Gomotions-tokenizer / README.md
codewithdark's picture
Update README.md
1e57902 verified

license: mit dataset_info: features:

  • name: input_ids sequence: int32
  • name: attention_mask sequence: int8
  • name: labels sequence: int64 splits:
  • name: train num_bytes: 121374360 num_examples: 43410
  • name: validation num_bytes: 15171096 num_examples: 5426
  • name: test num_bytes: 15173892 num_examples: 5427 download_size: 2670120 dataset_size: 151719348 configs:
  • config_name: default data_files:
    • split: train path: data/train-*
    • split: validation path: data/validation-*
    • split: test path: data/test-*

πŸ“š GoEmotions Dataset (Processed for Multi-Label Classification)

πŸ“– Dataset Overview

This dataset is a preprocessed version of the GoEmotions dataset, containing multi-label emotion annotations for text inputs. It consists of train, validation, and test splits.

πŸ”’ Dataset Statistics

Split Samples
Train XX,XXX
Validation X,XXX
Test X,XXX

πŸ“Œ Features

Feature Type Description
input_ids list[int] Tokenized input text
attention_mask list[int] Attention mask for tokens
labels list[int] Multi-label emotion encoding

πŸ“‚ How to Load

from datasets import load_dataset

dataset = load_dataset("codewithdark/go-emotions-processed")
print(dataset["train"][0])

πŸ‹οΈβ€β™‚οΈ Preprocessing Steps

  • Tokenization: bert-base-uncased
  • Multi-label encoding: Binary encoding of emotions
  • Train/Validation/Test split: 80/10/10

🎯 Labels (Emotions)

The dataset contains 27 emotion categories, including:

  • Admiration, Joy, Sadness, Anger, Optimism, Disgust, Love, etc.

πŸ› οΈ Citation

If you use this dataset, please cite:

@misc{go_emotions_dataset,
  author = {Google AI},
  title = {GoEmotions Dataset},
  year = {2021},
  url = {https://huggingface.co./datasets/go_emotions}
}