(n+1,t_VECSMALL); for(i=1;i<=n;i++) O[i]=0; F = factor(stoi(n)); Fp=vectosmall((GEN)F[1]); Fe=vectosmall((GEN)F[2]); np=lg(Fp)-1; Fpe=cgetg(lg(Fp), t_VECSMALL); for (i = 1; i < lg(Fpe); i++) Fpe[i] = itos(powgi(gmael(F,1,i), gmael(F,2,i))); /*In this part, we study the cardinal of the group to have an information about the orders, so if we are unlucky we can continue.*/ /*Are there non WSS groups of this order ?*/ group=0; for(i=0;prim_nonss_orders[i];i++) if (n%prim_nonss_orders[i] == 0) group |= ga_non_wss; if ( n>12 && n%12 == 0 ) { /*We need to know the greatest prime dividing n/12*/ if ( Fp[np] == 3 && Fe[np] == 1 ) group |= ga_ext_2; } phi_order = 1; order = 1; for (i = np; i > 0; i--) { p = Fp[i]; if (phi_order % p != 0) { order *= p; phi_order *= p - 1; } else { group |= ga_all_normal; break; } if (Fe[i]>1) break; } /*Now, we study the orders of the Frobenius elements*/ plift = 0; omax=0; nbmax = 8+(n>>1); nbtest = 0; deg = 0; for (p = 0, pp = primepointer = diffptr; (plift == 0 || (nbtest < nbmax && order != n && (nbtest <=8 || order != (n>>1))) || (n == 24 && O[6] == 0 && O[4] == 0)) && (nbtest < 3 * nbmax || (!(group&ga_non_wss) && n%12 ) ) ;) { ulong av; long prime_incr; GEN ip,FS,p1; long o,norm_o; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; /*discard small primes*/ if (p <= (n << 1)) continue; ip=stoi(p); if (!Fp_is_squarefree(T,ip)) continue; nbtest++; av=avma; FS=(GEN)simplefactmod(T,ip)[1]; p1=(GEN)FS[1]; for(i=2;i<lg(FS);i++) if (cmpii(p1,(GEN)FS[i])) break; if (i<lg(FS)) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } o=n/(lg(FS)-1); avma=av; if (!O[o]) O[o]=p; if (DEBUGLEVEL >= 6) fprintferr("GaloisAnalysis:Nbtest=%ld,p=%ld,o=%ld,plift=%ld,ord=%ld\n", nbtest, p, o, plift, order); if (o > omax) omax = o; if (o >= order) { /*We try to find a power of the Frobenius which generate a normal subgroup just by looking at the order.*/ if (o * Fp[1] >= n) /*Subgroup of smallest index are normal*/ norm_o = o; else { norm_o = 1; for (i = np; i > 0; i--) { if (o % Fpe[i] == 0) norm_o *= Fpe[i]; else break; } } if (norm_o != 1) { if (!(group&ga_all_normal) || o > order || (o == order && (plift == 0 || norm_o > deg))) { deg = norm_o; order = o; plift = p; pp = primepointer; group |= ga_all_normal; } } else if (!(group&ga_all_normal) && (plift == 0 || o > order)) { deg = Fp[np]; order = o; plift = p; pp = primepointer; } } } /* This is to avoid looping on non-wss group. To be completed*/ if (plift == 0 || /*I am not 100% sure of this one, at least it is right for n<=72*/ (n > 24 && n%12 == 0 && Fp[np]==3 && !O[6]) || ((group&ga_non_wss) && omax == Fp[np])) { deg = 0; err(warner, "Galois group almost certainly not weakly super solvable"); } if (calcul_l && !O[1]) { ulong av; long prime_incr; long l=0; /*we need a totally splited prime l*/ av = avma; while (l == 0) { long nb; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; nb=FpX_nbroots(T,stoi(p)); if (nb == n) l = p; else if (nb && Fp_is_squarefree(T,stoi(p))) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } avma = av; } O[1]=l; } ga->p = plift; ga->group = group; ga->deg = deg; ga->ord = order; ga->l = O[1]; ga->primepointer = pp; ga->ppp = Fp[1]; ga->p4 = O[4]; if (DEBUGLEVEL >= 4) fprintferr("GaloisAnalysis:p=%ld l=%ld group=%ld deg=%ld ord=%ld\n", p, O[1], group, deg, order); if (DEBUGLEVEL >= 1) msgtimer("galoisanalysis()"); avma = ltop;}
if (DEBUGLEVEL >= 6) fprintferr("GaloisAnalysis:Nbtest=%ld,p=%ld,o=%ld,plift=%ld,ord=%ld\n", nbtest, p, o, plift, order); if (o > omax) omax = o; if (o >= order) { if (o * Fp[1] >= n) norm_o = o; else
if (o % order == 0) { if (o * Fp[1] >= n) norm_o = o; else { norm_o = 1; for (i = np; i > 0; i--)
galoisanalysis(GEN T, struct galois_analysis *ga, long calcul_l){ ulong ltop=avma; long n,p; long i; long group,omax; /*TODO: complete the table to at least 200*/ const int prim_nonss_orders[]={36,48,56,60,72,75,80,96,108,0}; GEN F,Fp,Fe,Fpe,O; long np; long order,phi_order; long plift,nbmax,nbtest,deg; byteptr primepointer,pp; if (DEBUGLEVEL >= 1) timer2(); n = degree(T); O = cgetg(n+1,t_VECSMALL); for(i=1;i<=n;i++) O[i]=0; F = factor(stoi(n)); Fp=vectosmall((GEN)F[1]); Fe=vectosmall((GEN)F[2]); np=lg(Fp)-1; Fpe=cgetg(lg(Fp), t_VECSMALL); for (i = 1; i < lg(Fpe); i++) Fpe[i] = itos(powgi(gmael(F,1,i), gmael(F,2,i))); /*In this part, we study the cardinal of the group to have an information about the orders, so if we are unlucky we can continue.*/ /*Are there non WSS groups of this order ?*/ group=0; for(i=0;prim_nonss_orders[i];i++) if (n%prim_nonss_orders[i] == 0) group |= ga_non_wss; if ( n>12 && n%12 == 0 ) { /*We need to know the greatest prime dividing n/12*/ if ( Fp[np] == 3 && Fe[np] == 1 ) group |= ga_ext_2; } phi_order = 1; order = 1; for (i = np; i > 0; i--) { p = Fp[i]; if (phi_order % p != 0) { order *= p; phi_order *= p - 1; } else { group |= ga_all_normal; break; } if (Fe[i]>1) break; } /*Now, we study the orders of the Frobenius elements*/ plift = 0; omax=0; nbmax = 8+(n>>1); nbtest = 0; deg = 0; for (p = 0, pp = primepointer = diffptr; (plift == 0 || (nbtest < nbmax && order != n && (nbtest <=8 || order != (n>>1))) || (n == 24 && O[6] == 0 && O[4] == 0)) && (nbtest < 3 * nbmax || (!(group&ga_non_wss) && n%12 ) ) ;) { ulong av; long prime_incr; GEN ip,FS,p1; long o,norm_o; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; /*discard small primes*/ if (p <= (n << 1)) continue; ip=stoi(p); if (!Fp_is_squarefree(T,ip)) continue; nbtest++; av=avma; FS=(GEN)simplefactmod(T,ip)[1]; p1=(GEN)FS[1]; for(i=2;i<lg(FS);i++) if (cmpii(p1,(GEN)FS[i])) break; if (i<lg(FS)) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } o=n/(lg(FS)-1); avma=av; if (!O[o]) O[o]=p; if (DEBUGLEVEL >= 6) fprintferr("GaloisAnalysis:Nbtest=%ld,p=%ld,o=%ld,plift=%ld,ord=%ld\n", nbtest, p, o, plift, order); if (o > omax) omax = o; if (o >= order) { /*We try to find a power of the Frobenius which generate a normal subgroup just by looking at the order.*/ if (o * Fp[1] >= n) /*Subgroup of smallest index are normal*/ norm_o = o; else { norm_o = 1; for (i = np; i > 0; i--) { if (o % Fpe[i] == 0) norm_o *= Fpe[i]; else break; } } if (norm_o != 1) { if (!(group&ga_all_normal) || o > order || (o == order && (plift == 0 || norm_o > deg))) { deg = norm_o; order = o; plift = p; pp = primepointer; group |= ga_all_normal; } } else if (!(group&ga_all_normal) && (plift == 0 || o > order)) { deg = Fp[np]; order = o; plift = p; pp = primepointer; } } } /* This is to avoid looping on non-wss group. To be completed*/ if (plift == 0 || /*I am not 100% sure of this one, at least it is right for n<=72*/ (n > 24 && n%12 == 0 && Fp[np]==3 && !O[6]) || ((group&ga_non_wss) && omax == Fp[np])) { deg = 0; err(warner, "Galois group almost certainly not weakly super solvable"); } if (calcul_l && !O[1]) { ulong av; long prime_incr; long l=0; /*we need a totally splited prime l*/ av = avma; while (l == 0) { long nb; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; nb=FpX_nbroots(T,stoi(p)); if (nb == n) l = p; else if (nb && Fp_is_squarefree(T,stoi(p))) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } avma = av; } O[1]=l; } ga->p = plift; ga->group = group; ga->deg = deg; ga->ord = order; ga->l = O[1]; ga->primepointer = pp; ga->ppp = Fp[1]; ga->p4 = O[4]; if (DEBUGLEVEL >= 4) fprintferr("GaloisAnalysis:p=%ld l=%ld group=%ld deg=%ld ord=%ld\n", p, O[1], group, deg, order); if (DEBUGLEVEL >= 1) msgtimer("galoisanalysis()"); avma = ltop;}
norm_o = 1; for (i = np; i > 0; i--) { if (o % Fpe[i] == 0) norm_o *= Fpe[i]; else break; }
if (o % Fpe[i] == 0) norm_o *= Fpe[i]; else break;
galoisanalysis(GEN T, struct galois_analysis *ga, long calcul_l){ ulong ltop=avma; long n,p; long i; long group,omax; /*TODO: complete the table to at least 200*/ const int prim_nonss_orders[]={36,48,56,60,72,75,80,96,108,0}; GEN F,Fp,Fe,Fpe,O; long np; long order,phi_order; long plift,nbmax,nbtest,deg; byteptr primepointer,pp; if (DEBUGLEVEL >= 1) timer2(); n = degree(T); O = cgetg(n+1,t_VECSMALL); for(i=1;i<=n;i++) O[i]=0; F = factor(stoi(n)); Fp=vectosmall((GEN)F[1]); Fe=vectosmall((GEN)F[2]); np=lg(Fp)-1; Fpe=cgetg(lg(Fp), t_VECSMALL); for (i = 1; i < lg(Fpe); i++) Fpe[i] = itos(powgi(gmael(F,1,i), gmael(F,2,i))); /*In this part, we study the cardinal of the group to have an information about the orders, so if we are unlucky we can continue.*/ /*Are there non WSS groups of this order ?*/ group=0; for(i=0;prim_nonss_orders[i];i++) if (n%prim_nonss_orders[i] == 0) group |= ga_non_wss; if ( n>12 && n%12 == 0 ) { /*We need to know the greatest prime dividing n/12*/ if ( Fp[np] == 3 && Fe[np] == 1 ) group |= ga_ext_2; } phi_order = 1; order = 1; for (i = np; i > 0; i--) { p = Fp[i]; if (phi_order % p != 0) { order *= p; phi_order *= p - 1; } else { group |= ga_all_normal; break; } if (Fe[i]>1) break; } /*Now, we study the orders of the Frobenius elements*/ plift = 0; omax=0; nbmax = 8+(n>>1); nbtest = 0; deg = 0; for (p = 0, pp = primepointer = diffptr; (plift == 0 || (nbtest < nbmax && order != n && (nbtest <=8 || order != (n>>1))) || (n == 24 && O[6] == 0 && O[4] == 0)) && (nbtest < 3 * nbmax || (!(group&ga_non_wss) && n%12 ) ) ;) { ulong av; long prime_incr; GEN ip,FS,p1; long o,norm_o; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; /*discard small primes*/ if (p <= (n << 1)) continue; ip=stoi(p); if (!Fp_is_squarefree(T,ip)) continue; nbtest++; av=avma; FS=(GEN)simplefactmod(T,ip)[1]; p1=(GEN)FS[1]; for(i=2;i<lg(FS);i++) if (cmpii(p1,(GEN)FS[i])) break; if (i<lg(FS)) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } o=n/(lg(FS)-1); avma=av; if (!O[o]) O[o]=p; if (DEBUGLEVEL >= 6) fprintferr("GaloisAnalysis:Nbtest=%ld,p=%ld,o=%ld,plift=%ld,ord=%ld\n", nbtest, p, o, plift, order); if (o > omax) omax = o; if (o >= order) { /*We try to find a power of the Frobenius which generate a normal subgroup just by looking at the order.*/ if (o * Fp[1] >= n) /*Subgroup of smallest index are normal*/ norm_o = o; else { norm_o = 1; for (i = np; i > 0; i--) { if (o % Fpe[i] == 0) norm_o *= Fpe[i]; else break; } } if (norm_o != 1) { if (!(group&ga_all_normal) || o > order || (o == order && (plift == 0 || norm_o > deg))) { deg = norm_o; order = o; plift = p; pp = primepointer; group |= ga_all_normal; } } else if (!(group&ga_all_normal) && (plift == 0 || o > order)) { deg = Fp[np]; order = o; plift = p; pp = primepointer; } } } /* This is to avoid looping on non-wss group. To be completed*/ if (plift == 0 || /*I am not 100% sure of this one, at least it is right for n<=72*/ (n > 24 && n%12 == 0 && Fp[np]==3 && !O[6]) || ((group&ga_non_wss) && omax == Fp[np])) { deg = 0; err(warner, "Galois group almost certainly not weakly super solvable"); } if (calcul_l && !O[1]) { ulong av; long prime_incr; long l=0; /*we need a totally splited prime l*/ av = avma; while (l == 0) { long nb; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; nb=FpX_nbroots(T,stoi(p)); if (nb == n) l = p; else if (nb && Fp_is_squarefree(T,stoi(p))) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } avma = av; } O[1]=l; } ga->p = plift; ga->group = group; ga->deg = deg; ga->ord = order; ga->l = O[1]; ga->primepointer = pp; ga->ppp = Fp[1]; ga->p4 = O[4]; if (DEBUGLEVEL >= 4) fprintferr("GaloisAnalysis:p=%ld l=%ld group=%ld deg=%ld ord=%ld\n", p, O[1], group, deg, order); if (DEBUGLEVEL >= 1) msgtimer("galoisanalysis()"); avma = ltop;}
if (norm_o != 1)
} if (norm_o != 1) { if (!(group&ga_all_normal) || o > order || (o == order && (plift == 0 || norm_o > deg)))
galoisanalysis(GEN T, struct galois_analysis *ga, long calcul_l){ ulong ltop=avma; long n,p; long i; long group,omax; /*TODO: complete the table to at least 200*/ const int prim_nonss_orders[]={36,48,56,60,72,75,80,96,108,0}; GEN F,Fp,Fe,Fpe,O; long np; long order,phi_order; long plift,nbmax,nbtest,deg; byteptr primepointer,pp; if (DEBUGLEVEL >= 1) timer2(); n = degree(T); O = cgetg(n+1,t_VECSMALL); for(i=1;i<=n;i++) O[i]=0; F = factor(stoi(n)); Fp=vectosmall((GEN)F[1]); Fe=vectosmall((GEN)F[2]); np=lg(Fp)-1; Fpe=cgetg(lg(Fp), t_VECSMALL); for (i = 1; i < lg(Fpe); i++) Fpe[i] = itos(powgi(gmael(F,1,i), gmael(F,2,i))); /*In this part, we study the cardinal of the group to have an information about the orders, so if we are unlucky we can continue.*/ /*Are there non WSS groups of this order ?*/ group=0; for(i=0;prim_nonss_orders[i];i++) if (n%prim_nonss_orders[i] == 0) group |= ga_non_wss; if ( n>12 && n%12 == 0 ) { /*We need to know the greatest prime dividing n/12*/ if ( Fp[np] == 3 && Fe[np] == 1 ) group |= ga_ext_2; } phi_order = 1; order = 1; for (i = np; i > 0; i--) { p = Fp[i]; if (phi_order % p != 0) { order *= p; phi_order *= p - 1; } else { group |= ga_all_normal; break; } if (Fe[i]>1) break; } /*Now, we study the orders of the Frobenius elements*/ plift = 0; omax=0; nbmax = 8+(n>>1); nbtest = 0; deg = 0; for (p = 0, pp = primepointer = diffptr; (plift == 0 || (nbtest < nbmax && order != n && (nbtest <=8 || order != (n>>1))) || (n == 24 && O[6] == 0 && O[4] == 0)) && (nbtest < 3 * nbmax || (!(group&ga_non_wss) && n%12 ) ) ;) { ulong av; long prime_incr; GEN ip,FS,p1; long o,norm_o; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; /*discard small primes*/ if (p <= (n << 1)) continue; ip=stoi(p); if (!Fp_is_squarefree(T,ip)) continue; nbtest++; av=avma; FS=(GEN)simplefactmod(T,ip)[1]; p1=(GEN)FS[1]; for(i=2;i<lg(FS);i++) if (cmpii(p1,(GEN)FS[i])) break; if (i<lg(FS)) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } o=n/(lg(FS)-1); avma=av; if (!O[o]) O[o]=p; if (DEBUGLEVEL >= 6) fprintferr("GaloisAnalysis:Nbtest=%ld,p=%ld,o=%ld,plift=%ld,ord=%ld\n", nbtest, p, o, plift, order); if (o > omax) omax = o; if (o >= order) { /*We try to find a power of the Frobenius which generate a normal subgroup just by looking at the order.*/ if (o * Fp[1] >= n) /*Subgroup of smallest index are normal*/ norm_o = o; else { norm_o = 1; for (i = np; i > 0; i--) { if (o % Fpe[i] == 0) norm_o *= Fpe[i]; else break; } } if (norm_o != 1) { if (!(group&ga_all_normal) || o > order || (o == order && (plift == 0 || norm_o > deg))) { deg = norm_o; order = o; plift = p; pp = primepointer; group |= ga_all_normal; } } else if (!(group&ga_all_normal) && (plift == 0 || o > order)) { deg = Fp[np]; order = o; plift = p; pp = primepointer; } } } /* This is to avoid looping on non-wss group. To be completed*/ if (plift == 0 || /*I am not 100% sure of this one, at least it is right for n<=72*/ (n > 24 && n%12 == 0 && Fp[np]==3 && !O[6]) || ((group&ga_non_wss) && omax == Fp[np])) { deg = 0; err(warner, "Galois group almost certainly not weakly super solvable"); } if (calcul_l && !O[1]) { ulong av; long prime_incr; long l=0; /*we need a totally splited prime l*/ av = avma; while (l == 0) { long nb; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; nb=FpX_nbroots(T,stoi(p)); if (nb == n) l = p; else if (nb && Fp_is_squarefree(T,stoi(p))) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } avma = av; } O[1]=l; } ga->p = plift; ga->group = group; ga->deg = deg; ga->ord = order; ga->l = O[1]; ga->primepointer = pp; ga->ppp = Fp[1]; ga->p4 = O[4]; if (DEBUGLEVEL >= 4) fprintferr("GaloisAnalysis:p=%ld l=%ld group=%ld deg=%ld ord=%ld\n", p, O[1], group, deg, order); if (DEBUGLEVEL >= 1) msgtimer("galoisanalysis()"); avma = ltop;}
if (!(group&ga_all_normal) || o > order || (o == order && (plift == 0 || norm_o > deg))) { deg = norm_o; order = o; plift = p; pp = primepointer; group |= ga_all_normal; } } else if (!(group&ga_all_normal) && (plift == 0 || o > order)) { deg = Fp[np];
deg = norm_o;
galoisanalysis(GEN T, struct galois_analysis *ga, long calcul_l){ ulong ltop=avma; long n,p; long i; long group,omax; /*TODO: complete the table to at least 200*/ const int prim_nonss_orders[]={36,48,56,60,72,75,80,96,108,0}; GEN F,Fp,Fe,Fpe,O; long np; long order,phi_order; long plift,nbmax,nbtest,deg; byteptr primepointer,pp; if (DEBUGLEVEL >= 1) timer2(); n = degree(T); O = cgetg(n+1,t_VECSMALL); for(i=1;i<=n;i++) O[i]=0; F = factor(stoi(n)); Fp=vectosmall((GEN)F[1]); Fe=vectosmall((GEN)F[2]); np=lg(Fp)-1; Fpe=cgetg(lg(Fp), t_VECSMALL); for (i = 1; i < lg(Fpe); i++) Fpe[i] = itos(powgi(gmael(F,1,i), gmael(F,2,i))); /*In this part, we study the cardinal of the group to have an information about the orders, so if we are unlucky we can continue.*/ /*Are there non WSS groups of this order ?*/ group=0; for(i=0;prim_nonss_orders[i];i++) if (n%prim_nonss_orders[i] == 0) group |= ga_non_wss; if ( n>12 && n%12 == 0 ) { /*We need to know the greatest prime dividing n/12*/ if ( Fp[np] == 3 && Fe[np] == 1 ) group |= ga_ext_2; } phi_order = 1; order = 1; for (i = np; i > 0; i--) { p = Fp[i]; if (phi_order % p != 0) { order *= p; phi_order *= p - 1; } else { group |= ga_all_normal; break; } if (Fe[i]>1) break; } /*Now, we study the orders of the Frobenius elements*/ plift = 0; omax=0; nbmax = 8+(n>>1); nbtest = 0; deg = 0; for (p = 0, pp = primepointer = diffptr; (plift == 0 || (nbtest < nbmax && order != n && (nbtest <=8 || order != (n>>1))) || (n == 24 && O[6] == 0 && O[4] == 0)) && (nbtest < 3 * nbmax || (!(group&ga_non_wss) && n%12 ) ) ;) { ulong av; long prime_incr; GEN ip,FS,p1; long o,norm_o; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; /*discard small primes*/ if (p <= (n << 1)) continue; ip=stoi(p); if (!Fp_is_squarefree(T,ip)) continue; nbtest++; av=avma; FS=(GEN)simplefactmod(T,ip)[1]; p1=(GEN)FS[1]; for(i=2;i<lg(FS);i++) if (cmpii(p1,(GEN)FS[i])) break; if (i<lg(FS)) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } o=n/(lg(FS)-1); avma=av; if (!O[o]) O[o]=p; if (DEBUGLEVEL >= 6) fprintferr("GaloisAnalysis:Nbtest=%ld,p=%ld,o=%ld,plift=%ld,ord=%ld\n", nbtest, p, o, plift, order); if (o > omax) omax = o; if (o >= order) { /*We try to find a power of the Frobenius which generate a normal subgroup just by looking at the order.*/ if (o * Fp[1] >= n) /*Subgroup of smallest index are normal*/ norm_o = o; else { norm_o = 1; for (i = np; i > 0; i--) { if (o % Fpe[i] == 0) norm_o *= Fpe[i]; else break; } } if (norm_o != 1) { if (!(group&ga_all_normal) || o > order || (o == order && (plift == 0 || norm_o > deg))) { deg = norm_o; order = o; plift = p; pp = primepointer; group |= ga_all_normal; } } else if (!(group&ga_all_normal) && (plift == 0 || o > order)) { deg = Fp[np]; order = o; plift = p; pp = primepointer; } } } /* This is to avoid looping on non-wss group. To be completed*/ if (plift == 0 || /*I am not 100% sure of this one, at least it is right for n<=72*/ (n > 24 && n%12 == 0 && Fp[np]==3 && !O[6]) || ((group&ga_non_wss) && omax == Fp[np])) { deg = 0; err(warner, "Galois group almost certainly not weakly super solvable"); } if (calcul_l && !O[1]) { ulong av; long prime_incr; long l=0; /*we need a totally splited prime l*/ av = avma; while (l == 0) { long nb; prime_incr = *primepointer++; if (!prime_incr) err(primer1); p += prime_incr; nb=FpX_nbroots(T,stoi(p)); if (nb == n) l = p; else if (nb && Fp_is_squarefree(T,stoi(p))) { avma = ltop; if (DEBUGLEVEL >= 2) fprintferr("GaloisAnalysis:non Galois for p=%ld\n", p); ga->p = p; ga->deg = 0; return; /* Not a Galois polynomial */ } avma = av; } O[1]=l; } ga->p = plift; ga->group = group; ga->deg = deg; ga->ord = order; ga->l = O[1]; ga->primepointer = pp; ga->ppp = Fp[1]; ga->p4 = O[4]; if (DEBUGLEVEL >= 4) fprintferr("GaloisAnalysis:p=%ld l=%ld group=%ld deg=%ld ord=%ld\n", p, O[1], group, deg, order); if (DEBUGLEVEL >= 1) msgtimer("galoisanalysis()"); avma = ltop;}