fact
string | imports
string | filename
string | symbolic_name
string | __index_level_0__
int64 |
---|---|---|---|---|
Definition annot {A B} (a : A) (b : B) : A := a. | Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | coq-community-autosubst/Autosubst_Basics | coq-community-autosubst | 0 |
Definition id {A} (x : A) := x. | Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | coq-community-autosubst/Autosubst_Basics | coq-community-autosubst | 1 |
Definition var := nat. | Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | coq-community-autosubst/Autosubst_Basics | coq-community-autosubst | 2 |
Definition iterate := fix iterate {A} (f : A -> A) n a := match n with | 0 => a | S n' => f(iterate f n' a) end. | Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | coq-community-autosubst/Autosubst_Basics | coq-community-autosubst | 3 |
Definition funcomp {A B C : Type} (f : A -> B) (g : B -> C) x := g(f(x)). | Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | coq-community-autosubst/Autosubst_Basics | coq-community-autosubst | 4 |
Definition scons {X : Type} (s : X) (sigma : var -> X) (x : var) : X := match x with S y => sigma y | _ => s end. | Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | coq-community-autosubst/Autosubst_Basics | coq-community-autosubst | 5 |
Definition lift (x y : var) : var := plus x y. | Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | coq-community-autosubst/Autosubst_Basics | coq-community-autosubst | 6 |
Variable (A B C : Type). | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_MMapInstances | coq-community-autosubst | 7 |
Variable (MMap_A_B : MMap A B). | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_MMapInstances | coq-community-autosubst | 8 |
Variable (MMap_A_C : MMap A C). | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_MMapInstances | coq-community-autosubst | 9 |
Variable (MMapLemmas_A_B : MMapLemmas A B). | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_MMapInstances | coq-community-autosubst | 10 |
Variable (MMapLemmas_A_C : MMapLemmas A C). | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_MMapInstances | coq-community-autosubst | 11 |
Variable (MMapExt_A_B : MMapExt A B). | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_MMapInstances | coq-community-autosubst | 12 |
Variable (MMapExt_A_C : MMapExt A C). | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_MMapInstances | coq-community-autosubst | 13 |
Definition _bind (T1 : Type) (T2 : Type) (n : nat) := T2. | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_Classes | coq-community-autosubst | 14 |
Definition scomp {A} `{Subst A} (f : var -> A) (g : var -> A) : var -> A := f >>> subst g. | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_Classes | coq-community-autosubst | 15 |
Definition hcomp {A B} `{HSubst A B} (f : var -> B) (g : var -> A) : var -> B := f >>> hsubst g. | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_Classes | coq-community-autosubst | 16 |
Definition ren {T} `{Ids T} (xi : var -> var) : var -> T := xi >>> ids. | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_Classes | coq-community-autosubst | 17 |
Definition up {T} `{Ids T} `{Rename T} (sigma : var -> T) : var -> T := ids 0 .: sigma >>> rename (+1). | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_Classes | coq-community-autosubst | 18 |
Definition upren (xi : var -> var) : (var -> var) := 0 .: xi >>> S. | Autosubst_Basics Autosubst_MMap | coq-community-autosubst/Autosubst_Classes | coq-community-autosubst | 19 |
Axiom Pigeon_In_Hole : nat -> nat -> Prop. | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 20 |
Definition cons_option {A: Type} (e: option A) (l: list A) := match e with | None => l | Some v => v:: l end. | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 21 |
Fixpoint map_n (F: nat -> option Prop) (n: nat) := cons_option (F n) (match n with | O => nil | S n' => map_n F n' end). | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 22 |
Fixpoint or_list (l: list Prop) := match l with | nil => False | e::nil => e | e::l => e \/ or_list l end. | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 23 |
Fixpoint and_list (l: list Prop) := match l with | nil => True | e::nil => e | e::l => e /\ and_list l end. | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 24 |
Definition big_or (n:nat) (F: nat -> option Prop) := or_list (map_n F n). | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 25 |
Definition big_and (n:nat) (F: nat -> option Prop) := and_list (map_n F n). | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 26 |
Fixpoint pigeon_in_hole (b:nat) (n:nat) : Prop := (big_or n (fun n => Some (Pigeon_In_Hole b n)) /\ match b with | O => True | S b' => pigeon_in_hole b' n end). | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 27 |
Fixpoint forall_2 (P : nat -> nat -> option Prop) (i:nat) (j:nat) := big_and j (P i) /\ match i with | O => True | S i' => forall_2 P i' j end. | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 28 |
Definition at_most_one_pigeon_per_hole (dis:bool) (b:nat) (k:nat) := let F i j := if dis then (not (Pigeon_In_Hole i k) \/ not (Pigeon_In_Hole j k)) else (Pigeon_In_Hole i k -> Pigeon_In_Hole j k -> False) in Some (forall_2 (fun i j => if Nat.ltb i j then Some (F i j) else None) b b). | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 29 |
Definition at_most_one_pigeon (dis: bool) (b:nat) (n:nat) := big_and n (at_most_one_pigeon_per_hole dis b). | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 30 |
Definition pigeon_hole (dis: bool) (b:nat) (n:nat) := pigeon_in_hole b n /\ at_most_one_pigeon dis b n. | List | fbesson-itauto/benchmark/pigeon_hole | fbesson-itauto | 31 |
Axiom width: Z. | Lia ZArith Cdcl.Itauto | fbesson-itauto/issues/issue_9 | fbesson-itauto | 32 |
Fixpoint compile(program: nat): list Z := match program with | S n => Z.of_nat n :: compile n | O => nil end. | ZArith List Cdcl.Itauto | fbesson-itauto/issues/issue_2 | fbesson-itauto | 33 |
Axiom F: list Z -> list Z. | ZArith List Cdcl.Itauto | fbesson-itauto/issues/issue_2 | fbesson-itauto | 34 |
Axiom X : Type. | ZArith List Cdcl.Itauto | fbesson-itauto/issues/issue_2 | fbesson-itauto | 35 |
Axiom x : X. | ZArith List Cdcl.Itauto | fbesson-itauto/issues/issue_2 | fbesson-itauto | 36 |
Axiom opaque_compile: nat -> list Z. | ZArith List Cdcl.Itauto | fbesson-itauto/issues/issue_2 | fbesson-itauto | 37 |
Variables A B : Set. | Cdcl.Itauto List ZArith Lia | fbesson-itauto/issues/issue_cc | fbesson-itauto | 39 |
Variable P : A -> bool. | Cdcl.Itauto List ZArith Lia | fbesson-itauto/issues/issue_cc | fbesson-itauto | 40 |
Variable R : A -> B -> Prop. | Cdcl.Itauto List ZArith Lia | fbesson-itauto/issues/issue_cc | fbesson-itauto | 41 |
Definition Q (b : B) (r : A) := P r = true -> R r b. | Cdcl.Itauto List ZArith Lia | fbesson-itauto/issues/issue_cc | fbesson-itauto | 42 |
Variable F : nat -> Prop. | Lia ZArith Cdcl.Itauto | fbesson-itauto/issues/issue_12 | fbesson-itauto | 43 |
Fixpoint orn (n : nat) := match n with | O => F 0 | S m => F n \/ orn m end. | Lia ZArith Cdcl.Itauto | fbesson-itauto/issues/issue_12 | fbesson-itauto | 44 |
Axiom Fbad : forall n, F n -> False. | Lia ZArith Cdcl.Itauto | fbesson-itauto/issues/issue_12 | fbesson-itauto | 45 |
Definition Register := Z. | Lia ZArith Cdcl.Itauto | fbesson-itauto/issues/issue_8 | fbesson-itauto | 46 |
Record ok (n: nat) := { getOk1: n <= 10 }. | Cdcl.Itauto Lia | fbesson-itauto/issues/issue_3 | fbesson-itauto | 47 |
Record ok' := { getP: Prop; getOk': getP }. | Cdcl.Itauto Lia | fbesson-itauto/issues/issue_3 | fbesson-itauto | 48 |
Definition block (A: Prop) := A. | Cdcl.Itauto | fbesson-itauto/issues/cnf | fbesson-itauto | 49 |
Axiom word: Type. | Lia ZArith Cdcl.Itauto | fbesson-itauto/issues/issue_10 | fbesson-itauto | 51 |
Axiom w2z : word -> Z. | Lia ZArith Cdcl.Itauto | fbesson-itauto/issues/issue_10 | fbesson-itauto | 52 |
Axiom z2w : Z -> word. | Lia ZArith Cdcl.Itauto | fbesson-itauto/issues/issue_10 | fbesson-itauto | 53 |
Axiom stmt: Type. | Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | fbesson-itauto/test-suite/arith | fbesson-itauto | 55 |
Axiom stackalloc_size: stmt -> Z. | Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | fbesson-itauto/test-suite/arith | fbesson-itauto | 56 |
Axiom bytes_per_word: Z. | Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | fbesson-itauto/test-suite/arith | fbesson-itauto | 57 |
Axiom list_union: forall {A: Type}, (A -> A -> bool) -> list A -> list A -> list A. | Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | fbesson-itauto/test-suite/arith | fbesson-itauto | 58 |
Axiom modVars_as_list: (Z -> Z -> bool) -> stmt -> list Z. | Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | fbesson-itauto/test-suite/arith | fbesson-itauto | 59 |
Axiom of_Z: Z -> word. | Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | fbesson-itauto/test-suite/arith | fbesson-itauto | 60 |
Variable f : nat -> nat. | ZArith List Lia ZifyClasses Cdcl.NOlia | fbesson-itauto/test-suite/no_test_lia | fbesson-itauto | 61 |
Axiom f : nat -> nat. | ZArith List Lia ZifyClasses Cdcl.NOlia | fbesson-itauto/test-suite/no_test_lia | fbesson-itauto | 62 |
Variable f : R -> R. | ZArith List Lra ZifyClasses ZArith Cdcl.NOlra Reals | fbesson-itauto/test-suite/no_test_lra | fbesson-itauto | 63 |
Axiom f : R -> R. | ZArith List Lra ZifyClasses ZArith Cdcl.NOlra Reals | fbesson-itauto/test-suite/no_test_lra | fbesson-itauto | 64 |
Definition zero := 0%uint63. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 65 |
Definition one := 1%uint63. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 66 |
Definition int_of_nat (n:nat) := Uint63.of_Z (Z.of_nat n). | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 67 |
Definition testbit (i:Uint63.int) (n:nat) := if 63 <=? n then false else Uint63.bit i (int_of_nat n). | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 68 |
Definition interp:= (fun i => (Uint63.sub i one)). | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 69 |
Definition is_mask := (fun (m: Uint63.int) (n: nat) => forall p, testbit m p = true <-> n = p). | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 70 |
Variable P : nat -> bool. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 71 |
Fixpoint forall_n (n:nat) : bool := match n with | O => P O | S n' => P n && forall_n n' end. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 72 |
Variable P : nat -> nat -> bool. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 73 |
Fixpoint forall_2n (n:nat) (m:nat) := match n with | O => forall_n (P O) m | S n' => forall_n (P n) m && forall_2n n' m end. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 74 |
Definition mask_spec : forall m n, is_mask m n -> if 63 <=? n then False else m = Uint63.lsl one (int_of_nat n). | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 75 |
Definition ones (n:int) := ((1 << n) - 1)%uint63. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 76 |
Definition split_m (i: int) (m: int) := ( (i land ((ones digits) << m)) lor ((i land (ones m))))%uint63. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 77 |
Definition is_set (k:int) (m:nat) := (forall p, (p < m)%nat -> testbit k p = false) /\ testbit k m = true. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 78 |
Definition is_set_int (k:int) (m:int) := (forall p, (p <? m = true)%uint63 -> bit k p = false) /\ bit k m = true. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 79 |
Definition nat_of_int (i:int) := Z.to_nat (to_Z i). | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 80 |
Definition not_int (x : int) := (- x - 1)%uint63. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 81 |
Definition bit_excl (x y: int) := (forall n : int, bit x n = true -> bit y n = true -> False). | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 82 |
Definition lowest_bit (x: int) := (x land (opp x))%uint63. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 83 |
Fixpoint find_lowest (n: nat) (k: int) (p: nat) := match p with | O => n | S q => if testbit k (n - p)%nat then (n - p)%nat else find_lowest n k q end. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 84 |
Definition digits := Some 63%nat. | Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | fbesson-itauto/theories/KeyInt | fbesson-itauto | 85 |
Record RarithThy : Type. | Cdcl.Itauto ZifyClasses Lra Reals | fbesson-itauto/theories/NOlra | fbesson-itauto | 86 |
Axiom t: Type. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 87 |
Axiom zero: t. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 88 |
Axiom eqb: t -> t -> bool. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 89 |
Axiom testbit: t -> nat -> bool. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 90 |
Axiom interp: t -> t. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 91 |
Axiom land: t -> t -> t. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 92 |
Axiom lxor: t -> t -> t. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 93 |
Axiom lopp: t -> t. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 94 |
Axiom ltb: t -> t -> bool. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 95 |
Definition is_mask (m: t) (n: nat) := forall p, testbit m p = true <-> n = p. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 96 |
Axiom zero_spec: forall n, testbit zero n = false. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 97 |
Axiom eqb_spec : forall k1 k2, eqb k1 k2 = true <-> k1 = k2. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 98 |
Axiom testbit_spec: forall k1 k2, (forall n, testbit k1 n = testbit k2 n) -> k1 = k2. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 99 |
Axiom interp_spec: forall m n, is_mask m n -> forall p, testbit (interp m) p = true <-> (p < n)%nat. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 100 |
Axiom land_spec: forall n k1 k2, testbit (land k1 k2) n = testbit k1 n && testbit k2 n. | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 101 |
Axiom lxor_spec: forall n k1 k2, testbit (lxor k1 k2) n = xorb (testbit k1 n) (testbit k2 n). | Lia Cdcl.Coqlib | fbesson-itauto/theories/Patricia | fbesson-itauto | 102 |
Dataset Name: Coq Facts, Propositions and Proofs
Dataset Description
The CoqFactsPropsProofs dataset aims to enhance Large Language Models' (LLMs) proficiency in interpreting and generating Coq code by providing a comprehensive collection of over 10,000 Coq source files. It encompasses a wide array of propositions, proofs, and definitions, enriched with metadata including source references and licensing information. This dataset is designed to facilitate the development of models capable of generating syntactically correct and semantically meaningful Coq constructs, thereby advancing automated theorem proving.
A detailed description can be found in the paper Enhancing Formal Theorem Proving: A Comprehensive Dataset for Training AI Models on Coq Code.
Composition
- Files: Over 10,000 Coq source files (
.v
files). - Tables: Three distinct tables: facts (definitions or notations), propositions (theorems and lemmas alongside proofs), and licensing/repository information.
- Entries: 103,446 facts and 166,035 propositions with proofs.
- Size: Character length ranging from as short as 11 to as long as 177,585 characters.
- Source and Collection Method: The Coq source files were collected from various internet sources, focusing on repositories pivotal within the Coq community. These sources range from foundational libraries and formalized mathematical theorems to computer science theories and algorithm implementations. The collection process prioritized quality, relevance, and the contribution of each source to the Coq ecosystem.
Licenses
The dataset includes a diverse range of open-source licenses, reflecting the variety in the Coq community and the broader open-source ecosystem. Some of the licenses included are MIT, GPL (versions 2.0 and 3.0), LGPL (versions 2.1 and 3.0), Apache 2.0, BSD (2-Clause and 3-Clause), CECILL (versions 1.0, 2.1, B, C), MPL-2.0, and the UniMath License. Each entry in the dataset links to detailed license information, ensuring compliance and redistribution legality.
Usage
This dataset is provided in three parquet files and can be employed in
a variety of ways depending on the use case. An example usage case
includes training or fine-tuning models to focus on proofs rather than
definitions and notations. The dataset also allows for filtering based
on specific licenses using the info.parquet
file.
import pandas as pd
df_facts_raw = pd.read_parquet("facts.parquet")
df_info = pd.read_parquet("info.parquet")
# This is the list of licenses which might be seen as permissive
permissive_licenses_list = [
'Apache-2.0', 'BSD-2-Clause', 'BSD-3-Clause',
'CECILL-B', 'CECILL-C',
'LGPL-2.1-only', 'LGPL-2.1-or-later', 'LGPL-3.0-only', 'LGPL-3.0-or-later',
'MIT', 'MPL-2.0', 'UniMath' ]
# Set the license-type to permissive based on the list
df_info['license-type'] = df_info['spdx-id'].apply(
lambda x: 'permissive' if x in permissive_licenses_list else 'not permissive')
# Merge df_facts with df_info to get the license-type information
# 'symbolic_name' is the common key in both DataFrames
df_facts_merged = pd.merge(df_facts_raw, df_info, on='symbolic_name', how='left')
# Filter the merged DataFrame to only include entries with a permissive license
df_facts = df_facts_merged[df_facts_merged['license-type'] == 'permissive']
Experiments and Findings
Initial experiments with the dataset have demonstrated its potential in improving the accuracy of LLMs in generating Coq code. Fine-tuning an existing base model with this dataset resulted in outputs predominantly in Coq syntax, highlighting the dataset's efficacy in specialized model training for formal theorem proving.
Challenges and Limitations
- High standard deviations in fact, proposition, and proof lengths indicate the presence of outliers with significantly long content.
- The complexity of licensing and the manual process of license identification for each repository.
Cite
@misc{florath2024enhancing,
title={Enhancing Formal Theorem Proving: A Comprehensive Dataset for Training AI Models on Coq Code},
author={Andreas Florath},
year={2024},
eprint={2403.12627},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
Legal Disclaimer
This dataset is provided 'as is' and without any warranty or guarantee of accuracy, completeness, or compliance with any specific legal regime. While every effort has been made to ensure that license information is accurate and up-to-date, users of this dataset are responsible for verifying the licensing information of each snippet and complying with all applicable licenses and copyright laws. Users should consider seeking legal advice to ensure their use of these snippets complies with the original authors' licensing terms and any other applicable regulations. The creators of this dataset shall not be held liable for any infringements or legal challenges arising from the use of or reliance on any materials contained within this dataset.
- Downloads last month
- 41