Datasets:
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
English
Size:
10M - 100M
Tags:
text-search
License:
File size: 8,282 Bytes
81aded6 9e84715 28b05c7 9e84715 81aded6 9e84715 81aded6 9e84715 81aded6 9e84715 81aded6 9e84715 81aded6 9e84715 81aded6 9e84715 81aded6 9e84715 f3619fc 9e84715 81aded6 9e84715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# WARNING: Please, do not use the code in this script as a template to create another script:
# - It is a bad practice to use `datasets.load_dataset` inside a loading script. Please, avoid doing it.
import json
import math
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@ONLINE {wikidump,
author = {Wikimedia Foundation},
title = {Wikimedia Downloads},
url = {https://dumps.wikimedia.org}
}
"""
_DESCRIPTION = """\
Wikipedia version split into plain text snippets for dense semantic indexing.
"""
_LICENSE = (
"This work is licensed under the Creative Commons Attribution-ShareAlike "
"3.0 Unported License. To view a copy of this license, visit "
"http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to "
"Creative Commons, PO Box 1866, Mountain View, CA 94042, USA."
)
def wiki40b_article_snippets(article, passage_len=100, overlap=0):
paragraphs = article["text"].split("\n")
aticle_idx = paragraphs.index("_START_ARTICLE_") + 1
article_title = paragraphs[aticle_idx] if aticle_idx < len(paragraphs) else ""
section_indices = [i + 1 for i, par in enumerate(paragraphs[:-1]) if par == "_START_SECTION_"]
par_tabs = [par.split(" ") for par in paragraphs]
word_map = [
(i, len(" ".join(par[:j])), w)
for i, par in enumerate(par_tabs)
if not par[0].startswith("_START_")
for j, w in enumerate(par)
if i > 0
]
step_size = passage_len - overlap
passages = []
for i in range(math.ceil(len(word_map) / step_size)):
pre_toks = word_map[i * step_size : i * step_size + passage_len]
start_section_id = max([0] + [j for j in section_indices if j <= pre_toks[0][0]])
section_ids = [j for j in section_indices if j >= start_section_id and j <= pre_toks[-1][0]]
section_ids = section_ids if len(section_ids) > 0 else [0]
passage_text = " ".join([w for p_id, s_id, w in pre_toks])
passages += [
{
"article_title": article_title,
"section_title": " & ".join([paragraphs[j] for j in section_ids]),
"wiki_id": article["wikidata_id"],
"start_paragraph": pre_toks[0][0],
"start_character": pre_toks[0][1],
"end_paragraph": pre_toks[-1][0],
"end_character": pre_toks[-1][1] + len(pre_toks[-1][2]) + 1,
"passage_text": passage_text.replace("_NEWLINE_", "\n"),
}
]
return passages
def wikipedia_article_snippets(article, passage_len=100, overlap=0):
paragraphs = [par for par in article["text"].split("\n") if not par.startswith("Category:")]
if "References" in paragraphs:
paragraphs = paragraphs[: paragraphs.index("References")]
article_title = article["title"]
section_indices = [
i + 1
for i, par in enumerate(paragraphs[:-2])
if paragraphs[i] == "" and paragraphs[i + 1] != "" and paragraphs[i + 2] != ""
]
par_tabs = [par.split(" ") for par in paragraphs]
word_map = [(i, len(" ".join(par[:j])), w) for i, par in enumerate(par_tabs) for j, w in enumerate(par)]
step_size = passage_len - overlap
passages = []
for i in range(math.ceil(len(word_map) / step_size)):
pre_toks = word_map[i * step_size : i * step_size + passage_len]
start_section_id = max([0] + [j for j in section_indices if j <= pre_toks[0][0]])
section_ids = [j for j in section_indices if start_section_id <= j <= pre_toks[-1][0]]
section_ids = section_ids if len(section_ids) > 0 else [-1]
passage_text = " ".join([w for p_id, s_id, w in pre_toks])
passages += [
{
"article_title": article_title,
"section_title": " & ".join(["Start" if j == -1 else paragraphs[j].strip() for j in section_ids]),
"wiki_id": article_title.replace(" ", "_"),
"start_paragraph": pre_toks[0][0],
"start_character": pre_toks[0][1],
"end_paragraph": pre_toks[-1][0],
"end_character": pre_toks[-1][1] + len(pre_toks[-1][2]) + 1,
"passage_text": passage_text,
}
]
return passages
_SPLIT_FUNCTION_MAP = {
"wikipedia": wikipedia_article_snippets,
"wiki40b": wiki40b_article_snippets,
}
def generate_snippets(wikipedia, split_function, passage_len=100, overlap=0):
for i, article in enumerate(wikipedia):
for doc in split_function(article, passage_len, overlap):
part_id = json.dumps(
{
"datasets_id": i,
"wiki_id": doc["wiki_id"],
"sp": doc["start_paragraph"],
"sc": doc["start_character"],
"ep": doc["end_paragraph"],
"ec": doc["end_character"],
}
)
doc["_id"] = part_id
doc["datasets_id"] = i
yield doc
class WikiSnippetsConfig(datasets.BuilderConfig):
"""BuilderConfig for WikiSnippets."""
def __init__(
self, wikipedia_name="wiki40b", wikipedia_version_name="en", snippets_length=100, snippets_overlap=0, **kwargs
):
"""BuilderConfig for WikiSnippets.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(WikiSnippetsConfig, self).__init__(**kwargs)
self.wikipedia_name = wikipedia_name
self.wikipedia_version_name = wikipedia_version_name
self.snippets_length = snippets_length
self.snippets_overlap = snippets_overlap
class WikiSnippets(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = WikiSnippetsConfig
BUILDER_CONFIGS = [
WikiSnippetsConfig(
name="wiki40b_en_100_0",
version=datasets.Version("1.0.0"),
wikipedia_name="wiki40b",
wikipedia_version_name="en",
snippets_length=100,
snippets_overlap=0,
),
WikiSnippetsConfig(
name="wikipedia_en_100_0",
version=datasets.Version("2.0.0"),
wikipedia_name="wikipedia",
wikipedia_version_name="20220301.en",
snippets_length=100,
snippets_overlap=0,
),
]
test_dummy_data = False
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"_id": datasets.Value("string"),
"datasets_id": datasets.Value("int32"),
"wiki_id": datasets.Value("string"),
"start_paragraph": datasets.Value("int32"),
"start_character": datasets.Value("int32"),
"end_paragraph": datasets.Value("int32"),
"end_character": datasets.Value("int32"),
"article_title": datasets.Value("string"),
"section_title": datasets.Value("string"),
"passage_text": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://dumps.wikimedia.org",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# WARNING: It is a bad practice to use `datasets.load_dataset` inside a loading script. Please, avoid doing it.
wikipedia = datasets.load_dataset(
path=self.config.wikipedia_name,
name=self.config.wikipedia_version_name,
)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"wikipedia": wikipedia}),
]
def _generate_examples(self, wikipedia):
logger.info(f"generating examples from = {self.config.wikipedia_name} {self.config.wikipedia_version_name}")
for split in wikipedia:
dset = wikipedia[split]
split_function = _SPLIT_FUNCTION_MAP[self.config.wikipedia_name]
for doc in generate_snippets(
dset, split_function, passage_len=self.config.snippets_length, overlap=self.config.snippets_overlap
):
id_ = doc["_id"]
yield id_, doc
|