|
--- |
|
dataset_info: |
|
features: |
|
- name: output |
|
dtype: string |
|
- name: instruction |
|
dtype: string |
|
splits: |
|
- name: arithmetic.float2_train |
|
num_bytes: 645500.3 |
|
num_examples: 19000 |
|
- name: arithmetic.float2_valid |
|
num_bytes: 33973.7 |
|
num_examples: 1000 |
|
- name: arithmetic.float3_train |
|
num_bytes: 1890863.85 |
|
num_examples: 47500 |
|
- name: arithmetic.float3_valid |
|
num_bytes: 99519.15 |
|
num_examples: 2500 |
|
- name: arithmetic.float34_train |
|
num_bytes: 9321513.05 |
|
num_examples: 218500 |
|
- name: arithmetic.float34_valid |
|
num_bytes: 490605.95 |
|
num_examples: 11500 |
|
- name: arithmetic.float4_train |
|
num_bytes: 21671996.6 |
|
num_examples: 475000 |
|
- name: arithmetic.float4_valid |
|
num_bytes: 1140631.4 |
|
num_examples: 25000 |
|
download_size: 27928049 |
|
dataset_size: 35294604 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
tags: |
|
- math |
|
- finance |
|
license: cc-by-nc-nd-4.0 |
|
task_categories: |
|
- text-generation |
|
- question-answering |
|
pretty_name: Simple Math |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
# Simple Math: 2+2=4 -1=3 (LoLo: Learning Only Logical Operations) |
|
|
|
Just like my teacher gave me homework, i thought maybe we can also add some of these basics on the trainings of our models. |
|
|
|
It was created with very simple code that is in the repo, if you add more complex operations and so.. **please share the code** :D thank you |
|
|
|
Current Code Version: 20240127.fblgit (A modification over @win10 for progressive and DPO operation) |
|
![LoLo: Learning Only Logical Operations](https://huggingface.co./datasets/fblgit/simple-math/resolve/main/LOLO.png) |
|
## Does it Works? |
|
### 34BEAGLES Evaluation: |
|
``` |
|
hf (pretrained=/data/models/UNA-34Beagles-v1-final,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto (8) |
|
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |
|
|--------------|-------|------|-----:|--------|-----:|---|-----:| |
|
|arc_challenge |Yaml |none | 25|acc |0.7039|± |0.0133| |
|
| | |none | 25|acc_norm|0.7321|± |0.0129| |
|
|truthfulqa_mc2|Yaml |none | 0|acc |0.7387|± |0.0141| |
|
|
|
hf (pretrained=/data/models/UNA-34Beagles-v1-final,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto |
|
|Tasks|Version| Filter |n-shot| Metric |Value | |Stderr| |
|
|-----|-------|----------|-----:|-----------|-----:|---|-----:| |
|
|gsm8k|Yaml |get-answer| 5|exact_match|0.6399|± |0.0132| |
|
|
|
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |
|
|------------------|-------|------|-----:|------|-----:|---|-----:| |
|
|mmlu |N/A |none | 0|acc |0.7477|± |0.1079| |
|
| - humanities |N/A |none | 0|acc |0.7188|± |0.0855| |
|
| - other |N/A |none | 0|acc |0.7950|± |0.1057| |
|
| - social_sciences|N/A |none | 0|acc |0.8297|± |0.0664| |
|
| - stem |N/A |none | 0|acc |0.6641|± |0.1291| |
|
``` |
|
|
|
### 34BEAGLES-MATH Evaluation |
|
``` |
|
hf (pretrained=/data/models/34BeaglesMath-v1,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto |
|
|Tasks|Version| Filter |n-shot| Metric |Value | |Stderr| |
|
|-----|-------|----------|-----:|-----------|-----:|---|-----:| |
|
|gsm8k|Yaml |get-answer| 5|exact_match|0.6505|± |0.0131| |
|
|
|
hf (pretrained=/data/models/34BeaglesMath-v1,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto (8) |
|
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |
|
|--------------|-------|------|-----:|--------|-----:|---|-----:| |
|
|arc_challenge |Yaml |none | 25|acc |0.7090|± |0.0133| |
|
| | |none | 25|acc_norm|0.7329|± |0.0129| |
|
|truthfulqa_mc2|Yaml |none | 0|acc |0.7378|± |0.0141| |
|
|
|
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |
|
|------------------|-------|------|-----:|------|-----:|---|-----:| |
|
|mmlu |N/A |none | 0|acc |0.7524|± |0.1045| |
|
| - humanities |N/A |none | 0|acc |0.7307|± |0.0846| |
|
| - other |N/A |none | 0|acc |0.7937|± |0.1029| |
|
| - social_sciences|N/A |none | 0|acc |0.8274|± |0.0667| |
|
| - stem |N/A |none | 0|acc |0.6708|± |0.1236| |
|
``` |
|
|
|
But it gets better, because when increasing length and complexity, the marks are even superior: |
|
``` |
|
|Tasks|Version| Filter |n-shot| Metric |Value | |Stderr| |
|
|-----|-------|----------|-----:|-----------|-----:|---|-----:| |
|
|gsm8k|Yaml |get-answer| 5|exact_match|0.6611|± | 0.013| |
|
``` |
|
On a 3.20% GSM Improvement compared to its base model. |
|
|
|
## Note to contributors: |
|
**thank you to those contributing on the experiment with beautiful commits and good spirit** |
|
|
|
* Feel free to contribute on the readme Evaluation tests. |
|
* Lets aim to build an ablation & paper together. All contributors will be cited. |
|
|
|
## Versions |
|
``` |
|
27.01.24 Added new code to generate the dataset, seed 42 and now also generates DPO. |
|
24.01.24 Added gradual complexity on a separate script |
|
20-23.01.24 Multiple contributions with operations and increased complexity on the main generator script. |
|
``` |
|
|
|
## Citations |
|
If you use Simple Math o train your model, please cite on the modelcard or the paper. |
|
|
|
``` |
|
@misc{simplemath, |
|
title={Simple-Math: 2+2=4 4-1=3}, |
|
author={Xavier Murias}, |
|
year={2024}, |
|
publisher = {Juanako.AI}, |
|
journal = {HuggingFace repository}, |
|
howpublished = {\url{https://huggingface.co./datasets/fblgit/simple-math}}, |
|
} |
|
``` |