Search is not available for this dataset
image
imagewidth (px)
234
1.92k
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/datasets-cards)

Datasets used to create the Detect Any Mouse Model (or DAMM for short )

DAMM is a project focused on the detection and tracking of multiple animals within complex social and environmental settings. The goal of this project was to create mouse instance segmentation systems that generalize across cage and experimental setups. This README provides an overview of the datasets used in DAMM and the annotation structure.

Annotation Structure

Annotations in this project are structured using a JSON format compatible with COCO-style annotations. Each annotation corresponds to an object in an image and includes the following fields:

  • file_name: The name of the image file, including its path.
  • height: The height of the image in pixels.
  • width: The width of the image in pixels.
  • image_id: An identifier for the image.
  • annotations: A list of annotations, where each annotation (dictionary) contains the following fields:
    • bbox: A bounding box representing the object's location in the image. Expressed as [[x1, y1], [x2, y2]], where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner.
    • bbox_mode: The format of the bounding box coordinates, specified as BoxMode.XYXY_ABS for absolute coordinates in XYXY format.
    • category_id: The category identifier for the object.
    • segmentation: A list of closed polygon regions representing the object's mask. Each region is represented as [x1, y1, x2, y2, ..., xn, yn].

Detection Datasets

Detection datasets used in DAMM are stored in the detection_datasets/ directory (unzip detection_datasets.zip). The following tables list the number of examples for each split and their associated folder location. Each folder contains a metadata.json file containing the annotations.

AER Pretraining Dataset

Dataset Name Number of Examples Folder Location
AER pretraining 2209 AER_pretraining_set/

AER Lab Sourced (In-house) Datasets

Dataset Name Number of Examples Folder Location
playground 103 playground/
light_dark_nest 104 light_dark_nest/
perfect_setup 102 perfect_setup/
colorful_multi_mice 102 colorful_multi_mice/
black_multi_mice 101 black_multi_mice/

Web Sourced (Publicly Available) Datasets

Dataset Name Number of Examples Folder Location
golden_open_field 101 golden_open_field/
mars_multi 104 mars_multi/
mcdannald_rat_operant_chamber 106 mcdannald_rat_operant_chamber/
trimice_dlc 101 trimice_dlc/
pennington_maze 102 pennington_maze/
golden_home_cage_color 100 golden_home_cage_color/
golden_home_cage_greyscale 101 golden_home_cage_greyscale/

Challenge Datasets (Located within the challenge_setups/ folder)

Dataset Name Number of Examples Folder Location
top_black_DSLR 71 top_black_DSLR/
ratcage_brown_DSLR 73 ratcage_brown_DSLR/
ratcage_white_actioncam 74 ratcage_white_actioncam/
ratcage_black_actioncam 74 ratcage_black_actioncam/
grate_brown_actioncam 73 grate_brown_actioncam/
grate_white_actioncam 71 grate_white_actioncam/
top_brown_DSLR 71 top_brown_DSLR/
ratcage_black_DSLR 75 ratcage_black_DSLR/
grate_white_DSLR 71 grate_white_DSLR/
ratcage_brown_actioncam 75 ratcage_brown_actioncam/
grate_black_actioncam 71 grate_black_actioncam/
grate_brown_DSLR 75 grate_brown_DSLR/
top_white_DSLR 100 top_white_DSLR/
top_brown_actioncam 72 top_brown_actioncam/
grate_black_DSLR 71 grate_black_DSLR/
top_white_actioncam 70 top_white_actioncam/
top_black_actioncam 71 top_black_actioncam/
ratcage_white_DSLR 71 ratcage_white_DSLR/

Tracking Datasets

Tracking datasets used in DAMM are stored in the tracking_datasets/ directory (unzip tracking_datasets.zip). Each folder contains tracking data similarly structured to detection data, with the additional key of frame_id for each annotation mapping to the video frame number.

Single Animal Datasets (Located within the single_animal_tracking/ folder)

Dataset Name Frames Annotated FPS Duration (seconds)
oft_12/oft_12.mp4 1084 25.0 43.36
mcdannald_rat_operant_chamber_conditioning_02/mcdannald_rat_operant_chamber_conditioning_02.mp4 828 14.80694563265613 56.730133333333335
golden_mouse_open_field_social_familiarity_cd1_absent_01/golden_mouse_open_field_social_familiarity_cd1_absent_01.mp4 1387 30.0 46.233333333333334
epm_1/epm_1.mp4 2410 24.99810498811716 157.691953125
single_spinach/single_spinach.mp4 1531 30.0 51.03333333333333
smear_mouse_operant_chamber_olfactory_search_raw_01/smear_mouse_operant_chamber_olfactory_search_raw_01.mp4 145 10.0 14.5
pennington_mouse_operant_chamber_exploration_02/pennington_mouse_operant_chamber_exploration_02.mp4 1514 25.0 60.56

Multi-Animal Datasets (Located within the multi_animal_tracking/ folder)

Dataset Name Frames Annotated FPS Duration (seconds)
multi_ir_lighting/multi_ir_lighting.mp4 365 9.912283083942102 36.823
golden_mouse_operant_chamber_social_self_admin_09/golden_mouse_operant_chamber_social_self_admin_09.mp4 437 30.0 52.166666666666664
mouse024_task1_annotator1/mouse024_task1_annotator1.mp4 1965 30.0 65.5
golden_mouse_home_cage_social_72/golden_mouse_home_cage_social_72.mp4 1470 30.0 49.0
top_white_iphone_3/top_white_iphone_3.mp4 174 29.97 75.00834167500834

This format maintains clarity while indicating the folder locations for each dataset category.

Usage and Citation

If you use this dataset, please make sure to cite the following article:

@article{kaul2024damm,
  author    = {Gaurav Kaul and Jonathan McDevitt and Justin Johnson and Ada Eban-Rothschild},
  title     = {DAMM for the detection and tracking of multiple animals within complex social and environmental settings},
  journal   = {bioRxiv},
  year      = {2024}
}

license: cc-by-4.0

Downloads last month
15