PubLayNet / README.md
shunk031's picture
Upload dataset (part 00004-of-00005)
5d78ec7 verified
metadata
annotations_creators:
  - machine-generated
language_creators:
  - found
language:
  - en
license:
  - cdla-permissive-1.0
multilinguality:
  - monolingual
size_categories: []
source_datasets:
  - original
task_categories:
  - image-classification
  - image-segmentation
  - image-to-text
  - question-answering
  - other
  - multiple-choice
  - token-classification
  - tabular-to-text
  - object-detection
  - table-question-answering
  - text-classification
  - table-to-text
task_ids:
  - multi-label-image-classification
  - multi-class-image-classification
  - semantic-segmentation
  - image-captioning
  - extractive-qa
  - closed-domain-qa
  - multiple-choice-qa
  - named-entity-recognition
pretty_name: PubLayNet
tags:
  - graphic design
  - layout-generation
dataset_info:
  features:
    - name: image_id
      dtype: int32
    - name: file_name
      dtype: string
    - name: width
      dtype: int32
    - name: height
      dtype: int32
    - name: image
      dtype: image
    - name: annotations
      sequence:
        - name: annotation_id
          dtype: int32
        - name: area
          dtype: float32
        - name: bbox
          sequence: float32
          length: 4
        - name: category
          struct:
            - name: category_id
              dtype: int32
            - name: name
              dtype:
                class_label:
                  names:
                    '0': text
                    '1': title
                    '2': list
                    '3': table
                    '4': figure
            - name: supercategory
              dtype: string
        - name: category_id
          dtype: int32
        - name: image_id
          dtype: int32
        - name: iscrowd
          dtype: bool
        - name: segmentation
          dtype: image
  splits:
    - name: train
      num_bytes: 99127922734.771
      num_examples: 335703
    - name: validation
      num_bytes: 3513203604.885
      num_examples: 11245
    - name: test
      num_bytes: 3406081626.495
      num_examples: 11405
  download_size: 107597638930
  dataset_size: 106047207966.15099
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*

Dataset Card for PubLayNet

CI

Table of Contents

Dataset Description

Dataset Summary

PubLayNet is a dataset for document layout analysis. It contains images of research papers and articles and annotations for various elements in a page such as "text", "list", "figure" etc in these research paper images. The dataset was obtained by automatically matching the XML representations and the content of over 1 million PDF articles that are publicly available on PubMed Central.

Supported Tasks and Leaderboards

[More Information Needed]

Languages

[More Information Needed]

Dataset Structure

Data Instances

import datasets as ds

dataset = ds.load_dataset(
    path="shunk031/PubLayNet",
    decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
)

Data Fields

[More Information Needed]

Data Splits

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

[More Information Needed]

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

[More Information Needed]

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

Citation Information

@inproceedings{zhong2019publaynet,
  title={Publaynet: largest dataset ever for document layout analysis},
  author={Zhong, Xu and Tang, Jianbin and Yepes, Antonio Jimeno},
  booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)},
  pages={1015--1022},
  year={2019},
  organization={IEEE}
}

Contributions

Thanks to ibm-aur-nlp/PubLayNet for creating this dataset.