Datasets:

Tasks:
Other
Languages:
Chinese
ArXiv:
License:
PKU-PosterLayout / README.md
shunk031's picture
Upload README.md with huggingface_hub
af3a6fd verified
|
raw
history blame
5.86 kB
metadata
annotations_creators:
  - expert-generated
language_creators:
  - found
language:
  - zh
license:
  - cc-by-sa-4.0
multilinguality: []
size_categories: []
source_datasets:
  - extended|PosterErase
task_categories:
  - other
task_ids: []
pretty_name: PKU-PosterLayout
tags:
  - layout-generation
  - graphic design
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
dataset_info:
  features:
    - name: original_poster
      dtype: image
    - name: inpainted_poster
      dtype: image
    - name: basnet_saliency_map
      dtype: image
    - name: pfpn_saliency_map
      dtype: image
    - name: canvas
      dtype: image
    - name: annotations
      sequence:
        - name: poster_path
          dtype: string
        - name: total_elem
          dtype: int32
        - name: cls_elem
          dtype:
            class_label:
              names:
                '0': text
                '1': logo
                '2': underlay
                '3': INVALID
        - name: box_elem
          sequence: int32
  splits:
    - name: train
      num_bytes: 7146183585.374
      num_examples: 9974
    - name: test
      num_bytes: 366746518
      num_examples: 905
  download_size: 7351214285
  dataset_size: 7512930103.374

Dataset Card for PKU-PosterLayout

CI

Table of Contents

Dataset Description

Dataset Summary

PKU-PosterLayout is a new dataset and benchmark for content-aware visual-textual presentation layout.

Supported Tasks and Leaderboards

[More Information Needed]

Languages

The language data in PKU-PosterLayout is in Chinese (BCP-47 zh).

Dataset Structure

Data Instances

To use PKU-PosterLayout dataset, you need to download the poster image and saliency maps via PKU Netdisk or Google Drive.

/path/to/datasets
β”œβ”€β”€ train
β”‚   β”œβ”€β”€ inpainted_poster.zip
β”‚   β”œβ”€β”€ original_poster.zip
β”‚   β”œβ”€β”€ saliencymaps_basnet.zip
β”‚   └── saliencymaps_pfpn.zip
└── test
    β”œβ”€β”€ image_canvas.zip
    β”œβ”€β”€ saliencymaps_basnet.zip
    └── saliencymaps_pfpn.zip
import datasets as ds

dataset = ds.load_dataset(
    path="shunk031/PKU-PosterLayout",
    data_dir="/path/to/datasets/",
)

Data Fields

[More Information Needed]

Data Splits

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

[More Information Needed]

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

[More Information Needed]

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

@inproceedings{hsu2023posterlayout,
  title={PosterLayout: A New Benchmark and Approach for Content-aware Visual-Textual Presentation Layout},
  author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={6018--6026},
  year={2023}
}

Contributions

Thanks to @PKU-ICST-MIPL for creating this dataset.