Upload results for model HuggingFaceTB/SmolLM2-1.7B-Instruct

#1023
data/HuggingFaceTB/SmolLM2-1.7B-Instruct/orig/results_24-11-01-18:20:54/HuggingFaceTB__SmolLM2-1.7B-Instruct/results_2024-11-01T18-27-09.150687.json ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "logiqa2_base": {
4
+ "alias": "logiqa2_base",
5
+ "acc,none": 0.2767175572519084,
6
+ "acc_stderr,none": 0.011287148180222282
7
+ },
8
+ "logiqa_base": {
9
+ "alias": "logiqa_base",
10
+ "acc,none": 0.2124600638977636,
11
+ "acc_stderr,none": 0.01636194536826574
12
+ },
13
+ "lsat-ar_base": {
14
+ "alias": "lsat-ar_base",
15
+ "acc,none": 0.23478260869565218,
16
+ "acc_stderr,none": 0.028009647070930132
17
+ },
18
+ "lsat-lr_base": {
19
+ "alias": "lsat-lr_base",
20
+ "acc,none": 0.2019607843137255,
21
+ "acc_stderr,none": 0.017794539344350126
22
+ },
23
+ "lsat-rc_base": {
24
+ "alias": "lsat-rc_base",
25
+ "acc,none": 0.21561338289962825,
26
+ "acc_stderr,none": 0.025120920402008622
27
+ }
28
+ },
29
+ "group_subtasks": {
30
+ "logiqa2_base": [],
31
+ "logiqa_base": [],
32
+ "lsat-ar_base": [],
33
+ "lsat-lr_base": [],
34
+ "lsat-rc_base": []
35
+ },
36
+ "configs": {
37
+ "logiqa2_base": {
38
+ "task": "logiqa2_base",
39
+ "tag": "logikon-bench",
40
+ "group": "logikon-bench",
41
+ "dataset_path": "logikon/logikon-bench",
42
+ "dataset_name": "logiqa2",
43
+ "test_split": "test",
44
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
45
+ "doc_to_target": "{{answer}}",
46
+ "doc_to_choice": "{{options}}",
47
+ "description": "",
48
+ "target_delimiter": " ",
49
+ "fewshot_delimiter": "\n\n",
50
+ "num_fewshot": 0,
51
+ "metric_list": [
52
+ {
53
+ "metric": "acc",
54
+ "aggregation": "mean",
55
+ "higher_is_better": true
56
+ }
57
+ ],
58
+ "output_type": "multiple_choice",
59
+ "repeats": 1,
60
+ "should_decontaminate": false,
61
+ "metadata": {
62
+ "version": 0.0
63
+ }
64
+ },
65
+ "logiqa_base": {
66
+ "task": "logiqa_base",
67
+ "tag": "logikon-bench",
68
+ "group": "logikon-bench",
69
+ "dataset_path": "logikon/logikon-bench",
70
+ "dataset_name": "logiqa",
71
+ "test_split": "test",
72
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
73
+ "doc_to_target": "{{answer}}",
74
+ "doc_to_choice": "{{options}}",
75
+ "description": "",
76
+ "target_delimiter": " ",
77
+ "fewshot_delimiter": "\n\n",
78
+ "num_fewshot": 0,
79
+ "metric_list": [
80
+ {
81
+ "metric": "acc",
82
+ "aggregation": "mean",
83
+ "higher_is_better": true
84
+ }
85
+ ],
86
+ "output_type": "multiple_choice",
87
+ "repeats": 1,
88
+ "should_decontaminate": false,
89
+ "metadata": {
90
+ "version": 0.0
91
+ }
92
+ },
93
+ "lsat-ar_base": {
94
+ "task": "lsat-ar_base",
95
+ "tag": "logikon-bench",
96
+ "group": "logikon-bench",
97
+ "dataset_path": "logikon/logikon-bench",
98
+ "dataset_name": "lsat-ar",
99
+ "test_split": "test",
100
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
101
+ "doc_to_target": "{{answer}}",
102
+ "doc_to_choice": "{{options}}",
103
+ "description": "",
104
+ "target_delimiter": " ",
105
+ "fewshot_delimiter": "\n\n",
106
+ "num_fewshot": 0,
107
+ "metric_list": [
108
+ {
109
+ "metric": "acc",
110
+ "aggregation": "mean",
111
+ "higher_is_better": true
112
+ }
113
+ ],
114
+ "output_type": "multiple_choice",
115
+ "repeats": 1,
116
+ "should_decontaminate": false,
117
+ "metadata": {
118
+ "version": 0.0
119
+ }
120
+ },
121
+ "lsat-lr_base": {
122
+ "task": "lsat-lr_base",
123
+ "tag": "logikon-bench",
124
+ "group": "logikon-bench",
125
+ "dataset_path": "logikon/logikon-bench",
126
+ "dataset_name": "lsat-lr",
127
+ "test_split": "test",
128
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
129
+ "doc_to_target": "{{answer}}",
130
+ "doc_to_choice": "{{options}}",
131
+ "description": "",
132
+ "target_delimiter": " ",
133
+ "fewshot_delimiter": "\n\n",
134
+ "num_fewshot": 0,
135
+ "metric_list": [
136
+ {
137
+ "metric": "acc",
138
+ "aggregation": "mean",
139
+ "higher_is_better": true
140
+ }
141
+ ],
142
+ "output_type": "multiple_choice",
143
+ "repeats": 1,
144
+ "should_decontaminate": false,
145
+ "metadata": {
146
+ "version": 0.0
147
+ }
148
+ },
149
+ "lsat-rc_base": {
150
+ "task": "lsat-rc_base",
151
+ "tag": "logikon-bench",
152
+ "group": "logikon-bench",
153
+ "dataset_path": "logikon/logikon-bench",
154
+ "dataset_name": "lsat-rc",
155
+ "test_split": "test",
156
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
157
+ "doc_to_target": "{{answer}}",
158
+ "doc_to_choice": "{{options}}",
159
+ "description": "",
160
+ "target_delimiter": " ",
161
+ "fewshot_delimiter": "\n\n",
162
+ "num_fewshot": 0,
163
+ "metric_list": [
164
+ {
165
+ "metric": "acc",
166
+ "aggregation": "mean",
167
+ "higher_is_better": true
168
+ }
169
+ ],
170
+ "output_type": "multiple_choice",
171
+ "repeats": 1,
172
+ "should_decontaminate": false,
173
+ "metadata": {
174
+ "version": 0.0
175
+ }
176
+ }
177
+ },
178
+ "versions": {
179
+ "logiqa2_base": 0.0,
180
+ "logiqa_base": 0.0,
181
+ "lsat-ar_base": 0.0,
182
+ "lsat-lr_base": 0.0,
183
+ "lsat-rc_base": 0.0
184
+ },
185
+ "n-shot": {
186
+ "logiqa2_base": 0,
187
+ "logiqa_base": 0,
188
+ "lsat-ar_base": 0,
189
+ "lsat-lr_base": 0,
190
+ "lsat-rc_base": 0
191
+ },
192
+ "higher_is_better": {
193
+ "logiqa2_base": {
194
+ "acc": true
195
+ },
196
+ "logiqa_base": {
197
+ "acc": true
198
+ },
199
+ "lsat-ar_base": {
200
+ "acc": true
201
+ },
202
+ "lsat-lr_base": {
203
+ "acc": true
204
+ },
205
+ "lsat-rc_base": {
206
+ "acc": true
207
+ }
208
+ },
209
+ "n-samples": {
210
+ "lsat-rc_base": {
211
+ "original": 269,
212
+ "effective": 269
213
+ },
214
+ "lsat-lr_base": {
215
+ "original": 510,
216
+ "effective": 510
217
+ },
218
+ "lsat-ar_base": {
219
+ "original": 230,
220
+ "effective": 230
221
+ },
222
+ "logiqa_base": {
223
+ "original": 626,
224
+ "effective": 626
225
+ },
226
+ "logiqa2_base": {
227
+ "original": 1572,
228
+ "effective": 1572
229
+ }
230
+ },
231
+ "config": {
232
+ "model": "local-completions",
233
+ "model_args": "base_url=http://localhost:8080/v1/completions,num_concurrent=1,max_retries=3,tokenized_requests=False,model=HuggingFaceTB/SmolLM2-1.7B-Instruct,trust_remote_code=True",
234
+ "batch_size": "1",
235
+ "batch_sizes": [],
236
+ "device": null,
237
+ "use_cache": null,
238
+ "limit": null,
239
+ "bootstrap_iters": 100000,
240
+ "gen_kwargs": null,
241
+ "random_seed": 0,
242
+ "numpy_seed": 1234,
243
+ "torch_seed": 1234,
244
+ "fewshot_seed": 1234
245
+ },
246
+ "git_hash": "0a897fa",
247
+ "date": 1730481659.717607,
248
+ "pretty_env_info": "PyTorch version: 2.4.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Red Hat Enterprise Linux release 8.8 (Ootpa) (x86_64)\nGCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-18)\nClang version: Could not collect\nCMake version: version 3.20.2\nLibc version: glibc-2.28\n\nPython version: 3.11.2 (main, Sep 17 2024, 03:17:19) [GCC 8.5.0 20210514 (Red Hat 8.5.0-18)] (64-bit runtime)\nPython platform: Linux-4.18.0-477.70.1.el8_8.x86_64-x86_64-with-glibc2.28\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: NVIDIA H100\nNvidia driver version: 550.54.15\ncuDNN version: Probably one of the following:\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.1.1\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitektur: x86_64\nCPU Operationsmodus: 32-bit, 64-bit\nByte-Reihenfolge: Little Endian\nCPU(s): 128\nListe der Online-CPU(s): 0-127\nThread(s) pro Kern: 2\nKern(e) pro Socket: 32\nSockel: 2\nNUMA-Knoten: 2\nAnbieterkennung: AuthenticAMD\nProzessorfamilie: 25\nModell: 17\nModellname: AMD EPYC 9354 32-Core Processor\nStepping: 1\nCPU MHz: 3800.000\nMaximale Taktfrequenz der CPU: 3800,0000\nMinimale Taktfrequenz der CPU: 400,0000\nBogoMIPS: 6499.71\nVirtualisierung: AMD-V\nL1d Cache: 32K\nL1i Cache: 32K\nL2 Cache: 1024K\nL3 Cache: 32768K\nNUMA-Knoten0 CPU(s): 0-31,64-95\nNUMA-Knoten1 CPU(s): 32-63,96-127\nMarkierungen: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.4.1\n[pip3] triton==3.0.0\n[conda] Could not collect",
249
+ "transformers_version": "4.46.1",
250
+ "upper_git_hash": null,
251
+ "tokenizer_pad_token": [
252
+ "<|im_end|>",
253
+ "2"
254
+ ],
255
+ "tokenizer_eos_token": [
256
+ "<|im_end|>",
257
+ "2"
258
+ ],
259
+ "tokenizer_bos_token": [
260
+ "<|im_start|>",
261
+ "1"
262
+ ],
263
+ "eot_token_id": 2,
264
+ "max_length": 2047,
265
+ "task_hashes": {},
266
+ "model_source": "local-completions",
267
+ "model_name": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
268
+ "model_name_sanitized": "HuggingFaceTB__SmolLM2-1.7B-Instruct",
269
+ "system_instruction": null,
270
+ "system_instruction_sha": null,
271
+ "fewshot_as_multiturn": false,
272
+ "chat_template": null,
273
+ "chat_template_sha": null,
274
+ "start_time": 3302886.083964613,
275
+ "end_time": 3303258.953964368,
276
+ "total_evaluation_time_seconds": "372.8699997551739"
277
+ }