metadata
annotations_creators:
- expert-generated
language_creators:
- found
language:
- zh
license:
- cc-by-sa-4.0
multilinguality: []
size_categories: []
source_datasets:
- extended|PosterErase
task_categories:
- other
task_ids: []
pretty_name: PKU-PosterLayout
tags:
- layout-generation
- graphic design
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
dataset_info:
features:
- name: original_poster
dtype: image
- name: inpainted_poster
dtype: image
- name: basnet_saliency_map
dtype: image
- name: pfpn_saliency_map
dtype: image
- name: canvas
dtype: image
- name: annotations
sequence:
- name: poster_path
dtype: string
- name: total_elem
dtype: int32
- name: cls_elem
dtype: int32
- name: box_elem
sequence: int32
splits:
- name: train
num_bytes: 7145995465.374
num_examples: 9974
- name: test
num_bytes: 366746518
num_examples: 905
download_size: 7351207315
dataset_size: 7512741983.374
Dataset Card for PKU-PosterLayout
Table of Contents
- Dataset Card Creation Guide
Dataset Description
- Homepage: http://59.108.48.34/tiki/PosterLayout/
- Repository: https://github.com/shunk031/huggingface-datasets_PKU-PosterLayout
- Paper (Preprint): https://arxiv.org/abs/2303.15937
- Paper (CVPR2023): https://openaccess.thecvf.com/content/CVPR2023/html/Hsu_PosterLayout_A_New_Benchmark_and_Approach_for_Content-Aware_Visual-Textual_Presentation_CVPR_2023_paper.html
Dataset Summary
PKU-PosterLayout is a new dataset and benchmark for content-aware visual-textual presentation layout.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
The language data in PKU-PosterLayout is in Chinese (BCP-47 zh).
Dataset Structure
Data Instances
To use PKU-PosterLayout dataset, you need to download the poster image and saliency maps via PKU Netdisk or Google Drive.
/path/to/datasets
βββ train
β βββ inpainted_poster.zip
β βββ original_poster.zip
β βββ saliencymaps_basnet.zip
β βββ saliencymaps_pfpn.zip
βββ test
βββ image_canvas.zip
βββ saliencymaps_basnet.zip
βββ saliencymaps_pfpn.zip
import datasets as ds
dataset = ds.load_dataset(
path="shunk031/PKU-PosterLayout",
data_dir="/path/to/datasets/",
)
Data Fields
[More Information Needed]
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
[More Information Needed]
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
[More Information Needed]
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
@inproceedings{hsu2023posterlayout,
title={PosterLayout: A New Benchmark and Approach for Content-aware Visual-Textual Presentation Layout},
author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={6018--6026},
year={2023}
}
Contributions
Thanks to @PKU-ICST-MIPL for creating this dataset.