Datasets:
annotations_creators:
- machine-generated
language_creators:
- machine-generated
languages:
- en
licenses:
- cc-by-3-0
multilinguality:
- monolingual
size_categories:
en-qa1:
- n<1K
en-qa2:
- n<1K
en-qa3:
- n<1K
en-qa4:
- 1K<n<10K
en-qa5:
- n<1K
en-qa6:
- n<1K
en-qa7:
- n<1K
en-qa8:
- n<1K
en-qa9:
- n<1K
en-qa10:
- n<1K
en-qa11:
- n<1K
en-qa12:
- n<1K
en-qa13:
- n<1K
en-qa14:
- n<1K
en-qa15:
- n<1K
en-qa16:
- 1K<n<10K
en-qa17:
- n<1K
en-qa18:
- n<1K
en-qa19:
- 1K<n<10K
en-qa20:
- n<1K
en-10k-qa1:
- 1K<n<10K
en-10k-qa2:
- 1K<n<10K
en-10k-qa3:
- 1K<n<10K
en-10k-qa4:
- 10K<n<100K
en-10k-qa5:
- 1K<n<10K
en-10k-qa6:
- 1K<n<10K
en-10k-qa7:
- 1K<n<10K
en-10k-qa8:
- 1K<n<10K
en-10k-qa9:
- 1K<n<10K
en-10k-qa10:
- 1K<n<10K
en-10k-qa11:
- 1K<n<10K
en-10k-qa12:
- 1K<n<10K
en-10k-qa13:
- 1K<n<10K
en-10k-qa14:
- 1K<n<10K
en-10k-qa15:
- 1K<n<10K
en-10k-qa16:
- 10K<n<100K
en-10k-qa17:
- 1K<n<10K
en-10k-qa18:
- 1K<n<10K
en-10k-qa19:
- 10K<n<100K
en-10k-qa20:
- 1K<n<10K
en-valid-qa1:
- n<1K
en-valid-qa2:
- n<1K
en-valid-qa3:
- n<1K
en-valid-qa4:
- 1K<n<10K
en-valid-qa5:
- n<1K
en-valid-qa6:
- n<1K
en-valid-qa7:
- n<1K
en-valid-qa8:
- n<1K
en-valid-qa9:
- n<1K
en-valid-qa10:
- n<1K
en-valid-qa11:
- n<1K
en-valid-qa12:
- n<1K
en-valid-qa13:
- n<1K
en-valid-qa14:
- n<1K
en-valid-qa15:
- n<1K
en-valid-qa16:
- 1K<n<10K
en-valid-qa17:
- n<1K
en-valid-qa18:
- n<1K
en-valid-qa19:
- 1K<n<10K
en-valid-qa20:
- n<1K
en-valid-10k-qa1:
- 1K<n<10K
en-valid-10k-qa2:
- 1K<n<10K
en-valid-10k-qa3:
- 1K<n<10K
en-valid-10k-qa4:
- 10K<n<100K
en-valid-10k-qa5:
- 1K<n<10K
en-valid-10k-qa6:
- 1K<n<10K
en-valid-10k-qa7:
- 1K<n<10K
en-valid-10k-qa8:
- 1K<n<10K
en-valid-10k-qa9:
- 1K<n<10K
en-valid-10k-qa10:
- 1K<n<10K
en-valid-10k-qa11:
- 1K<n<10K
en-valid-10k-qa12:
- 1K<n<10K
en-valid-10k-qa13:
- 1K<n<10K
en-valid-10k-qa14:
- 1K<n<10K
en-valid-10k-qa15:
- 1K<n<10K
en-valid-10k-qa16:
- 10K<n<100K
en-valid-10k-qa17:
- 1K<n<10K
en-valid-10k-qa18:
- 1K<n<10K
en-valid-10k-qa19:
- 10K<n<100K
en-valid-10k-qa20:
- 1K<n<10K
hn-qa1:
- n<1K
hn-qa2:
- n<1K
hn-qa3:
- n<1K
hn-qa4:
- 1K<n<10K
hn-qa5:
- n<1K
hn-qa6:
- n<1K
hn-qa7:
- n<1K
hn-qa8:
- n<1K
hn-qa9:
- n<1K
hn-qa10:
- n<1K
hn-qa11:
- n<1K
hn-qa12:
- n<1K
hn-qa13:
- n<1K
hn-qa14:
- n<1K
hn-qa15:
- n<1K
hn-qa16:
- 1K<n<10K
hn-qa17:
- n<1K
hn-qa18:
- n<1K
hn-qa19:
- 1K<n<10K
hn-qa20:
- n<1K
hn-10k-qa1:
- 1K<n<10K
hn-10k-qa2:
- 1K<n<10K
hn-10k-qa3:
- 1K<n<10K
hn-10k-qa4:
- 10K<n<100K
hn-10k-qa5:
- 1K<n<10K
hn-10k-qa6:
- 1K<n<10K
hn-10k-qa7:
- 1K<n<10K
hn-10k-qa8:
- 1K<n<10K
hn-10k-qa9:
- 1K<n<10K
hn-10k-qa10:
- 1K<n<10K
hn-10k-qa11:
- 1K<n<10K
hn-10k-qa12:
- 1K<n<10K
hn-10k-qa13:
- 1K<n<10K
hn-10k-qa14:
- 1K<n<10K
hn-10k-qa15:
- 1K<n<10K
hn-10k-qa16:
- 10K<n<100K
hn-10k-qa17:
- 1K<n<10K
hn-10k-qa18:
- 1K<n<10K
hn-10k-qa19:
- 10K<n<100K
hn-10k-qa20:
- 1K<n<10K
shuffled-qa1:
- n<1K
shuffled-qa2:
- n<1K
shuffled-qa3:
- n<1K
shuffled-qa4:
- 1K<n<10K
shuffled-qa5:
- n<1K
shuffled-qa6:
- n<1K
shuffled-qa7:
- n<1K
shuffled-qa8:
- n<1K
shuffled-qa9:
- n<1K
shuffled-qa10:
- n<1K
shuffled-qa11:
- n<1K
shuffled-qa12:
- n<1K
shuffled-qa13:
- n<1K
shuffled-qa14:
- n<1K
shuffled-qa15:
- n<1K
shuffled-qa16:
- 1K<n<10K
shuffled-qa17:
- n<1K
shuffled-qa18:
- n<1K
shuffled-qa19:
- 1K<n<10K
shuffled-qa20:
- n<1K
shuffled-10k-qa1:
- 1K<n<10K
shuffled-10k-qa2:
- 1K<n<10K
shuffled-10k-qa3:
- 1K<n<10K
shuffled-10k-qa4:
- 10K<n<100K
shuffled-10k-qa5:
- 1K<n<10K
shuffled-10k-qa6:
- 1K<n<10K
shuffled-10k-qa7:
- 1K<n<10K
shuffled-10k-qa8:
- 1K<n<10K
shuffled-10k-qa9:
- 1K<n<10K
shuffled-10k-qa10:
- 1K<n<10K
shuffled-10k-qa11:
- 1K<n<10K
shuffled-10k-qa12:
- 1K<n<10K
shuffled-10k-qa13:
- 1K<n<10K
shuffled-10k-qa14:
- 1K<n<10K
shuffled-10k-qa15:
- 1K<n<10K
shuffled-10k-qa16:
- 10K<n<100K
shuffled-10k-qa17:
- 1K<n<10K
shuffled-10k-qa18:
- 1K<n<10K
shuffled-10k-qa19:
- 10K<n<100K
shuffled-10k-qa20:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- question-answering-other-chained-qa
Dataset Card for bAbi QA
Table of Contents
- Dataset Card for bAbi QA
Dataset Description
- Homepage:The bAbI project
- Repository:
- Paper: arXiv Paper
- Leaderboard:
- Point of Contact:
Dataset Summary
The (20) QA bAbI tasks are a set of proxy tasks that evaluate reading comprehension via question answering. Our tasks measure understanding in several ways: whether a system is able to answer questions via chaining facts, simple induction, deduction and many more. The tasks are designed to be prerequisites for any system that aims to be capable of conversing with a human. The aim is to classify these tasks into skill sets,so that researchers can identify (and then rectify) the failings of their systems.
Supported Tasks and Leaderboards
The dataset supports a set of 20 proxy story-based question answering tasks for various "types" in English and Hindi. The tasks are:
task_no | task_name |
---|---|
qa1 | single-supporting-fact |
qa2 | two-supporting-facts |
qa3 | three-supporting-facts |
qa4 | two-arg-relations |
qa5 | three-arg-relations |
qa6 | yes-no-questions |
qa7 | counting |
qa8 | lists-sets |
qa9 | simple-negation |
qa10 | indefinite-knowledge |
qa11 | basic-coreference |
qa12 | conjunction |
qa13 | compound-coreference |
qa14 | time-reasoning |
qa15 | basic-deduction |
qa16 | basic-induction |
qa17 | positional-reasoning |
qa18 | size-reasoning |
qa19 | path-finding |
qa20 | agents-motivations |
The "types" are are:
en
- the tasks in English, readable by humans.
hn
- the tasks in Hindi, readable by humans.
shuffled
- the same tasks with shuffled letters so they are not readable by humans, and for existing parsers and taggers cannot be used in a straight-forward fashion to leverage extra resources-- in this case the learner is more forced to rely on the given training data. This mimics a learner being first presented a language and having to learn from scratch.
en-10k
,shuffled-10k
andhn-10k
- the same tasks in the three formats, but with 10,000 training examples, rather than 1000 training examples.
en-valid
anden-valid-10k
- are the same as
en
anden10k
except the train sets have been conveniently split into train and valid portions (90% and 10% split).
- are the same as
To get a particular dataset, use load_datasets('babi_qa',type=f'{type}',task_no=f'{task_no}')
where type
is one of the types, and task_no
is one of the task numbers. For example, load_dataset('babi_qa', type='en', task_no='qa1')
.
Languages
Dataset Structure
Data Instances
An instance from the en-qa1
config's train
split:
{'story': {'answer': ['', '', 'bathroom', '', '', 'hallway', '', '', 'hallway', '', '', 'office', '', '', 'bathroom'], 'id': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15'], 'supporting_ids': [[], [], ['1'], [], [], ['4'], [], [], ['4'], [], [], ['11'], [], [], ['8']], 'text': ['Mary moved to the bathroom.', 'John went to the hallway.', 'Where is Mary?', 'Daniel went back to the hallway.', 'Sandra moved to the garden.', 'Where is Daniel?', 'John moved to the office.', 'Sandra journeyed to the bathroom.', 'Where is Daniel?', 'Mary moved to the hallway.', 'Daniel travelled to the office.', 'Where is Daniel?', 'John went back to the garden.', 'John moved to the bedroom.', 'Where is Sandra?'], 'type': [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]}}
Data Fields
story
: a dictionary feature containing:id
: astring
feature, which denotes the line number in the example.type
: a classification label, with possible values includingcontext
,question
, denoting whether the text is context or a question.text
: astring
feature the text present, whether it is a question or context.supporting_ids
: alist
ofstring
features containing the line numbers of the lines in the example which support the answer.answer
: astring
feature containing the answer to the question, or an empty string if thetype
s is notquestion
.
Data Splits
The splits and corresponding sizes are:
train | test | validation | |
---|---|---|---|
en-qa1 | 200 | 200 | - |
en-qa2 | 200 | 200 | - |
en-qa3 | 200 | 200 | - |
en-qa4 | 1000 | 1000 | - |
en-qa5 | 200 | 200 | - |
en-qa6 | 200 | 200 | - |
en-qa7 | 200 | 200 | - |
en-qa8 | 200 | 200 | - |
en-qa9 | 200 | 200 | - |
en-qa10 | 200 | 200 | - |
en-qa11 | 200 | 200 | - |
en-qa12 | 200 | 200 | - |
en-qa13 | 200 | 200 | - |
en-qa14 | 200 | 200 | - |
en-qa15 | 250 | 250 | - |
en-qa16 | 1000 | 1000 | - |
en-qa17 | 125 | 125 | - |
en-qa18 | 198 | 199 | - |
en-qa19 | 1000 | 1000 | - |
en-qa20 | 94 | 93 | - |
en-10k-qa1 | 2000 | 200 | - |
en-10k-qa2 | 2000 | 200 | - |
en-10k-qa3 | 2000 | 200 | - |
en-10k-qa4 | 10000 | 1000 | - |
en-10k-qa5 | 2000 | 200 | - |
en-10k-qa6 | 2000 | 200 | - |
en-10k-qa7 | 2000 | 200 | - |
en-10k-qa8 | 2000 | 200 | - |
en-10k-qa9 | 2000 | 200 | - |
en-10k-qa10 | 2000 | 200 | - |
en-10k-qa11 | 2000 | 200 | - |
en-10k-qa12 | 2000 | 200 | - |
en-10k-qa13 | 2000 | 200 | - |
en-10k-qa14 | 2000 | 200 | - |
en-10k-qa15 | 2500 | 250 | - |
en-10k-qa16 | 10000 | 1000 | - |
en-10k-qa17 | 1250 | 125 | - |
en-10k-qa18 | 1978 | 199 | - |
en-10k-qa19 | 10000 | 1000 | - |
en-10k-qa20 | 933 | 93 | - |
en-valid-qa1 | 180 | 200 | 20 |
en-valid-qa2 | 180 | 200 | 20 |
en-valid-qa3 | 180 | 200 | 20 |
en-valid-qa4 | 900 | 1000 | 100 |
en-valid-qa5 | 180 | 200 | 20 |
en-valid-qa6 | 180 | 200 | 20 |
en-valid-qa7 | 180 | 200 | 20 |
en-valid-qa8 | 180 | 200 | 20 |
en-valid-qa9 | 180 | 200 | 20 |
en-valid-qa10 | 180 | 200 | 20 |
en-valid-qa11 | 180 | 200 | 20 |
en-valid-qa12 | 180 | 200 | 20 |
en-valid-qa13 | 180 | 200 | 20 |
en-valid-qa14 | 180 | 200 | 20 |
en-valid-qa15 | 225 | 250 | 25 |
en-valid-qa16 | 900 | 1000 | 100 |
en-valid-qa17 | 113 | 125 | 12 |
en-valid-qa18 | 179 | 199 | 19 |
en-valid-qa19 | 900 | 1000 | 100 |
en-valid-qa20 | 85 | 93 | 9 |
en-valid-10k-qa1 | 1800 | 200 | 200 |
en-valid-10k-qa2 | 1800 | 200 | 200 |
en-valid-10k-qa3 | 1800 | 200 | 200 |
en-valid-10k-qa4 | 9000 | 1000 | 1000 |
en-valid-10k-qa5 | 1800 | 200 | 200 |
en-valid-10k-qa6 | 1800 | 200 | 200 |
en-valid-10k-qa7 | 1800 | 200 | 200 |
en-valid-10k-qa8 | 1800 | 200 | 200 |
en-valid-10k-qa9 | 1800 | 200 | 200 |
en-valid-10k-qa10 | 1800 | 200 | 200 |
en-valid-10k-qa11 | 1800 | 200 | 200 |
en-valid-10k-qa12 | 1800 | 200 | 200 |
en-valid-10k-qa13 | 1800 | 200 | 200 |
en-valid-10k-qa14 | 1800 | 200 | 200 |
en-valid-10k-qa15 | 2250 | 250 | 250 |
en-valid-10k-qa16 | 9000 | 1000 | 1000 |
en-valid-10k-qa17 | 1125 | 125 | 125 |
en-valid-10k-qa18 | 1781 | 199 | 197 |
en-valid-10k-qa19 | 9000 | 1000 | 1000 |
en-valid-10k-qa20 | 840 | 93 | 93 |
hn-qa1 | 200 | 200 | - |
hn-qa2 | 200 | 200 | - |
hn-qa3 | 167 | 167 | - |
hn-qa4 | 1000 | 1000 | - |
hn-qa5 | 200 | 200 | - |
hn-qa6 | 200 | 200 | - |
hn-qa7 | 200 | 200 | - |
hn-qa8 | 200 | 200 | - |
hn-qa9 | 200 | 200 | - |
hn-qa10 | 200 | 200 | - |
hn-qa11 | 200 | 200 | - |
hn-qa12 | 200 | 200 | - |
hn-qa13 | 125 | 125 | - |
hn-qa14 | 200 | 200 | - |
hn-qa15 | 250 | 250 | - |
hn-qa16 | 1000 | 1000 | - |
hn-qa17 | 125 | 125 | - |
hn-qa18 | 198 | 198 | - |
hn-qa19 | 1000 | 1000 | - |
hn-qa20 | 93 | 94 | - |
hn-10k-qa1 | 2000 | 200 | - |
hn-10k-qa2 | 2000 | 200 | - |
hn-10k-qa3 | 1667 | 167 | - |
hn-10k-qa4 | 10000 | 1000 | - |
hn-10k-qa5 | 2000 | 200 | - |
hn-10k-qa6 | 2000 | 200 | - |
hn-10k-qa7 | 2000 | 200 | - |
hn-10k-qa8 | 2000 | 200 | - |
hn-10k-qa9 | 2000 | 200 | - |
hn-10k-qa10 | 2000 | 200 | - |
hn-10k-qa11 | 2000 | 200 | - |
hn-10k-qa12 | 2000 | 200 | - |
hn-10k-qa13 | 1250 | 125 | - |
hn-10k-qa14 | 2000 | 200 | - |
hn-10k-qa15 | 2500 | 250 | - |
hn-10k-qa16 | 10000 | 1000 | - |
hn-10k-qa17 | 1250 | 125 | - |
hn-10k-qa18 | 1977 | 198 | - |
hn-10k-qa19 | 10000 | 1000 | - |
hn-10k-qa20 | 934 | 94 | - |
shuffled-qa1 | 200 | 200 | - |
shuffled-qa2 | 200 | 200 | - |
shuffled-qa3 | 200 | 200 | - |
shuffled-qa4 | 1000 | 1000 | - |
shuffled-qa5 | 200 | 200 | - |
shuffled-qa6 | 200 | 200 | - |
shuffled-qa7 | 200 | 200 | - |
shuffled-qa8 | 200 | 200 | - |
shuffled-qa9 | 200 | 200 | - |
shuffled-qa10 | 200 | 200 | - |
shuffled-qa11 | 200 | 200 | - |
shuffled-qa12 | 200 | 200 | - |
shuffled-qa13 | 200 | 200 | - |
shuffled-qa14 | 200 | 200 | - |
shuffled-qa15 | 250 | 250 | - |
shuffled-qa16 | 1000 | 1000 | - |
shuffled-qa17 | 125 | 125 | - |
shuffled-qa18 | 198 | 199 | - |
shuffled-qa19 | 1000 | 1000 | - |
shuffled-qa20 | 94 | 93 | - |
shuffled-10k-qa1 | 2000 | 200 | - |
shuffled-10k-qa2 | 2000 | 200 | - |
shuffled-10k-qa3 | 2000 | 200 | - |
shuffled-10k-qa4 | 10000 | 1000 | - |
shuffled-10k-qa5 | 2000 | 200 | - |
shuffled-10k-qa6 | 2000 | 200 | - |
shuffled-10k-qa7 | 2000 | 200 | - |
shuffled-10k-qa8 | 2000 | 200 | - |
shuffled-10k-qa9 | 2000 | 200 | - |
shuffled-10k-qa10 | 2000 | 200 | - |
shuffled-10k-qa11 | 2000 | 200 | - |
shuffled-10k-qa12 | 2000 | 200 | - |
shuffled-10k-qa13 | 2000 | 200 | - |
shuffled-10k-qa14 | 2000 | 200 | - |
shuffled-10k-qa15 | 2500 | 250 | - |
shuffled-10k-qa16 | 10000 | 1000 | - |
shuffled-10k-qa17 | 1250 | 125 | - |
shuffled-10k-qa18 | 1978 | 199 | - |
shuffled-10k-qa19 | 10000 | 1000 | - |
shuffled-10k-qa20 | 933 | 93 | - |
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
Code to generate tasks is available on github
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine Bordes and Sumit Chopra and Alexander Miller and Arthur Szlam and Jason Weston, at Facebook Research.
Licensing Information
Creative Commons Attribution 3.0 License
Citation Information
@misc{dodge2016evaluating,
title={Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems},
author={Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine Bordes and Sumit Chopra and Alexander Miller and Arthur Szlam and Jason Weston},
year={2016},
eprint={1511.06931},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Contributions
Thanks to @gchhablani for adding this dataset.