Datasets:
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
English
Size:
10M - 100M
Tags:
text-search
License:
# WARNING: Please, do not use the code in this script as a template to create another script: | |
# - It is a bad practice to use `datasets.load_dataset` inside a loading script. Please, avoid doing it. | |
import json | |
import math | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@ONLINE {wikidump, | |
author = {Wikimedia Foundation}, | |
title = {Wikimedia Downloads}, | |
url = {https://dumps.wikimedia.org} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Wikipedia version split into plain text snippets for dense semantic indexing. | |
""" | |
_LICENSE = ( | |
"This work is licensed under the Creative Commons Attribution-ShareAlike " | |
"3.0 Unported License. To view a copy of this license, visit " | |
"http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to " | |
"Creative Commons, PO Box 1866, Mountain View, CA 94042, USA." | |
) | |
def wiki40b_article_snippets(article, passage_len=100, overlap=0): | |
paragraphs = article["text"].split("\n") | |
aticle_idx = paragraphs.index("_START_ARTICLE_") + 1 | |
article_title = paragraphs[aticle_idx] if aticle_idx < len(paragraphs) else "" | |
section_indices = [i + 1 for i, par in enumerate(paragraphs[:-1]) if par == "_START_SECTION_"] | |
par_tabs = [par.split(" ") for par in paragraphs] | |
word_map = [ | |
(i, len(" ".join(par[:j])), w) | |
for i, par in enumerate(par_tabs) | |
if not par[0].startswith("_START_") | |
for j, w in enumerate(par) | |
if i > 0 | |
] | |
step_size = passage_len - overlap | |
passages = [] | |
for i in range(math.ceil(len(word_map) / step_size)): | |
pre_toks = word_map[i * step_size : i * step_size + passage_len] | |
start_section_id = max([0] + [j for j in section_indices if j <= pre_toks[0][0]]) | |
section_ids = [j for j in section_indices if j >= start_section_id and j <= pre_toks[-1][0]] | |
section_ids = section_ids if len(section_ids) > 0 else [0] | |
passage_text = " ".join([w for p_id, s_id, w in pre_toks]) | |
passages += [ | |
{ | |
"article_title": article_title, | |
"section_title": " & ".join([paragraphs[j] for j in section_ids]), | |
"wiki_id": article["wikidata_id"], | |
"start_paragraph": pre_toks[0][0], | |
"start_character": pre_toks[0][1], | |
"end_paragraph": pre_toks[-1][0], | |
"end_character": pre_toks[-1][1] + len(pre_toks[-1][2]) + 1, | |
"passage_text": passage_text.replace("_NEWLINE_", "\n"), | |
} | |
] | |
return passages | |
def wikipedia_article_snippets(article, passage_len=100, overlap=0): | |
paragraphs = [par for par in article["text"].split("\n") if not par.startswith("Category:")] | |
if "References" in paragraphs: | |
paragraphs = paragraphs[: paragraphs.index("References")] | |
article_title = article["title"] | |
section_indices = [ | |
i + 1 | |
for i, par in enumerate(paragraphs[:-2]) | |
if paragraphs[i] == "" and paragraphs[i + 1] != "" and paragraphs[i + 2] != "" | |
] | |
par_tabs = [par.split(" ") for par in paragraphs] | |
word_map = [(i, len(" ".join(par[:j])), w) for i, par in enumerate(par_tabs) for j, w in enumerate(par)] | |
step_size = passage_len - overlap | |
passages = [] | |
for i in range(math.ceil(len(word_map) / step_size)): | |
pre_toks = word_map[i * step_size : i * step_size + passage_len] | |
start_section_id = max([0] + [j for j in section_indices if j <= pre_toks[0][0]]) | |
section_ids = [j for j in section_indices if start_section_id <= j <= pre_toks[-1][0]] | |
section_ids = section_ids if len(section_ids) > 0 else [-1] | |
passage_text = " ".join([w for p_id, s_id, w in pre_toks]) | |
passages += [ | |
{ | |
"article_title": article_title, | |
"section_title": " & ".join(["Start" if j == -1 else paragraphs[j].strip() for j in section_ids]), | |
"wiki_id": article_title.replace(" ", "_"), | |
"start_paragraph": pre_toks[0][0], | |
"start_character": pre_toks[0][1], | |
"end_paragraph": pre_toks[-1][0], | |
"end_character": pre_toks[-1][1] + len(pre_toks[-1][2]) + 1, | |
"passage_text": passage_text, | |
} | |
] | |
return passages | |
_SPLIT_FUNCTION_MAP = { | |
"wikipedia": wikipedia_article_snippets, | |
"wiki40b": wiki40b_article_snippets, | |
} | |
def generate_snippets(wikipedia, split_function, passage_len=100, overlap=0): | |
for i, article in enumerate(wikipedia): | |
for doc in split_function(article, passage_len, overlap): | |
part_id = json.dumps( | |
{ | |
"datasets_id": i, | |
"wiki_id": doc["wiki_id"], | |
"sp": doc["start_paragraph"], | |
"sc": doc["start_character"], | |
"ep": doc["end_paragraph"], | |
"ec": doc["end_character"], | |
} | |
) | |
doc["_id"] = part_id | |
doc["datasets_id"] = i | |
yield doc | |
class WikiSnippetsConfig(datasets.BuilderConfig): | |
"""BuilderConfig for WikiSnippets.""" | |
def __init__( | |
self, wikipedia_name="wiki40b", wikipedia_version_name="en", snippets_length=100, snippets_overlap=0, **kwargs | |
): | |
"""BuilderConfig for WikiSnippets. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(WikiSnippetsConfig, self).__init__(**kwargs) | |
self.wikipedia_name = wikipedia_name | |
self.wikipedia_version_name = wikipedia_version_name | |
self.snippets_length = snippets_length | |
self.snippets_overlap = snippets_overlap | |
class WikiSnippets(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIG_CLASS = WikiSnippetsConfig | |
BUILDER_CONFIGS = [ | |
WikiSnippetsConfig( | |
name="wiki40b_en_100_0", | |
version=datasets.Version("1.0.0"), | |
wikipedia_name="wiki40b", | |
wikipedia_version_name="en", | |
snippets_length=100, | |
snippets_overlap=0, | |
), | |
WikiSnippetsConfig( | |
name="wikipedia_en_100_0", | |
version=datasets.Version("2.0.0"), | |
wikipedia_name="wikipedia", | |
wikipedia_version_name="20220301.en", | |
snippets_length=100, | |
snippets_overlap=0, | |
), | |
] | |
test_dummy_data = False | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"_id": datasets.Value("string"), | |
"datasets_id": datasets.Value("int32"), | |
"wiki_id": datasets.Value("string"), | |
"start_paragraph": datasets.Value("int32"), | |
"start_character": datasets.Value("int32"), | |
"end_paragraph": datasets.Value("int32"), | |
"end_character": datasets.Value("int32"), | |
"article_title": datasets.Value("string"), | |
"section_title": datasets.Value("string"), | |
"passage_text": datasets.Value("string"), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://dumps.wikimedia.org", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# WARNING: It is a bad practice to use `datasets.load_dataset` inside a loading script. Please, avoid doing it. | |
wikipedia = datasets.load_dataset( | |
path=self.config.wikipedia_name, | |
name=self.config.wikipedia_version_name, | |
) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"wikipedia": wikipedia}), | |
] | |
def _generate_examples(self, wikipedia): | |
logger.info(f"generating examples from = {self.config.wikipedia_name} {self.config.wikipedia_version_name}") | |
for split in wikipedia: | |
dset = wikipedia[split] | |
split_function = _SPLIT_FUNCTION_MAP[self.config.wikipedia_name] | |
for doc in generate_snippets( | |
dset, split_function, passage_len=self.config.snippets_length, overlap=self.config.snippets_overlap | |
): | |
id_ = doc["_id"] | |
yield id_, doc | |